1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Kim YT, Huang YP, Ozturk G, Hahn J, Taha AY, Wang A, Barile D, Mills DA. Characterization of Bifidobacterium bifidum growth and metabolism on whey protein phospholipid concentrate. J Dairy Sci 2025:S0022-0302(24)01462-0. [PMID: 39788196 DOI: 10.3168/jds.2024-25885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Whey protein phospholipid concentrate (WPPC) is a co-product generated during the manufacture of whey protein isolate. WPPC is depleted of simple sugars but contains numerous glycoconjugates embedded in the milk fat globule membrane, suggesting this fraction may serve as a carbon source for growth of bifidobacteria commonly enriched in breast fed infants. In this work, we demonstrate that WPPC can serve as a sole carbon source for the growth of Bifidobacterium bifidum, a species common to the breastfed infant and routinely used as a probiotic. Growth on WPPC fractions resulted in expression of key extracellular glycosyl hydrolases in B. bifidum associated with the catabolism of glycoproteins. Interestingly, this included induction of fucosidase genes in B. bifidum linked to catabolism of fucosylated human milk oligosaccharides even though the WPPC glycan possesses little fucose. Additional growth studies revealed that WPPC-glycan components N-acetylglucosamine or N-acetylgalactosamine were required for pre-activation of B. bifidum toward rapid growth on the fucosylated human milk oligosaccharides. Growth on WPPC fractions also resulted in expression of extracellular sialidases in B. bifidum which promoted a consistent release of sialic acid, a well-known component of bovine milk oligosaccharides and glycoconjugates with potential impacts on gut microbial ecology and host cognition. These studies suggest WPPC may serve as a promising bioactive component to facilitate probiotic activity for use in infant formulas and other synbiotic applications.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616; Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie Hahn
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Aidong Wang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - David A Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616.
| |
Collapse
|
3
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
4
|
Berkhout MD, Ioannou A, de Ram C, Boeren S, Plugge CM, Belzer C. Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes. Glycobiology 2024; 34:cwae085. [PMID: 39385462 PMCID: PMC11632381 DOI: 10.1093/glycob/cwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Carol de Ram
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
5
|
Santiago-López L, Garcia HS, Beltrán-Barrientos LM, Méndez-Romero JI, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Probiotic Potential of Bacteria Isolated from Huauzontle (Chenopodium berlandieri spp. Nuttalliae) and Multifunctional Properties of Their Intracellular Contents. FOOD BIOPROCESS TECH 2024; 17:3546-3560. [DOI: 10.1007/s11947-024-03334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/28/2024] [Indexed: 01/05/2025]
|
6
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Rizzo SM, Alessandri G, Tarracchini C, Bianchi MG, Viappiani A, Mancabelli L, Lugli GA, Milani C, Bussolati O, van Sinderen D, Ventura M, Turroni F. Molecular cross-talk among human intestinal bifidobacteria as explored by a human gut model. Front Microbiol 2024; 15:1435960. [PMID: 39314876 PMCID: PMC11418510 DOI: 10.3389/fmicb.2024.1435960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Bifidobacteria are well known as common and abundant colonizers of the human gut and are able to exert multiple beneficial effects on their host, although the cooperative and competitive relationships that may occur among bifidobacterial strains are still poorly investigated. Therefore, to dissect possible molecular interactions among bifidobacterial species that typically colonize the human gut, three previously identified bifidobacterial prototypes, i.e., B. bifidum PRL2010, B. breve PRL2012, and B. longum PRL2022 were cultivated individually as well as in bi- and tri-association in a human gut-simulating medium. Transcriptomic analyses of these co-associations revealed up-regulation of genes predicted to be involved in the production of extracellular structures including pili (i.e., flp pilus assembly TadE protein gene), exopolysaccharides (i.e., GtrA family protein gene) and teichoic acids (i.e., ABC transporter permease), along with carbohydrate, amino acid and vitamin metabolism-related genes (i.e., exo-alpha-sialidase; beta-galactosidase and pyridoxamine kinase), suggesting that co-cultivation of bifidobacteria induces a response, in individual bifidobacterial strains, aimed at enhancing their proliferation and survival, as well as their ability to cooperate with their host to promote their persistence. Furthermore, exposure of the selected prototypes to human cell line monolayers unveiled the ability of the bifidobacterial tri-association to communicate with their host by increasing the expression of genes involved in adherence to/interaction with intestinal human cells. Lastly, bifidobacterial tri-association promoted the transcriptional upregulation of genes responsible for maintaining the integrity and homeostasis of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
9
|
Martínez Gascueña A, Wu H, Wang R, Owen CD, Hernando PJ, Monaco S, Penner M, Xing K, Le Gall G, Gardner R, Ndeh D, Urbanowicz PA, Spencer DIR, Walsh M, Angulo J, Juge N. Exploring the sequence-function space of microbial fucosidases. Commun Chem 2024; 7:137. [PMID: 38890439 PMCID: PMC11189522 DOI: 10.1038/s42004-024-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Microbial α-L-fucosidases catalyse the hydrolysis of terminal α-L-fucosidic linkages and can perform transglycosylation reactions. Based on sequence identity, α-L-fucosidases are classified in glycoside hydrolases (GHs) families of the carbohydrate-active enzyme database. Here we explored the sequence-function space of GH29 fucosidases. Based on sequence similarity network (SSN) analyses, 15 GH29 α-L-fucosidases were selected for functional characterisation. HPAEC-PAD and LC-FD-MS/MS analyses revealed substrate and linkage specificities for α1,2, α1,3, α1,4 and α1,6 linked fucosylated oligosaccharides and glycoconjugates, consistent with their SSN clustering. The structural basis for the substrate specificity of GH29 fucosidase from Bifidobacterium asteroides towards α1,6 linkages and FA2G2 N-glycan was determined by X-ray crystallography and STD NMR. The capacity of GH29 fucosidases to carry out transfucosylation reactions with GlcNAc and 3FN as acceptors was evaluated by TLC combined with ESI-MS and NMR. These experimental data supported the use of SSN to further explore the GH29 sequence-function space through machine-learning models. Our lightweight protein language models could accurately allocate test sequences in their respective SSN clusters and assign 34,258 non-redundant GH29 sequences into SSN clusters. It is expected that the combination of these computational approaches will be used in the future for the identification of novel GHs with desired specificities.
Collapse
Affiliation(s)
- Ana Martínez Gascueña
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Haiyang Wu
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- GuangDong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Wang
- Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
- Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - C David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Pedro J Hernando
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Iceni Glycoscience Ltd., Norwich Research Park, Norwich, NR4 7JG, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew Penner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Ke Xing
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Gwenaelle Le Gall
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Didier Ndeh
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- University of Dundee, School of Life Sciences, Dundee, DD1 5EH, Scotland, UK
| | | | | | - Martin Walsh
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0FA, UK
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Departamento de Química Orgánica, Universidad de Sevilla, 41012, Sevilla, Spain
- Instituto de Investigaciones Químicas (CSIC-US), 41092, Sevilla, Spain
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
10
|
Hermes GDA, Rasmussen C, Wellejus A. Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria. Nutrients 2024; 16:1893. [PMID: 38931248 PMCID: PMC11206791 DOI: 10.3390/nu16121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Human milk provides essential nutrients for infants but also consists of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Bifidobacteria are among the first colonizers, providing various health benefits for the host. This is largely facilitated by their ability to efficiently metabolize HMOs in a species-specific way. Nevertheless, these abilities can vary significantly by strain, and our understanding of the mechanisms applied by different strains from the same species remains incomplete. Therefore, we assessed the effects of strain-level genomic variation in HMO utilization genes on growth on HMOs in 130 strains from 10 species of human associated bifidobacteria. Our findings highlight the extent of genetic diversity between strains of the same species and demonstrate the effects on species-specific HMO utilization, which in most species is largely retained through the conservation of a core set of genes or the presence of redundant pathways. These data will help to refine our understanding of the genetic factors that contribute to the persistence of individual strains and will provide a better mechanistic rationale for the development and optimization of new early-life microbiota-modulating products to improve infant health.
Collapse
Affiliation(s)
- Gerben D. A. Hermes
- Human Health Research, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark (A.W.)
| | | | | |
Collapse
|
11
|
Zhang K, He C, Wang L, Suo L, Guo M, Guo J, Zhang T, Xu Y, Lei Y, Liu G, Qian Q, Mao Y, Kalds P, Wu Y, Cuoji A, Yang Y, Brugger D, Gan S, Wang M, Wang X, Zhao F, Chen Y. Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization. MICROBIOME 2024; 12:104. [PMID: 38845047 PMCID: PMC11155115 DOI: 10.1186/s40168-024-01806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.
Collapse
Affiliation(s)
- Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chong He
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Mengmeng Guo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611100, China
| | - Ting Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongwei Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quan Qian
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunrui Mao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Awang Cuoji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Yuxin Yang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meili Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 102206, China.
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
12
|
Matera M. Bifidobacteria, Lactobacilli... when, how and why to use them. GLOBAL PEDIATRICS 2024; 8:100139. [DOI: 10.1016/j.gpeds.2024.100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Bellomo AR, Rotondi G, Rago P, Bloise S, Di Ruzza L, Zingoni A, Di Valerio S, Valzano E, Di Pierro F, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N, Lubrano R. Effect of Bifidobacterium bifidum Supplementation in Newborns Born from Cesarean Section on Atopy, Respiratory Tract Infections, and Dyspeptic Syndromes: A Multicenter, Randomized, and Controlled Clinical Trial. Microorganisms 2024; 12:1093. [PMID: 38930475 PMCID: PMC11205812 DOI: 10.3390/microorganisms12061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Cesarean section is considered a possible trigger of atopy and gut dysbiosis in newborns. Bifidobacteria, and specifically B. bifidum, are thought to play a central role in reducing the risk of atopy and in favoring gut eubiosis in children. Nonetheless, no trial has ever prospectively investigated the role played by this single bacterial species in preventing atopic manifestations in children born by cesarean section, and all the results published so far refer to mixtures of probiotics. We have therefore evaluated the impact of 6 months of supplementation with B. bifidum PRL2010 on the incidence, in the first year of life, of atopy, respiratory tract infections, and dyspeptic syndromes in 164 children born by cesarean (versus 249 untreated controls). The results of our multicenter, randomized, and controlled trial have shown that the probiotic supplementation significantly reduced the incidence of atopic dermatitis, upper and lower respiratory tract infections, and signs and symptoms of dyspeptic syndromes. Concerning the gut microbiota, B. bifidum supplementation significantly increased α-biodiversity and the relative values of the phyla Bacteroidota and Actinomycetota, of the genus Bacteroides, Bifidobacterium and of the species B. bifidum and reduced the relative content of Escherichia/Shigella and Haemophilus. A 6-month supplementation with B. bifidum in children born by cesarean section reduces the risk of gut dysbiosis and has a positive clinical impact that remains observable in the following 6 months of follow-up.
Collapse
Affiliation(s)
- Anna Rita Bellomo
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Giulia Rotondi
- Pediatric Surgery Unit, Gaslini Children Hospital and Research Institute, 16147 Genoa, Italy
| | - Prudenza Rago
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Silvia Bloise
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Luigi Di Ruzza
- UOC Pediatria e Nido, Ospedale S.S. Trinità, 03039 Sora, Italy
| | - Annamaria Zingoni
- UOC Pediatria e Neonatologia, Ospedale G.B. Grassi, 00122 Ostia, Italy
| | - Susanna Di Valerio
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Eliana Valzano
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Riccardo Lubrano
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| |
Collapse
|
14
|
Shaw C, Weimer BC, Gann R, Desai PT, Shah JD. The Yin and Yang of pathogens and probiotics: interplay between Salmonella enterica sv. Typhimurium and Bifidobacterium infantis during co-infection. Front Microbiol 2024; 15:1387498. [PMID: 38812689 PMCID: PMC11133690 DOI: 10.3389/fmicb.2024.1387498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.
Collapse
Affiliation(s)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
15
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Román L, Melis-Arcos F, Pröschle T, Saa PA, Garrido D. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis. mSystems 2024; 9:e0071523. [PMID: 38363147 PMCID: PMC10949479 DOI: 10.1128/msystems.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.
Collapse
Affiliation(s)
- Loreto Román
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melis-Arcos
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Pröschle
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
20
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Genomic and ecological approaches to identify the Bifidobacterium breve prototype of the healthy human gut microbiota. Front Microbiol 2024; 15:1349391. [PMID: 38426063 PMCID: PMC10902438 DOI: 10.3389/fmicb.2024.1349391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Kuntz S, Kunz C, Borsch C, Hill D, Morrin S, Buck R, Rudloff S. Influence of microbially fermented 2´-fucosyllactose on neuronal-like cell activity in an in vitro co-culture system. Front Nutr 2024; 11:1351433. [PMID: 38389793 PMCID: PMC10881714 DOI: 10.3389/fnut.2024.1351433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Scope 2´-Fucosyllactose (2´-FL), the most abundant oligosaccharide in human milk, plays an important role in numerous biological functions, including improved learning. It is not clear, however, whether 2´-FL or a cleavage product could influence neuronal cell activity. Thus, we investigated the effects of 2´-FL, its monosaccharide fucose (Fuc), and microbial fermented 2´-FL and Fuc on the parameters of neuronal cell activity in an intestinal-neuronal transwell co-culture system in vitro. Methods Native 13C-labeled 2´-FL and 13C-Fuc or their metabolites, fermented with Bifidobacterium (B.) longum ssp. infantis and B. breve, which were taken from the lag-, log- and stationary (stat-) growth phases of batch cultures, were applied to the apical compartment of the co-culture system with Caco-2 cells representing the intestinal layer and all-trans-retinoic acid-differentiated SH-SY5Y (SH-SY5YATRA) cells mimicking neuronal-like cells. After 3 h of incubation, the culture medium in the basal compartment was monitored for 13C enrichment by using elemental analysis isotope-ratio mass spectrometry (EA-IRMS) and effects on cell viability, plasma, and mitochondrial membrane potential. The neurotransmitter activation (BDNF, GABA, choline, and glutamate) of SH-SY5YATRA cells was also determined. Furthermore, these effects were also measured by the direct application of 13C-2´-FL and 13C-Fuc to SH-SY5YATRA cells. Results While no effects on neuronal-like cell activities were observed after intact 2´-FL or Fuc was incubated with SH-SY5YATRA cells, supernatants from the stat-growth phase of 2´-FL, fermented by B. longum ssp. infantis alone and together with B. breve, significantly induced BDNF release from SH-SY5YATRA cells. No such effects were found for 2´-FL, Fuc, or their fermentation products from B. breve. The BDNF release occurred from an enhanced vesicular release, which was confirmed by the use of the Ca2+-channel blocker verapamil. Concomitant with this event, 13C enrichment was also observed in the basal compartment when supernatants from the stat-growth phase of fermentation by B. longum ssp. infantis alone or together with B. breve were used. Conclusion The results obtained in this study suggest that microbial products of 2´-FL rather than the oligosaccharide itself may influence neuronal cell activities.
Collapse
Affiliation(s)
- Sabine Kuntz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Clemens Kunz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Borsch
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - David Hill
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Sinéad Morrin
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Rachael Buck
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Silvia Rudloff
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Rizzo SM, Vergna LM, Alessandri G, Lee C, Fontana F, Lugli GA, Carnevali L, Bianchi MG, Barbetti M, Taurino G, Sgoifo A, Bussolati O, Turroni F, van Sinderen D, Ventura M. GH136-encoding gene (perB) is involved in gut colonization and persistence by Bifidobacterium bifidum PRL2010. Microb Biotechnol 2024; 17:e14406. [PMID: 38271233 PMCID: PMC10884991 DOI: 10.1111/1751-7915.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ciaran Lee
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Luca Carnevali
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Massimiliano G. Bianchi
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giuseppe Taurino
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Sgoifo
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| |
Collapse
|
23
|
Conteville LC, da Silva JV, Andrade BGN, Cardoso TF, Bruscadin JJ, de Oliveira PSN, Mourão GB, Coutinho LL, Palhares JCP, Berndt A, de Medeiros SR, Regitano LCDA. Rumen and fecal microbiomes are related to diet and production traits in Bos indicus beef cattle. Front Microbiol 2023; 14:1282851. [PMID: 38163076 PMCID: PMC10754987 DOI: 10.3389/fmicb.2023.1282851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Ruminants harbor a complex microbial community within their gastrointestinal tract, which plays major roles in their health and physiology. Brazil is one of the largest producers of beef in the world and more than 90% of the beef cattle herds are composed of pure and crossbred Nelore (Bos indicus). Despite its importance to the Brazilian economy and human feeding, few studies have characterized the Nelore microbiome. Therefore, using shotgun metagenomics, we investigated the impact of diet on the composition and functionality of the Nelore microbiome, and explored the associations between specific microbial taxa and their functionality with feed efficiency and methane emission. Results The ruminal microbiome exhibited significantly higher microbial diversity, distinctive taxonomic profile and variations in microbial functionality compared to the fecal microbiome, highlighting the distinct contributions of the microbiomes of these environments. Animals subjected to different dietary treatments exhibited significant differences in their microbiomes' archaeal diversity and in the abundance of 89 genera, as well as in the functions associated with the metabolism of components of each diet. Moreover, depending on the diet, feed-efficient animals and low methane emitters displayed higher microbial diversity in their fecal microbiome. Multiple genera were associated with an increase or decrease of the phenotypes. Upon analyzing the functions attributed to these taxa, we observed significant differences on the ruminal taxa associated with feed efficient and inefficient cattle. The ruminal taxa that characterized feed efficient cattle stood out for having significantly more functions related to carbohydrate metabolism, such as monosaccharides, di-/oligosaccharides and amino acids. The taxa associated with methane emission had functions associated with methanogenesis and the production of substrates that may influence methane production, such as hydrogen and formate. Conclusion Our findings highlight the significant role of diet in shaping Nelore microbiomes and how its composition and functionality may affect production traits such as feed efficiency and methane emission. These insights provide valuable support for the implementation of novel feeding and biotechnological strategies.
Collapse
Affiliation(s)
| | - Juliana Virginio da Silva
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Jennifer Jessica Bruscadin
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Priscila Silva Neubern de Oliveira
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, Center for Functional Genomics, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Center for Functional Genomics, University of São Paulo/ESALQ, Piracicaba, Brazil
| | | | | | | | | |
Collapse
|
24
|
Kiely LJ, Busca K, Lane JA, van Sinderen D, Hickey RM. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. FEMS Microbiol Rev 2023; 47:fuad056. [PMID: 37793834 PMCID: PMC10629584 DOI: 10.1093/femsre/fuad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.
Collapse
Affiliation(s)
- Leonie Jane Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Kizkitza Busca
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
25
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
27
|
Mollova D, Vasileva T, Bivolarski V, Iliev I. The Enzymatic Hydrolysis of Human Milk Oligosaccharides and Prebiotic Sugars from LAB Isolated from Breast Milk. Microorganisms 2023; 11:1904. [PMID: 37630464 PMCID: PMC10458952 DOI: 10.3390/microorganisms11081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breastfeeding is essential in the first months of a newborn's life. Breast milk is a source of crucial macronutrients, prebiotic oligosaccharides, and potential probiotic strains of bacteria. Oligosaccharides from breast milk (HMOs) are a significant part of the composition of breast milk and represent a complex of digestible sugars. This study aims to elucidate the enzymatic hydrolysis of these oligosaccharides and other prebiotics by the bacteria present in breast milk. We used modified methods to isolate oligosaccharides (HMOs) from human milk. Using unique techniques, we isolated and identified different bacteria from breast milk, mainly Lactobacillus fermentum. Using enzymatic analyses, we established the participation of α-fucosidase, α-glucosidase, β-galactosidase, and β-glucosidase from breast milk bacteria in the hydrolysis of prebiotic sugars. We also optimized the scheme for isolating oligosaccharides from breast milk by putting the lyophilized product into different food media. We found that the oligosaccharides from breast milk (HMOs) are a potent inducer for the secretion of the studied bacterial enzymes. Also, we found that all the lactobacilli strains we studied in detail could digest mucin-linked glycans. The degradation of these sugars is perhaps a built-in defense mechanism in cases where other sugars are lacking in the environment. We also determined fucosidase activity in some of the isolated strains. We recorded the highest values (2.5 U/mg in L. fermentum ss8) when the medium's oligosaccharides isolated from breast milk were present. Lactobacilli and Bifidobacteria supplied with breast milk are the first colonizers in most cases in the gastrointestinal tract of the newborn. The presence and study of different genes for synthesizing other enzyme systems and transporters of various sugars in this type of bacteria are essential.
Collapse
Affiliation(s)
- Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria; (T.V.); (V.B.); (I.I.)
| | | | | | | |
Collapse
|
28
|
Holst AQ, Myers P, Rodríguez-García P, Hermes GDA, Melsaether C, Baker A, Jensen SR, Parschat K. Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants. Nutrients 2023; 15:3087. [PMID: 37513505 PMCID: PMC10383262 DOI: 10.3390/nu15143087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the first clinical study on infant formula supplemented with five different HMOs (5HMO-mix), comprising 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose and 6'-sialyllactose at a natural total concentration of 5.75 g/L, and here report the analysis of the infant fecal microbiome. We found an increase in the relative abundance of bifidobacteria in the 5HMO-mix cohort compared with the formula-fed control, specifically affecting bifidobacteria that can produce aromatic lactic acids. 5HMO-mix influenced the microbial composition as early as Week 1, and the observed changes persisted to at least Week 16, including a relative decrease in species with opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks. We further analyzed the functional potential of the microbiome and observed features shared between 5HMO-mix-supplemented and breastfed infants, such as a relative enrichment in mucus and tyrosine degradation, with the latter possibly being linked to the aromatic lactic acids. The 5HMO-mix supplement, therefore, shifts the infant fecal microbiome closer to that of breastfed infants.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Baker
- Chr. Hansen A/S, 2970 Hoersholm, Denmark
| | | | | |
Collapse
|
29
|
Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today 2023; 28:103606. [PMID: 37146964 DOI: 10.1016/j.drudis.2023.103606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Colon targeting is an ongoing challenge, particularly for the oral administration of biological drugs or local treatment of inflammatory bowel disease (IBD). In both cases, drugs are known to be sensitive to the harsh conditions of the upper gastrointestinal tract (GIT) and, thus, must be protected. Here, we provide an overview of recently developed colonic site-specific drug delivery systems based on microbiota sensitivity of natural polysaccharides. Polysaccharides act as a substrate for enzymes secreted by the microbiota located in the distal part of GIT. The dosage form is adapted to the pathophysiology of the patient and, thus, a combination of bacteria-sensitive and time-controlled release or pH-dependent systems can be used for delivery.
Collapse
Affiliation(s)
- Hajar Azehaf
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Youcef Benzine
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Tagzirt
- University of Lille, Inserm, CHU Lille, U1011, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - M Skiba
- University of Rouen, Galenic Pharmaceutical Team, INSERM U1239, UFR of Health, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Youness Karrout
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
30
|
Takada H, Katoh T, Sakanaka M, Odamaki T, Katayama T. GH20 and GH84 β-N-acetylglucosaminidases with different linkage specificities underpin mucin O-glycan breakdown capability of Bifidobacterium bifidum. J Biol Chem 2023:104781. [PMID: 37146969 DOI: 10.1016/j.jbc.2023.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Intestinal mucus layers mediate symbiosis and dysbiosis of host-microbe interactions. These interactions are influenced by the mucin O-glycan degrading ability of several gut microbes. The identities and prevalence of many glycoside hydrolyses (GHs) involved in microbial mucin O-glycan breakdown have been previously reported; however, the exact mechanisms and extent to which these GHs are dedicated to mucin O-glycan degradation pathways warrant further research. Here, using Bifidobacterium bifidum as a model mucinolytic bacterium, we revealed that two β-N-acetylglucosaminidases belonging to the GH20 (BbhI) and GH84 (BbhIV) families play important roles in mucin O-glycan degradation. Using substrate specificity analysis of natural oligosaccharides and O-glycomic analysis of porcine gastric mucin (PGM) incubated with purified enzymes or B. bifidum carrying bbhI and/or bbhIV mutations, we showed that BbhI and BbhIV are highly specific for β-(1→3)- and β-(1→6)-GlcNAc linkages of mucin core structures, respectively. Interestingly, we found that efficient hydrolysis of the β-(1→3)-linkage by BbhI of the mucin core 4 structure [GlcNAcβ1-3(GlcNAcβ1-6)GalNAcα-O-Thr] required prior removal of the β-(1→6)-GlcNAc linkage by BbhIV. Consistent with this, inactivation of bbhIV markedly decreased the ability of B. bifidum to release GlcNAc from PGM. When combined with a bbhI mutation, we observed that the growth of the strain on PGM was reduced. Finally, phylogenetic analysis suggests that GH84 members may have gained diversified functions through microbe-microbe and host-microbe horizontal gene transfer events. Taken together, these data strongly suggest GH84 family members in host glycan breakdown.
Collapse
Affiliation(s)
- Hiromi Takada
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan; Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan.
| |
Collapse
|
31
|
Al-Ishaq RK, Samuel SM, Büsselberg D. The Influence of Gut Microbial Species on Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098118. [PMID: 37175825 PMCID: PMC10179351 DOI: 10.3390/ijms24098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient's life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. Recently, more studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. This review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the relationship between those bacterial species and metformin, one of the commonly used antidiabetic drugs. Overall, more research is needed to understand the influence of the gut microbiome on the development of diabetes. Furthermore, more efforts are required to standardize the model used, concentration ranges, and interpretation tools to advance the field further.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
32
|
Anderson KE, Ricigliano VA, Copeland DC, Mott BM, Maes P. Social Interaction is Unnecessary for Hindgut Microbiome Transmission in Honey Bees: The Effect of Diet and Social Exposure on Tissue-Specific Microbiome Assembly. MICROBIAL ECOLOGY 2023; 85:1498-1513. [PMID: 35499645 PMCID: PMC10167169 DOI: 10.1007/s00248-022-02025-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
Honey bees are a model for host-microbial interactions with experimental designs evolving towards conventionalized worker bees. Research on gut microbiome transmission and assembly has examined only a fraction of factors associated with the colony and hive environment. Here, we studied the effects of diet and social isolation on tissue-specific bacterial and fungal colonization of the midgut and two key hindgut regions. We found that both treatment factors significantly influenced early hindgut colonization explaining similar proportions of microbiome variation. In agreement with previous work, social interaction with older workers was unnecessary for core hindgut bacterial transmission. Exposure to natural eclosion and fresh stored pollen resulted in gut bacterial communities that were taxonomically and structurally equivalent to those produced in the natural colony setting. Stressed diets of no pollen or autoclaved pollen in social isolation resulted in decreased fungal abundance and bacterial diversity, and atypical microbiome structure and tissue-specific variation of functionally important core bacteria. Without exposure to the active hive environment, the abundance and strain diversity of keystone ileum species Gilliamella apicola was markedly reduced. These changes were associated with significantly larger ileum microbiotas suggesting that extended exposure to the active hive environment plays an antibiotic role in hindgut microbiome establishment. We conclude that core hindgut microbiome transmission is facultative horizontal with 5 of 6 core hindgut species readily acquired from the built hive structure and natural diet. Our findings contribute novel insights into factors influencing assembly and maintenance of honey bee gut microbiota and facilitate future experimental designs.
Collapse
Affiliation(s)
- Kirk E Anderson
- ARS-USDA Carl Hayden Bee Research Center, 2000 E. Allen Rd., Tucson, AZ, 85719, USA.
| | - Vincent A Ricigliano
- ARS-USDA Carl Hayden Bee Research Center, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- ARS-USDA Honey Bee Breeding Genetics and Physiology Research, Baton Rouge, LA, 70820, USA
| | - Duan C Copeland
- Department of Microbiology, School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Brendon M Mott
- ARS-USDA Carl Hayden Bee Research Center, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| | - Patrick Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
33
|
Akhtar A, Lata M, Sunsunwal S, Yadav A, Lnu K, Subramanian S, Ramya TNC. New carbohydrate binding domains identified by phage display based functional metagenomic screens of human gut microbiota. Commun Biol 2023; 6:371. [PMID: 37019943 PMCID: PMC10076258 DOI: 10.1038/s42003-023-04718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Uncultured microbes represent a huge untapped biological resource of novel genes and gene products. Although recent genomic and metagenomic sequencing efforts have led to the identification of numerous genes that are homologous to existing annotated genes, there remains, yet, an enormous pool of unannotated genes that do not find significant sequence homology to existing annotated genes. Functional metagenomics offers a way to identify and annotate novel gene products. Here, we use functional metagenomics to mine novel carbohydrate binding domains that might aid human gut commensals in adherence, gut colonization, and metabolism of complex carbohydrates. We report the construction and functional screening of a metagenomic phage display library from healthy human fecal samples against dietary, microbial and host polysaccharides/glycoconjugates. We identify several protein sequences that do not find a hit to any known protein domain but are predicted to contain carbohydrate binding module-like folds. We heterologously express, purify and biochemically characterize some of these protein domains and demonstrate their carbohydrate-binding function. Our study reveals several previously unannotated carbohydrate-binding domains, including a levan binding domain and four complex N-glycan binding domains that might be useful for the labeling, visualization, and isolation of these glycans.
Collapse
Affiliation(s)
- Akil Akhtar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Amit Yadav
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kajal Lnu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srikrishna Subramanian
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
34
|
Nishiyama K, Yong CC, Moritoki N, Kitazawa H, Odamaki T, Xiao JZ, Mukai T. Sharing of Moonlighting Proteins Mediates the Symbiotic Relationship among Intestinal Commensals. Appl Environ Microbiol 2023; 89:e0219022. [PMID: 36847513 PMCID: PMC10053696 DOI: 10.1128/aem.02190-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
The human gastrointestinal tract is inhabited by trillions of symbiotic bacteria that form a complex ecological community and influence human physiology. Symbiotic nutrient sharing and nutrient competition are the most studied relationships in gut commensals, whereas the interactions underlying homeostasis and community maintenance are not fully understood. Here, we provide insights into a new symbiotic relationship wherein the sharing of secreted cytoplasmic proteins, called "moonlighting proteins," between two heterologous bacterial strains (Bifidobacterium longum and Bacteroides thetaiotaomicron) was observed to affect the adhesion of bacteria to mucins. B. longum and B. thetaiotaomicron were cocultured using a membrane-filter system, and in this system the cocultured B. thetaiotaomicron cells showed greater adhesion to mucins compared to that shown by monoculture cells. Proteomic analysis showed the presence of 13 B. longum-derived cytoplasmic proteins on the surface of B. thetaiotaomicron. Moreover, incubation of B. thetaiotaomicron with the recombinant proteins GroEL and elongation factor Tu (EF-Tu)-two well-known mucin-adhesive moonlighting proteins of B. longum-led to an increase in the adhesion of B. thetaiotaomicron to mucins, a result attributed to the localization of these proteins on the B. thetaiotaomicron cell surface. Furthermore, the recombinant EF-Tu and GroEL proteins were observed to bind to the cell surface of several other bacterial species; however, the binding was species dependent. The present findings indicate a symbiotic relationship mediated by the sharing of moonlighting proteins among specific strains of B. longum and B. thetaiotaomicron. IMPORTANCE The adhesion of intestinal bacteria to the mucus layer is an important colonization strategy in the gut environment. Generally, the bacterial adhesion process is a characteristic feature of the individual cell surface-associated adhesion factors secreted by a particular bacterium. In this study, coculture experiments between Bifidobacterium and Bacteroides show that the secreted moonlighting proteins adhere to the cell surface of coexisting bacteria and alter the adhesiveness of the bacteria to mucins. This finding indicates that the moonlighting proteins act as adhesion factors for not only homologous strains but also for coexisting heterologous strains. The presence of a coexisting bacterium in the environment can significantly alter the mucin-adhesive properties of another bacterium. The findings from this study contribute to a better understanding of the colonization properties of gut bacteria through the discovery of a new symbiotic relationship between them.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Cheng-Chung Yong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
35
|
A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem. Nat Chem Biol 2023; 19:778-789. [PMID: 36864192 DOI: 10.1038/s41589-023-01272-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.
Collapse
|
36
|
Wei X, Yu L, Zhang C, Ni Y, Zhang H, Zhai Q, Tian F. Genetic-Phenotype Analysis of Bifidobacterium bifidum and Its Glycoside Hydrolase Gene Distribution at Different Age Groups. Foods 2023; 12:foods12050922. [PMID: 36900439 PMCID: PMC10000437 DOI: 10.3390/foods12050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Human gut microbiota interfere with host development and aging. Bifidobacterium is a microbial genus found in the human digestive tract that has probiotic activities such as improving constipation and enhancing immunity. The species and numbers present change with age, but there has been limited research on probiotic gut microbiota at specific ages. This study analyzed the distribution of 610 bifidobacteria in subjects in several age groups (0-17, 18-65, and 66-108 y) using 486 fecal samples and determined the distribution of glycoside hydrolases based on genetic analysis of strains representing 85% of the Bifidobacterium species abundance in each age group. 6'-Sialyllactose is a major component of acidic breast milk oligosaccharides, which can promote human neurogenesis and bifidobacteria growth. Using genotypic and phenotypic association analysis, we investigated the utilization of 6'-sialyllactose by six B. bifidum strains isolated from subjects 0-17 and 18-65 y. A comparative genomic analysis of the six B. bifidum strains revealed differences in genomic features across age groups. Finally, the safety of these strains was evaluated by antibiotic gene and drug resistance phenotype analysis. Our results reveal that the distribution of glycoside hydrolase genes in B. bifidum varies with age, thus affecting the phenotypic results. This provides important insights for the design and application of probiotic products for different ages.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85912155
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Elzinga J, Grouls M, Hooiveld GJEJ, van der Zande M, Smidt H, Bouwmeester H. Systematic comparison of transcriptomes of Caco-2 cells cultured under different cellular and physiological conditions. Arch Toxicol 2023; 97:737-753. [PMID: 36680592 PMCID: PMC9862247 DOI: 10.1007/s00204-022-03430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/22/2023]
Abstract
There is a need for standardized in vitro models emulating the functionalities of the human intestinal tract to study human intestinal health without the use of laboratory animals. The Caco-2 cell line is a well-accepted and highly characterized intestinal barrier model, which has been intensively used to study intestinal (drug) transport, host-microbe interactions and chemical or drug toxicity. This cell line has been cultured in different in vitro models, ranging from simple static to complex dynamic microfluidic models. We aimed to investigate the effect of these different in vitro experimental variables on gene expression. To this end, we systematically collected and extracted data from studies in which transcriptome analyses were performed on Caco-2 cells grown on permeable membranes. A collection of 13 studies comprising 100 samples revealed a weak association of experimental variables with overall as well as individual gene expression. This can be explained by the large heterogeneity in cell culture practice, or the lack of adequate reporting thereof, as suggested by our systematic analysis of experimental parameters not included in the main analysis. Given the rapidly increasing use of in vitro cell culture models, including more advanced (micro) fluidic models, our analysis reinforces the need for improved, standardized reporting protocols. Additionally, our systematic analysis serves as a template for future comparative studies on in vitro transcriptome and other experimental data.
Collapse
Affiliation(s)
- Janneke Elzinga
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Menno Grouls
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
38
|
Chen C, Li T, Chen G, Chen D, Peng Y, Hu B, Sun Y, Zeng X. Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
40
|
Zhang Z, Dong M, Zallot R, Blackburn GM, Wang N, Wang C, Chen L, Baumann P, Wu Z, Wang Z, Fan H, Roth C, Jin Y, He Y. Mechanistic and Structural Insights into the Specificity and Biological Functions of Bacterial Sulfoglycosidases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Mochen Dong
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Rémi Zallot
- Institute of Life Sciences, Swansea University Medical School, Swansea SA2 8PP, U.K
| | - George Michael Blackburn
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Nini Wang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Chengjian Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, P. R. China
| | - Long Chen
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Patrick Baumann
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Zuyan Wu
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, P. R. China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Christian Roth
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Arnimallee 22, 14195 Berlin, German
| | - Yi Jin
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
41
|
Schwab C. The development of human gut microbiota fermentation capacity during the first year of life. Microb Biotechnol 2022; 15:2865-2874. [PMID: 36341758 PMCID: PMC9733644 DOI: 10.1111/1751-7915.14165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Fermentation capacity of microbial ecosystems intrinsically depends on substrate supply and the ability of a microbial community to deliver monomers for fermentation. In established microbial ecosystems, the microbial community is adapted to efficiently degrade and ferment available biopolymers which is often concurrently reflected in the richness of the microbial community and its functional potential. During the first year of life, the human gut microbial environment is a rather dynamic system that is characterized by a change in physiological conditions (e.g. from aerobic to anaerobic conditions, physical growth of the gastrointestinal tract, development of the intestinal immune system) but also by a change in nutrient supply from a compositionally limited liquid to a diverse solid diet, which demands major compositional and functional changes of the intestinal microbiota. How these transitions link to intestinal microbial fermentation capacity has gained comparatively little interest so far. This mini-review aims to collect evidence that already after birth, there is seeding of a hidden population of various fermentation organisms which remain present at low abundance until the cessation of breastfeeding removes nutritional restrictions of a liquid milk-based diet. The introduction of solid food containing plant and animal material is accompanied by an altering microbiota. The concurrent increases in the abundance of degraders and fermenters lead to higher intestinal fermentation capacity indicated by increased faecal levels of the final fermentation metabolites propionate and butyrate. Recent reports indicate that the development of fermentation capacity is an important step during gut microbiota development, as chronic disorders such as allergy and atopic dermatitis have been linked to lower degradation and fermentation capacity indicated by reduced levels of final fermentation metabolites at 1 year of age.
Collapse
Affiliation(s)
- Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
42
|
Chompre G, Sambolin L, Cruz ML, Sanchez R, Rodriguez Y, Rodríguez-Santiago RE, Yamamura Y, Appleyard CB. A one month high fat diet disrupts the gut microbiome and integrity of the colon inducing adiposity and behavioral despair in male Sprague Dawley rats. Heliyon 2022; 8:e11194. [PMID: 36387539 PMCID: PMC9663868 DOI: 10.1016/j.heliyon.2022.e11194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
High-fat diet (HFD) is associated with gut microbiome dysfunction and mental disorders. However, the time-dependence as to when this occurs is unclear. We hypothesized that a short-term HFD causes colonic tissue integrity changes resulting in behavioral changes. Rats were fed HFD or low-fat diet (LFD) for a month and gut microbiome, colon, and behavior were evaluated. Behavioral despair was found in the HFD group. Although obesity was absent, the HFD group showed increased percent weight gain, epididymal fat tissue, and leptin expression. Moreover, the HFD group had increased colonic damage, decreased expression of the tight junction proteins, and higher lipopolysaccharides (LPS) in serum. Metagenomic analysis revealed that the HFD group had more Bacteroides and less S24-7 which correlated with the decreased claudin-5. Finally, HFD group showed an increase of microglia percent area, increased astrocytic projections, and decreased phospho-mTOR. In conclusion, HFD consumption in a short period is still sufficient to disrupt gut integrity resulting in LPS infiltration, alterations in the brain, and behavioral despair even in the absence of obesity.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Lubriel Sambolin
- Basic Sciences Department, Division of Pharmacology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Rafael Sanchez
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yarelis Rodriguez
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Ronald E. Rodríguez-Santiago
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
43
|
Arzamasov AA, Nakajima A, Sakanaka M, Ojima MN, Katayama T, Rodionov DA, Osterman AL. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. mSystems 2022; 7:e0034322. [PMID: 36094076 PMCID: PMC9599254 DOI: 10.1128/msystems.00343-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR transcriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum. IMPORTANCE The predominance of bifidobacteria in the gut of breastfed infants is attributed to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are considered promising prebiotics that would stimulate the growth of bifidobacteria and confer multiple health benefits to preterm and malnourished children suffering from impaired (stunted) gut microbiota development. However, the rational selection of HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mechanisms governing HMO utilization in target bifidobacteria. This study describes NagR-mediated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp. infantis. The elucidated regulatory network appears optimally adapted to simultaneous utilization of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual components) to infant formulas. The study also provides insights into the evolutionary trajectories of complex regulatory networks controlling carbohydrate metabolism in bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A. Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
44
|
Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA, Smith R, Coxhead J, Butler A, Marsland BJ, Embleton ND, Berrington JE, Stewart CJ. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525-1535. [PMID: 36163498 PMCID: PMC9519454 DOI: 10.1038/s41564-022-01213-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, UK
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Smith
- Bioscience Institute, Newcastle University, Newcastle, UK
| | | | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK.
| | | |
Collapse
|
45
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
46
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
47
|
Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium. Proc Natl Acad Sci U S A 2022; 119:e2205068119. [PMID: 35857876 PMCID: PMC9335239 DOI: 10.1073/pnas.2205068119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bifidobacterium is a commensal bacterial genus ubiquitous in the human gastrointestinal tract, which is associated with a range of health benefits. The advent of CRISPR-based genome editing technologies provides opportunities to investigate the genetics of important bacteria and transcend the lack of genetic tools in bifidobacteria to study the basis for their health-promoting attributes. Here, we repurpose the endogenous type I-G CRISPR-Cas system and adopt an exogenous CRISPR base editor for genome engineering in B. animalis subsp. lactis, demonstrating that both genomic and epigenetic contexts drive editing outcomes across strains. We reprogrammed the endogenous type I-G system to screen for naturally occurring large deletions up to 27 kb and to generate a 500-bp deletion in tetW to abolish tetracycline resistance. A CRISPR-cytosine base editor was optimized to install C•G-to-T•A amber mutations to resensitize multiple B. lactis strains to tetracycline. Remarkably, we uncovered epigenetic patterns that are distributed unevenly among B. lactis strains, despite their genomic homogeneity, that may contribute to editing efficiency variability. Insights were also expanded to Bifidobacterium longum subsp. infantis to emphasize the broad relevance of these findings. This study highlights the need to develop individualized CRISPR-based genome engineering approaches for distinct bacterial strains and opens avenues for engineering of next generation probiotics.
Collapse
|
48
|
Early Queen Development in Honey Bees: Social Context and Queen Breeder Source Affect Gut Microbiota and Associated Metabolism. Microbiol Spectr 2022; 10:e0038322. [PMID: 35867384 PMCID: PMC9430896 DOI: 10.1128/spectrum.00383-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly social honey bee has dense populations but a significantly reduced repertoire of immune genes relative to solitary species, suggesting a greater reliance on social immunity. Here we investigate immune gene expression and gut microbial succession in queens during colony introduction. Recently mated queens were placed into an active colony or a storage hive for multiple queens: a queen-bank. Feeding intensity, social context, and metabolic demand differ greatly between the two environments. After 3 weeks, we examined gene expression associated with oxidative stress and immunity and performed high-throughput sequencing of the queen gut microbiome across four alimentary tract niches. Microbiota and gene expression in the queen hindgut differed by time, queen breeder source, and metabolic environment. In the ileum, upregulation of most immune and oxidative stress genes occurred regardless of treatment conditions, suggesting postmating effects on gut gene expression. Counterintuitively, queens exposed to the more social colony environment contained significantly less bacterial diversity indicative of social immune factors shaping the queens microbiome. Queen bank queens resembled much older queens with decreased Alpha 2.1, greater abundance of Lactobacillus firm5 and Bifidobacterium in the hindgut, and significantly larger ileum microbiotas, dominated by blooms of Snodgrassella alvi. Combined with earlier findings, we conclude that the queen gut microbiota experiences an extended period of microbial succession associated with queen breeder source, postmating development, and colony assimilation. IMPORTANCE In modern agriculture, honey bee queen failure is repeatedly cited as one of the major reasons for yearly colony loss. Here we discovered that the honey bee queen gut microbiota alters according to early social environment and is strongly tied to the identity of the queen breeder. Like human examples, this early life variation appears to set the trajectory for ecological succession associated with social assimilation and queen productivity. The high metabolic demand of natural colony assimilation is associated with less bacterial diversity, a smaller hindgut microbiome, and a downregulation of genes that control pathogens and oxidative stress. Queens placed in less social environments with low metabolic demand (queen banks) developed a gut microbiota that resembled much older queens that produce fewer eggs. The queens key reproductive role in the colony may rely in part on a gut microbiome shaped by social immunity and the early queen rearing environment.
Collapse
|
49
|
Du M, Yang S, Jiang T, Liang T, Li Y, Cai S, Wu Q, Zhang J, Chen W, Xie X. Cloning, Expression, Purification, and Characterization of β-Galactosidase from Bifidobacterium longum and Bifidobacterium pseudocatenulatum. Molecules 2022; 27:molecules27144497. [PMID: 35889370 PMCID: PMC9323360 DOI: 10.3390/molecules27144497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Expression and purification of β-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two β-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two β-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-β-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s−1 and 0.5 ± 0.02 s−1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported β-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.
Collapse
Affiliation(s)
- Mingzhu Du
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Shuanghong Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Shuzhen Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| |
Collapse
|
50
|
Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep 2022; 12:8456. [PMID: 35589783 PMCID: PMC9120202 DOI: 10.1038/s41598-022-11819-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Mucin-degrading microbes are known to harbor glycosyl hydrolases (GHs) which cleave specific glycan linkages. Although several microbial species have been identified as mucin degraders, there are likely many other members of the healthy gut community with the capacity to degrade mucins. The aim of the present study was to systematically examine the CAZyme mucin-degrading profiles of the human gut microbiota. Within the Verrucomicrobia phylum, all Akkermansia glycaniphila and muciniphila genomes harbored multiple gene copies of mucin-degrading GHs. The only representative of the Lentisphaerae phylum, Victivallales, harbored a GH profile that closely mirrored Akkermansia. In the Actinobacteria phylum, we found several Actinomadura, Actinomyces, Bifidobacterium, Streptacidiphilus and Streptomyces species with mucin-degrading GHs. Within the Bacteroidetes phylum, Alistipes, Alloprevotella, Bacteroides, Fermenitomonas Parabacteroides, Prevotella and Phocaeicola species had mucin degrading GHs. Firmicutes contained Abiotrophia, Blautia, Enterococcus, Paenibacillus, Ruminococcus, Streptococcus, and Viridibacillus species with mucin-degrading GHs. Interestingly, far fewer mucin-degrading GHs were observed in the Proteobacteria phylum and were found in Klebsiella, Mixta, Serratia and Enterobacter species. We confirmed the mucin-degrading capability of 23 representative gut microbes using a chemically defined media lacking glucose supplemented with porcine intestinal mucus. These data greatly expand our knowledge of microbial-mediated mucin degradation within the human gut microbiota.
Collapse
Affiliation(s)
- Janiece S Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Taylor D Ticer
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|