1
|
Peper A, Newton CJ, Lim S, Zheng W, Brenneman T, Yang L. Functional Characterization of Core and Unique Calcite-Dissolving Bacteria Communities from Peanut Fields. PHYTOPATHOLOGY 2024; 114:1011-1019. [PMID: 38451554 DOI: 10.1094/phyto-10-23-0380-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Calcium deficiency is a leading cause of reduced peanut (Arachis hypogaea) seed quality and has been linked to increased disease susceptibility, specifically to soilborne fungal pathogens. Sufficient calcium at flowering time is critical to ensure proper pod development. Calcite-dissolving bacteria (CDB) isolated from farming fields can dissolve calcite (CaCO3) on plates and increase soluble calcium levels in soil. However, the phylogenetic diversity and geographic distribution of CDB is unclear. Here, we surveyed soil samples from 15 peanut-producing fields in three regions in southern Georgia, representing distinct soil compositions. We isolated CDB through differentiating media and identified 52 CDB strains. CDB abundance was not associated with any of the soil characteristics we evaluated. Three core genera, represented by 43 strains, were found in all three regions. Paenibacillus was the most common CDB found in all regions, making up 30 of the 52 identified strains. Six genera, represented by eight strains, are unique to one region. Members of the core and unique communities showed comparable solubilization indexes on plates. We conclude that a diversified phylogenetic population of CDB is present in Georgia peanut fields. Despite the phylogenetic diversity, as a population, they exhibit comparable functions in solubilizing calcite on plates.
Collapse
Affiliation(s)
- Alan Peper
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Carter J Newton
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Sheena Lim
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Wendy Zheng
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Timothy Brenneman
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
- Department of Plant Pathology, University of Georgia, Tifton, GA 31794
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
2
|
Garuglieri E, Marasco R, Odobel C, Chandra V, Teillet T, Areias C, Sánchez-Román M, Vahrenkamp V, Daffonchio D. Searching for microbial contribution to micritization of shallow marine sediments. Environ Microbiol 2024; 26:e16573. [PMID: 38217094 DOI: 10.1111/1462-2920.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Micritization is an early diagenetic process that gradually alters primary carbonate sediment grains through cycles of dissolution and reprecipitation of microcrystalline calcite (micrite). Typically observed in modern shallow marine environments, micritic textures have been recognized as a vital component of storage and flow in hydrocarbon reservoirs, attracting scientific and economic interests. Due to their endolithic activity and the ability to promote nucleation and reprecipitation of carbonate crystals, microorganisms have progressively been shown to be key players in micritization, placing this process at the boundary between the geological and biological realms. However, published research is mainly based on geological and geochemical perspectives, overlooking the biological and ecological complexity of microbial communities of micritized sediments. In this paper, we summarize the state-of-the-art and research gaps in micritization from a microbial ecology perspective. Since a growing body of literature successfully applies in vitro and in situ 'fishing' strategies to unveil elusive microorganisms and expand our knowledge of microbial diversity, we encourage their application to the study of micritization. By employing these strategies in micritization research, we advocate promoting an interdisciplinary approach/perspective to identify and understand the overlooked/neglected microbial players and key pathways governing this phenomenon and their ecology/dynamics, reshaping our comprehension of this process.
Collapse
Affiliation(s)
- Elisa Garuglieri
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ramona Marasco
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Charlene Odobel
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Viswasanthi Chandra
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Teillet
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Camila Areias
- Department of Earth Sciences, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Mónica Sánchez-Román
- Department of Earth Sciences, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Volker Vahrenkamp
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Irit N, Hana B, Laura R, Arielle K, Mariela P, Esti KW, Guadalupe P, Katja S, Ariel K. Trichocoleus desertorum isolated from Negev desert petroglyphs: Characterization, adaptation and bioerosion potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166739. [PMID: 37673239 DOI: 10.1016/j.scitotenv.2023.166739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
The Negev petroglyphs are considered valuable cultural heritage sites, but unfortunately, they are exposed to deterioration processes caused by anthropogenic and natural forces. Despite the many studies that have already pointed to the role of cyanobacteria in biogenic rock weathering, the knowledge involved in the process is still lacking. In this study, a cyanobacterial strain was isolated from the Negev Desert petroglyphs aiming to reveal its involvement in geochemical cycles and in the weathering processes of the rock substrate. The strain was characterized using morphological, molecular, and microscopic studies. The morphological research revealed a green-bluish, bundle-forming filamentous strain characterized by trichomes embedded in a common sheath. A combination of Nanopore and Illumina sequencing technologies facilitated the assembly of a near-complete genome containing 5,458,034 base pairs. A total of 5027 coding sequences were revealed by implementing PROKKA software. Annotation of five replicas of the 16S ribosomal RNA genes revealed that the Negev cyanobacteria isolate is closely (99.73 %) related to Trichocoleus desertorum LSB90_MW403957 isolated from the Sahara Desert, Algeria. The local strain was thus named Trichocoleus desertorum NBK24 CP116619. Several gene sequences that code for possible environmental adaptation mechanisms were found. Our study also identified genes for membrane transporters involved in the exchange of chemical elements, suggesting a possible interaction with rock minerals. Microscopic observations of T. desertorum NBK24 CP116619 infected onto calcareous stone slabs under laboratory conditions demonstrated the effect of the isolated cyanobacteria on stone surface degradation. In conclusion, the findings of this study further our understanding of terrestrial cyanobacterial genomes and functions and highlight the role of T. desertorum NBK24 CP116619 in stone weathering processes. This information may contribute to the creation of efficient restoration strategies for stone monuments affected by cyanobacteria.
Collapse
Affiliation(s)
- Nir Irit
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Barak Hana
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rabbachin Laura
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Kahn Arielle
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Pavan Mariela
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Kramarsky-Winter Esti
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Piñar Guadalupe
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Sterflinger Katja
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Kushmaro Ariel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
4
|
Mitzscherling J, Genderjahn S, Schleicher AM, Bartholomäus A, Kallmeyer J, Wagner D. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation. Microbiologyopen 2023; 12:e1370. [PMID: 37642485 PMCID: PMC10333725 DOI: 10.1002/mbo3.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.
Collapse
Affiliation(s)
- Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Inorganic and Isotope GeochemistryPotsdamGermany
| | | | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
- Institute of GeosciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
5
|
Cordova-Gonzalez A, Birgel D, Wisshak M, Urich T, Brinkmann F, Marcon Y, Bohrmann G, Peckmann J. A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria. GEOBIOLOGY 2023; 21:491-506. [PMID: 36775968 DOI: 10.1111/gbi.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 06/13/2023]
Abstract
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon-Congo-Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB-B and CAB-C) with apparent active methane seepage and one site (CAB-D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB-C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24-01 clade. The presence of abundant 13 C-depleted lipid biomarkers including fatty acids (n-C16:1ω8c , n-C18:1ω8c , n-C16:1ω5t ), various 4-mono- and 4,4-dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB-C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α-methylcholest-8(14)-en-3β,25-diol is interpreted to be a specific biomarker for the Hyd24-01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB-C experiment at the REGAB pockmark.
Collapse
Affiliation(s)
- Alexmar Cordova-Gonzalez
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| | - Daniel Birgel
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| | - Max Wisshak
- Senckenberg am Meer, Abteilung Meeresforschung, Wilhelmshaven, Germany
| | - Tim Urich
- Center for Functional Genomics of Microbes, University of Greifswald, Institut für Mikrobiologie, Greifswald, Germany
| | - Florian Brinkmann
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Yann Marcon
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Gerhard Bohrmann
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Jörn Peckmann
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| |
Collapse
|
6
|
Every refuge has its price: Ostreobium as a model for understanding how algae can live in rock and stay in business. Semin Cell Dev Biol 2023; 134:27-36. [PMID: 35341677 DOI: 10.1016/j.semcdb.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO3) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e., low light and low oxygen) and it is a major agent of carbonate reef bioerosion. In coral skeletons, Ostreobium can form conspicuous green bands recognizable by the naked eye and it is thought to contribute to the coral's nutritional needs. With coral reefs in global decline, there is a renewed focus on understanding Ostreobium biology and its roles in the coral holobiont. This review summarizes knowledge on Ostreobium's morphological structure, biodiversity and evolution, photosynthesis, mechanism of bioerosion and its role as a member of the coral holobiont. We discuss the resources available to study Ostreobium biology, lay out some of the uncharted territories in Ostreobium biology and offer perspectives for future research.
Collapse
|
7
|
Wyness AJ, Roush D, McQuaid CD. Global distribution and diversity of marine euendolithic cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:746-759. [PMID: 36199189 PMCID: PMC10092097 DOI: 10.1111/jpy.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.
Collapse
Affiliation(s)
- Adam J. Wyness
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa1200
| | - Daniel Roush
- Center for Fundamental and Applied MicrobiomicsBiodesign InstituteArizona State UniversityTempeArizona85287USA
| | - Christopher D. McQuaid
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
| |
Collapse
|
8
|
Wu G, Huang A, Wen Y, Wang H, Wang J, Luo F, Wu M. Euendolithic Cyanobacteria and Proteobacteria Together Contribute to Trigger Bioerosion in Aquatic Environments. Front Microbiol 2022; 13:938359. [PMID: 35875561 PMCID: PMC9298513 DOI: 10.3389/fmicb.2022.938359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish, mussels, snails, and other aquatic animals, which assimilate limestone (calcium carbonate, CaCO3) to build shells and skeletons, are effective carbon sinks that help mitigate the greenhouse effect. However, bioerosion, the dissolution of calcium carbonate and the release of carbon dioxide, hinders carbon sequestration process. The bioerosion of aquatic environments remains to be elucidated. In this study, the bioerosion of Bellamya spp. shells from the aquatic environment was taken as the research object. In situ microbial community structure analysis of the bioerosion shell from different geographical locations, laboratory-level infected culture, and validated experiments were conducted by coupling traditional observation and 16S rRNA sequencing analysis method. Results showed that bioeroders can implant into the CaCO3 layer of the snail shell, resulting in the formation of many small holes in the shell, which reduced the shell’s density and made the shell fragile. Results also showed that bioeroders were distributed in two major phyla, namely, Cyanobacteria and Proteobacteria. Cluster analysis showed that Cyanobacteria sp. and two unidentified genera (Burkholderiaceae and Raistonia) were the key bioeroders. Moreover, results suggested that the interaction of Cyanobacteria and other bacteria promoted the biological function of “shell bioerosion.” This study identified the causes of “shell bioerosion” in aquatic environments and provided some theoretical basis for preventing and controlling it in the aquatic industry. Results also provided new insights of cyanobacterial bioerosion of shells and microalgae carbon sequestration.
Collapse
Affiliation(s)
- Guimei Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Yanhong Wen
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangxin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fuguang Luo
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
- *Correspondence: Fuguang Luo,
| | - Mingcan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Mingcan Wu,
| |
Collapse
|
9
|
Lopez-Canfin C, Lázaro R, Sánchez-Cañete EP. Water vapor adsorption by dry soils: A potential link between the water and carbon cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153746. [PMID: 35150687 DOI: 10.1016/j.scitotenv.2022.153746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Water vapor adsorption (WVA) by soil is a potential contributor to the water cycle in drylands. However, continuous in-situ estimates of WVA are still scarce and the understanding of its coupling with carbon cycle and ecosystem processes remains at an incipient stage. Here we aimed to (1) identify periods of WVA and improve the understanding of the underlying processes involved in its temporal patterns by using the gradient method; (2) characterize a potential coupling between water vapor and CO2 fluxes, and (3) explore the effect of soil properties and biocrusts ecological succession on fluxes. We assumed that the nocturnal soil CO2 uptake increasingly reported in those environments could come from WVA enhancing geochemical reactions involving calcite. We measured continuously during ca. 2 years the relative humidity and CO2 molar fraction in soil and atmosphere, in association with below- and aboveground variables, over the biocrusts ecological succession. We estimated water vapor and CO2 fluxes with the gradient method, and cumulative fluxes over the study. Then, we used statistical modelling to explore relationships between variables. Our main findings are (1) WVA fluxes during hot and dry periods, and new insights on their underlying mechanisms; (2) a diel coupling between water vapor and CO2 fluxes and between cumulative fluxes, well predicted by our models; and (3) cumulative CO2 influxes increasing with specific surface area in early succession stages, thus mitigating CO2 emissions. During summer drought, as WVA was the main water source, it probably maintained ecosystem processes such as microbial activity and mineral reactions in this dryland. We suggest that WVA could drive the nocturnal CO2 uptake in those moments and discuss biogeochemical mechanisms potentially involved. Additional research is needed to monitor soil water vapor and CO2 uptake and separate their biotic and abiotic components as those sinks could grow with climate change.
Collapse
Affiliation(s)
- Clément Lopez-Canfin
- Department of Applied Physics, University of Granada (UGR), Calle Dr Severo Ochoa s/n, Granada, Spain.
| | - Roberto Lázaro
- Department of Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Carretera Sacramento s/n, Almería, Spain
| | - Enrique P Sánchez-Cañete
- Department of Applied Physics, University of Granada (UGR), Calle Dr Severo Ochoa s/n, Granada, Spain; Inter-University Institute for Earth System Research (IISTA-CEAMA), Avenida del Mediterráneo s/n, Granada, Spain
| |
Collapse
|
10
|
Nir I, Barak H, Kramarsky-Winter E, Kushmaro A, de Los Ríos A. Microscopic and biomolecular complementary approaches to characterize bioweathering processes at petroglyph sites from the Negev Desert, Israel. Environ Microbiol 2021; 24:967-980. [PMID: 34110072 DOI: 10.1111/1462-2920.15635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
Throughout the Negev Desert highlands, thousands of ancient petroglyphs sites are susceptible to deterioration processes that may result in the loss of this unique rock art. Therefore, the overarching goal of the current study was to characterize the composition, diversity and effects of microbial colonization of the rocks to find ways of protecting these unique treasures. The spatial organization of the microbial colonizers and their relationships with the lithic substrate were analysed using scanning electron microscopy. This approach revealed extensive epilithic and endolithic colonization and close microbial-mineral interactions. Shotgun sequencing analysis revealed various taxa from the archaea, bacteria and some eukaryotes. Metagenomic coding sequences (CDS) of these microbial lithobionts exhibited specific metabolic pathways involved in the rock elements' cycles and uptake processes. Thus, our results provide evidence for the potential participation of the microorganisms colonizing these rocks during different solubilization and mineralization processes. These damaging actions may contribute to the deterioration of this extraordinary rock art and thus threaten this valuable heritage. Shotgun metagenomic sequencing, in conjunction with the in situ scanning electron microscopy study, can thus be considered an effective strategy to understand the complexity of the weathering processes occurring at petroglyph sites and other cultural heritage assets.
Collapse
Affiliation(s)
- Irit Nir
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Hana Barak
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel.,The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Zardi GI, Monsinjon JR, McQuaid CD, Seuront L, Orostica M, Want A, Firth LB, Nicastro KR. Foul-weather friends: Modelling thermal stress mitigation by symbiotic endolithic microbes in a changing environment. GLOBAL CHANGE BIOLOGY 2021; 27:2549-2560. [PMID: 33772983 DOI: 10.1111/gcb.15616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Temperature extremes are predicted to intensify with climate change. These extremes are rapidly emerging as a powerful driver of species distributional changes with the capacity to disrupt the functioning and provision of services of entire ecosystems, particularly when they challenge ecosystem engineers. The subsequent search for a robust framework to forecast the consequences of these changes mostly ignores within-species variation in thermal sensitivity. Such variation can be intrinsic, but can also reflect species interactions. Intertidal mussels are important ecosystem engineers that host symbiotic endoliths in their shells. These endoliths unexpectedly act as conditionally beneficial parasites that enhance the host's resistance to intense heat stress. To understand how this relationship may be altered under environmental change, we examined the conditions under which it becomes advantageous by reducing body temperature. We deployed biomimetic sensors (robomussels), built using shells of mussels (Mytilus galloprovincialis) that were or were not infested by endoliths, at nine European locations spanning a temperature gradient across 22°of latitude (Orkney, Scotland to the Algarve, Portugal). Daily wind speed and solar radiation explained the maximum variation in the difference in temperature between infested and non-infested robomussels; the largest difference occurred under low wind speed and high solar radiation. From the robomussel data, we inferred body temperature differences between infested and non-infested mussels during known heatwaves that induced mass mortality of the mussel Mytilus edulis along the coast of the English Channel in summer 2018 to quantify the thermal advantage of endolith infestation during temperature extremes. Under these conditions, endoliths provided thermal buffering of between 1.7°C and 4.8°C. Our results strongly suggest that sustainability of intertidal mussel beds will increasingly depend on the thermal buffering provided by endoliths. More generally, this work shows that biomimetic models indicate that within-species thermal sensitivity to global warming can be modulated by species interactions, using an intertidal host-symbiont relationship as an example.
Collapse
Affiliation(s)
- Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Jonathan R Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | | | - Laurent Seuront
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
- UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, Lille, France
- Department of Marine Energy and Resources, Tokyo University of Marine Science and Technology, Minato-ku, Japan
| | - Mauricio Orostica
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Andrew Want
- International Centre for Island Technology, Heriot Watt University Orkney Campus, Stromness, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Katy R Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
- CCMAR, CIMAR Associated Laboratory, University of Algarve, Faro, Portugal
| |
Collapse
|
12
|
Khalifa SAM, Shedid ES, Saied EM, Jassbi AR, Jamebozorgi FH, Rateb ME, Du M, Abdel-Daim MM, Kai GY, Al-Hammady MAM, Xiao J, Guo Z, El-Seedi HR. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar Drugs 2021; 19:241. [PMID: 33923369 PMCID: PMC8146687 DOI: 10.3390/md19050241] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eslam S. Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Fatemeh H. Jamebozorgi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Guo-Yin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | | | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Abstract
There is a growing interest in the endolithic microbial biofilms inhabiting skeletons of living corals because of their contribution to coral reef bioerosion and the reputed benefits they provide to live coral hosts. Here, we sought to identify possible correlations between coral interspecific patterns in skeletal morphology and variability in the biomass of, and chlorophyll concentrations within, the endolithic biofilm. We measured five morphological characteristics of five coral species and the biomasses/chlorophyll concentrations of their endolithic microbiome, and we compare interspecific patterns in these variables. We propose that the specific density of a coral’s skeleton and its capacity for capturing and scattering incident light are the main correlates of endolithic microbial biomass. Our data suggest that the correlation between light capture and endolithic biomass is likely influenced by how the green microalgae (obligatory microborers) respond to skeletal variability. These results demonstrate that coral species differ significantly in their endolithic microbial biomass and that their skeletal structure could be used to predict these interspecific differences. Further exploring how and why the endolithic microbiome varies between coral species is vital in defining the role of these microbes on coral reefs, both now and in the future. IMPORTANCE Microbial communities living inside the skeletons of living corals play a variety of important roles within the coral meta-organism, both symbiotic and parasitic. Properly contextualizing the contribution of these enigmatic microbes to the life history of coral reefs requires knowledge of how these endolithic biofilms vary between coral species. To this effect, we measured differences in the morphology of five coral species and correlate these with variability in the biomass of the skeletal biofilms. We found that the density of the skeleton and its capacity to trap incoming light, as opposed to scattering it back into the surrounding water, both significantly correlated with skeletal microbial biomass. These patterns are likely driven by how dominant green microalgae in the endolithic niche, such as Ostreobium spp., are responding to the skeletal morphology. This study highlights that the structure of a coral’s skeleton could be used to predict the biomass of its resident endolithic biofilm.
Collapse
|
14
|
Iha C, Dougan KE, Varela JA, Avila V, Jackson CJ, Bogaert KA, Chen Y, Judd LM, Wick R, Holt KE, Pasella MM, Ricci F, Repetti SI, Medina M, Marcelino VR, Chan CX, Verbruggen H. Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Curr Biol 2021; 31:1393-1402.e5. [PMID: 33548192 DOI: 10.1016/j.cub.2021.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.
Collapse
Affiliation(s)
- Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Katherine E Dougan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, and APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Viridiana Avila
- Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kenny A Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Marisa M Pasella
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesco Ricci
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802, USA
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Ndhlovu A, McQuaid CD, Monaco CJ. Ectoparasites reduce scope for growth in a rocky-shore mussel (Perna perna) by raising maintenance costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142020. [PMID: 32911171 DOI: 10.1016/j.scitotenv.2020.142020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Endolithic cyanobacteria are ubiquitous colonisers of organic and inorganic carbonate substrata that frequently attack the shells of mussels, eroding the shell to extract carbon, often with population infestation rates of >80%. This reduces host physiological condition and ultimately leads to shell collapse and mortality, compromising the services provided by these important ecosystem engineers. While the ecological implications of this and similar interactions have been examined, our understanding of the underlying mechanisms driving the physiological responses of infested hosts remains limited. Using field and laboratory experiments, we assessed the energetic costs of cyanobacterial infestation to the intertidal brown mussel (Perna perna). In the field we found that growth (measured as both increase in shell length and rate of biomineralization) and reproductive potential of clean mussels are greater than those of infested individuals. To explore the mechanisms behind these effects, we compared the energy allocation of parasite-free and infested mussels using the scope for growth (SFG) framework. This revealed a lower SFG in parasitized mussels attributed to an energetic imbalance caused by increased standard metabolic rates, without compensation through increased feeding or reduced excretion of ammonia. Separate laboratory assays showed no differences in calcium uptake rates, indicating that infested mussels do not compensate for shell erosion through increased mineralization. This suggests that the increased maintenance costs detected reflect repair of the organic component of the inner nacreous layer of the shell, an energetically more demanding process than mineralization. Thus, parasite-inflicted damage reduces SFG directly through the need for increased basal metabolic rate to drive shell repair without compensatory increases in energy intake. This study provides a first perspective of the physiological mechanisms underlying this parasite-host interaction, a critical step towards a comprehensive understanding of the ecological processes driving dynamics of this intertidal ecosystem engineer.
Collapse
Affiliation(s)
- Aldwin Ndhlovu
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Cristián J Monaco
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, EIO, Taravao, F-98719 Tahiti, Polynésie française, France
| |
Collapse
|
16
|
Brito Â, Vieira J, Vieira CP, Zhu T, Leão PN, Ramos V, Lu X, Vasconcelos VM, Gugger M, Tamagnini P. Comparative Genomics Discloses the Uniqueness and the Biosynthetic Potential of the Marine Cyanobacterium Hyella patelloides. Front Microbiol 2020; 11:1527. [PMID: 32774329 PMCID: PMC7381351 DOI: 10.3389/fmicb.2020.01527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Baeocytous cyanobacteria (Pleurocapsales/Subsection II) can thrive in a wide range of habitats on Earth but, compared to other cyanobacterial lineages, they remain poorly studied at genomic level. In this study, we sequenced the first genome from a member of the Hyella genus - H. patelloides LEGE 07179, a recently described species isolated from the Portuguese foreshore. This genome is the largest of the thirteen baeocyte-forming cyanobacterial genomes sequenced so far, and diverges from the most closely related strains. Comparative analysis revealed strain-specific genes and horizontal gene transfer events between H. patelloides and its closest relatives. Moreover, H. patelloides genome is distinctive by the number and diversity of natural product biosynthetic gene clusters (BGCs). The majority of these clusters are strain-specific BGCs with a high probability of synthesizing novel natural products. One BGC was identified as being putatively involved in the production of terminal olefin. Our results showed that, H. patelloides produces hydrocarbon with C15 chain length, and synthesizes C14, C16, and C18 fatty acids exceeding 4% of the dry cell weight. Overall, our data contributed to increase the information on baeocytous cyanobacteria, and shed light on H. patelloides evolution, phylogeny and natural product biosynthetic potential.
Collapse
Affiliation(s)
- Ângela Brito
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cristina P Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tao Zhu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Vitor M Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Roush D, Garcia-Pichel F. Succession and Colonization Dynamics of Endolithic Phototrophs within Intertidal Carbonates. Microorganisms 2020; 8:microorganisms8020214. [PMID: 32033409 PMCID: PMC7074784 DOI: 10.3390/microorganisms8020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/01/2023] Open
Abstract
Photosynthetic endolithic communities are common in shallow marine carbonates, contributing significantly to their bioerosion. Cyanobacteria are well known from these settings, where a few are euendoliths, actively boring into the virgin substrate. Recently, anoxygenic phototrophs were reported as significant inhabitants of endolithic communities, but it is unknown if they are euendoliths or simply colonize available pore spaces secondarily. To answer this and to establish the dynamics of colonization, nonporous travertine tiles were anchored onto intertidal beach rock in Isla de Mona, Puerto Rico, and developing endolithic communities were examined with time, both molecularly and with photopigment biomarkers. By 9 months, while cyanobacterial biomass and diversity reached levels indistinguishable from those of nearby climax communities, anoxygenic phototrophs remained marginal, suggesting that they are secondary colonizers. Early in the colonization, a novel group of cyanobacteria (unknown boring cluster, UBC) without cultivated representatives, emerged as the most common euendolith, but by 6 months, canonical euendoliths such as Plectonema (Leptolyngbya) sp., Mastigocoleus sp., and Pleurocapsalean clades displaced UBC in dominance. Later, the proportion of euendolithic cyanobacterial biomass decreased, as nonboring endoliths outcompeted pioneers within the already excavated substrate. Our findings demonstrate that endolithic cyanobacterial succession within hard carbonates is complex but can attain maturity within a year’s time.
Collapse
Affiliation(s)
- Daniel Roush
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA;
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85282, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA;
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85282, USA
- Correspondence:
| |
Collapse
|
18
|
González-Pleiter M, Cirés S, Wörmer L, Agha R, Pulido-Reyes G, Martín-Betancor K, Rico A, Leganés F, Quesada A, Fernández-Piñas F. Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay. CHEMOSPHERE 2020; 240:124966. [PMID: 31726608 DOI: 10.1016/j.chemosphere.2019.124966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The hepatotoxic cyanotoxins microcystins (MCs) are emerging contaminants naturally produced by cyanobacteria. Yet their ecological role remains unsolved, previous research suggests that MCs have allelopathic effects on competing photosynthetic microorganisms, even eliciting toxic effects on other freshwater cyanobacteria. In this context, the bioluminescent recombinant cyanobacterium Anabaena sp. PCC7120 CPB4337 (hereinafter Anabaena) was exposed to extracts of MCs. These were obtained from eight natural samples from freshwater reservoirs that contained MCs with a concentration range of 0.04-11.9 μg MCs L-1. MCs extracts included the three most common MCs variants (MC-LR, MC-RR, MC-YR) in different proportions (MC-LR: 100-0%; MC-RR: 100-0%; MC-YR: 14.2-0%). The Anabaena bioassay based on bioluminescence inhibition has been successfully used to test the toxicity of many emerging contaminants (e.g., pharmaceuticals) but never for cyanotoxins prior to this study. Exposure of Anabaena to MCs extracts induced a decrease in its bioluminescence with effective concentration decreasing bioluminescence by 50% ranging from 0.4 to 50.5 μg MC L-1 in the different samples. Bioluminescence responses suggested an interaction between MCs variants which was analyzed via the Additive Index method (AI), indicating an antagonistic effect (AI < 0) of MC-LR and MC-RR present in the samples. Additionally, MC extracts exposure triggered an increase of intracellular free Ca2+ in Anabaena. In short, this study supports the use of the Anabaena bioassay as a sensitive tool to assess the presence of MCs at environmentally relevant concentrations and opens interesting avenues regarding the interactions between MCs variants and the possible implication of Ca2+ in the mode of action of MCs towards cyanobacteria.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Samuel Cirés
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lars Wörmer
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, Berlin, 12587, Germany
| | - Gerardo Pulido-Reyes
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Keila Martín-Betancor
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | |
Collapse
|
19
|
Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME JOURNAL 2019; 14:325-334. [PMID: 31690886 PMCID: PMC6976677 DOI: 10.1038/s41396-019-0548-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2–3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the “overlooked” coral skeleton.
Collapse
Affiliation(s)
- Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
20
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
21
|
Wang C, Yu F, Liu X, Chen S, Wu R, Zhao R, Hu F, Yuan H. Cancer-Specific Therapy by Artificial Modulation of Intracellular Calcium Concentration. Adv Healthc Mater 2019; 8:e1900501. [PMID: 31368208 DOI: 10.1002/adhm.201900501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Indexed: 01/16/2023]
Abstract
Calcium (Ca2+ ) hemeostasis is crucial for the normal function of cellular biochemistry. The abnormal frequency of Ca2+ signaling in cancer cells makes them more vulnerable to Ca2+ modulation than normal cells. Here in this study, a novel cancer-specific therapy by artificially triggering Ca2+ overload in cancer cells is proposed. The feasibility of this therapy is illustrated by successful coupling of selective extrusion (Ca2+ ) inhibition effect of Curcumin (Cur) and the effective Ca2+ generating capability of amorphous calcium carbonate (ACC) into a facilely prepared water responsive phospholipid (PL)-ACC hybrid platform (PL/ACC-Cur). The obtained results demonstrate that PL/ACC-Cur can specifically boost the intracellular Ca2+ concentration to cause Ca2+ overload and to trigger mitochondria-related apoptosis in MCF-7 cells while sparing normal hepatocyte (L02), which might be a promising approach for effective cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Fangying Yu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Xuerong Liu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Shaoqing Chen
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Wu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Zhao
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang University No. 3 Qingchun East Road Hangzhou 310016 China
| | - Fuqiang Hu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hong Yuan
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
22
|
Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, Deakin L, Turner M, Beeching LJ, Kuzhiumparambil U, Eakin CM, Ainsworth TD. Rapid Coral Decay Is Associated with Marine Heatwave Mortality Events on Reefs. Curr Biol 2019; 29:2723-2730.e4. [DOI: 10.1016/j.cub.2019.06.077] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
23
|
Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11050075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. galloprovincialis we found a significantly higher infestation in the cool temperate bioregion than the warm temperate region. For P. perna, the prevalence of infestation was higher on the warm temperate than the subtropical region, though the difference was marginally non-significant. On the south coast, there was no significant difference in infestation prevalence between species. Endolith-induced mortality rates through shell collapse mirrored the patterns for prevalence. For P. perna, endolith species assemblages revealed clear grouping by bioregions. Our findings indicate that biogeography affects cyanobacteria species composition, but differences between biogeographic regions in their effects are driven by environmental conditions.
Collapse
|
24
|
Sivka U, Toplak N, Koren S, Jakše J. De novo transcriptome of the pallial gland of the date mussel ( Lithophaga lithophaga ). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:1-9. [DOI: 10.1016/j.cbd.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
25
|
Kraus EA, Beeler SR, Mors RA, Floyd JG, Stamps BW, Nunn HS, Stevenson BS, Johnson HA, Shapiro RS, Loyd SJ, Spear JR, Corsetti FA. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California. Front Microbiol 2018; 9:997. [PMID: 29887837 PMCID: PMC5981138 DOI: 10.3389/fmicb.2018.00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.
Collapse
Affiliation(s)
- Emily A Kraus
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Scott R Beeler
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - R Agustin Mors
- Laboratorio de Paleobiología y Geomicrobiología Experimental, Centro de Investigaciones en Ciencias de la Tierra (CONICET-UNC), Córdoba, Argentina
| | - James G Floyd
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | | | - Blake W Stamps
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Heather S Nunn
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Hope A Johnson
- Department of Biological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - Russell S Shapiro
- Geological and Environmental Sciences, California State University, Chico, Chico, CA, United States
| | - Sean J Loyd
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - John R Spear
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Abstract
Photoautotrophs assimilate oxidized carbon obtained from one of two sources: dissolved or atmospheric. Despite its size, the pool of lithospheric carbonate is not known to be a direct source for autotrophy. Yet, the mechanism that euendolithic cyanobacteria use to excavate solid carbonates suggests that minerals could directly supply CO2 for autotrophy. Here, we use stable isotopes and NanoSIMS to show that the cyanobacterium Mastigocoleus testarum derives most of its carbon from the mineral it excavates, growing preferentially as an endolith when lacking dissolved CO2. Furthermore, natural endolithic communities from intertidal marine carbonate outcrops present carbon isotopic signatures consistent with mineral-sourced autotrophy. These data demonstrate a direct geomicrobial link between mineral carbonate pools and reduced organic carbon, which, given the geographical extent of carbonate outcrops, is likely of global relevance. The ancient fossil record of euendolithic cyanobacteria suggests that biological fixation of solid carbonate could have been relevant since the mid-Proterozoic.
Collapse
|
27
|
Marcelino VR, Morrow KM, Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high
p
CO
2
reef. Mol Ecol 2017; 26:5344-5357. [DOI: 10.1111/mec.14268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kathleen M. Morrow
- Department of Molecular, Cellular and Biomedical Sciences University of New Hampshire Durham NH USA
- Australian Institute of Marine Science Townsville Qld Australia
| | - Madeleine J. H. Oppen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
- Australian Institute of Marine Science Townsville Qld Australia
| | - David G. Bourne
- Australian Institute of Marine Science Townsville Qld Australia
- College of Science and Engineering James Cook University Townville Qld Australia
| | - Heroen Verbruggen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
| |
Collapse
|
28
|
Buckeridge JS, Newman WA. The "Tears of the Virgin" at Lakes Entrance, southeast Australia were made by the intertidal barnacle Chthamalus antennatus (Cirripedia: Thoracica) and cyanobacteria. Integr Zool 2016; 12:228-236. [PMID: 27782367 DOI: 10.1111/1749-4877.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Curious eroded depressions, most resembling an eye shedding an elongate tear, are found in gently sloping, intertidal, carbonate-rich arenite outcropping on the sea coast near Lakes Entrance, Victoria, southeast Australia. The depressions, known locally as "Tears of the Virgin," are evidently formed by multiple generations of a barnacle, Chthamalus antennatus Darwin, 1854 in association with cyanobacteria. While the round part of a depression offers the barnacle a modicum of protection from impacts during high tides, it is also partially inhabited by cyanobacteria, which extend into and tend to fill the elongate tear. As such, this appears to be the first case of mutualism between a higher invertebrate and cyanobacteria, with the cyanobacteria reducing the barnacle's risk of desiccation while receiving metabolic wastes from it during low tides. It is also the first record of a balanomorph barnacle eroding calcareous arenite beneath its shell, the net effect of which would be expected to reduce its adhesion to the substrate. However, the siliceous residue, resulting from the barnacle's dissolution of the more than 80% of the calcite-rich sedimentary rock, is sequestered in delicate folds on the inside of the shell wall as it grows. A brief review of cirripedes capable of excavation includes the first photographic documentation of excavation of a mollusc shell by a verrucomorph.
Collapse
Affiliation(s)
- John S Buckeridge
- Earth & Oceanic Systems Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Zardi GI, Nicastro KR, McQuaid CD, Ng TPT, Lathlean J, Seuront L. Enemies with benefits: parasitic endoliths protect mussels against heat stress. Sci Rep 2016; 6:31413. [PMID: 27506855 PMCID: PMC4979024 DOI: 10.1038/srep31413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022] Open
Abstract
Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation.
Collapse
Affiliation(s)
- G I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - K R Nicastro
- CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - C D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - T P T Ng
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - J Lathlean
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - L Seuront
- CNRS, UMR LOG 8187, Laboratoire d'Océanologie et de Géosciences, Station Marine, BP 80, Wimereux, 62930, France
| |
Collapse
|
30
|
Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef. PLoS One 2016; 11:e0159818. [PMID: 27467570 PMCID: PMC4965046 DOI: 10.1371/journal.pone.0159818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/09/2016] [Indexed: 12/16/2022] Open
Abstract
Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2-195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat.
Collapse
|
31
|
Guida BS, Garcia-Pichel F. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci U S A 2016; 113:5712-7. [PMID: 27140633 PMCID: PMC4878501 DOI: 10.1073/pnas.1524687113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium.
Collapse
|
32
|
Guida BS, Garcia-Pichel F. Draft Genome Assembly of a Filamentous Euendolithic (True Boring) Cyanobacterium, Mastigocoleus testarum Strain BC008. GENOME ANNOUNCEMENTS 2016; 4:e01574-15. [PMID: 26823575 PMCID: PMC4732328 DOI: 10.1128/genomea.01574-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022]
Abstract
Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3.
Collapse
Affiliation(s)
- Brandon S Guida
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | | |
Collapse
|
33
|
Garcia-Pichel F, Felde VJMNL, Drahorad SL, Weber B. Microstructure and Weathering Processes Within Biological Soil Crusts. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat Commun 2015; 5:3310. [PMID: 24518160 PMCID: PMC3929803 DOI: 10.1038/ncomms4310] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/24/2014] [Indexed: 12/22/2022] Open
Abstract
Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate chemistry are poorly understood. Here we demonstrate a 200% increase in dolomite concentration in living CCA under greenhouse conditions of high pCO2 (1,225 μatm) and warming (30 °C). Aragonite, in contrast, increases with lower pCO2 (296 μatm) and low temperature (28 °C). Mineral changes in the surface pigmented skeleton are minor and dolomite and aragonite formation largely occurs in the white crust beneath. Dissolution of high-Mg-calcite and particularly the erosive activities of endolithic algae living inside skeletons play key roles in concentrating dolomite in greenhouse treatments. As oceans acidify and warm in the future, the relative abundance of dolomite in CCA will increase.
Collapse
|
35
|
Main photoautotrophic components of biofilms in natural draft cooling towers. Folia Microbiol (Praha) 2015; 61:255-60. [PMID: 26508444 DOI: 10.1007/s12223-015-0429-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.
Collapse
|
36
|
Grange JS, Rybarczyk H, Tribollet A. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13625-13637. [PMID: 25592911 DOI: 10.1007/s11356-014-4069-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure.
Collapse
Affiliation(s)
- J S Grange
- IRD-Sorbonne Universités (Univ. Paris 6) UPMC-CNRS-MNHN, Laboratoire IPSL-LOCEAN, 32 Avenue Henri Varagnat, 93143, Bondy, France,
| | | | | |
Collapse
|
37
|
|
38
|
Danise S, Twitchett RJ, Matts K. Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nat Commun 2014; 5:4789. [PMID: 25205249 PMCID: PMC4175577 DOI: 10.1038/ncomms5789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/24/2014] [Indexed: 11/09/2022] Open
Abstract
After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities.
Collapse
Affiliation(s)
- Silvia Danise
- Centre for Research in Earth Sciences, School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK
| | - Richard J Twitchett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Katie Matts
- Centre for Research in Earth Sciences, School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK
| |
Collapse
|
39
|
Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. GLOBAL CHANGE BIOLOGY 2013; 19:1919-29. [PMID: 23505093 DOI: 10.1111/gcb.12158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 05/11/2023]
Abstract
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2 -temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2 -temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2 -temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.
Collapse
Affiliation(s)
- Catalina Reyes-Nivia
- Australian Research Council Centre of Excellence for Coral Reef Studies, St. Lucia, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
40
|
Ward MB, Kapitulčinová D, Brown AP, Heard PJ, Cherns D, Cockell CS, Hallam KR, Ragnarsdóttir KV. Investigating the role of microbes in mineral weathering: nanometre-scale characterisation of the cell-mineral interface using FIB and TEM. Micron 2013; 47:10-7. [PMID: 23375115 DOI: 10.1016/j.micron.2012.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
Focused ion beam (FIB) sample preparation in combination with subsequent transmission electron microscopy (TEM) analysis are powerful tools for nanometre-scale examination of the cell-mineral interface in bio-geological samples. In this study, we used FIB-TEM to investigate the interaction between a cyanobacterium (Hassallia byssoidea) and a common sheet silicate mineral (biotite) following a laboratory-based bioweathering, incubation experiment. We discuss the FIB preparation of cross-sections of the cell mineral interface for TEM investigation. We also establish an electron fluence threshold (at 200keV) in biotite for the transition from scanning (S)TEM electron beam induced contamination build up on the surface of biotite thin sections to mass loss, or hole-drilling within the sections. Working below this threshold fluence nanometre-scale structural and elemental information has been obtained from biotite directly underneath cyanobacterial cells incubated on the biotite for 3 months. No physical alteration of the biotite was detected by TEM imaging and diffraction with little or no elemental alteration detected by STEM-energy dispersive X-ray (EDX) elemental line-scanning or by energy filtered TEM (EF-TEM) jump ratio elemental mapping. As such we present evidence that the cyanobacterial strain of H. byssoidea did not cause any measurable alteration of biotite, within the resolution limits of the analysis techniques used, after 3 months of incubation on its surface.
Collapse
Affiliation(s)
- Michael B Ward
- Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Kothari A, Potrafka R, Garcia-Pichel F. Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 2012; 162:105-14. [PMID: 22771887 DOI: 10.1016/j.jbiotec.2012.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
We characterized a set of 36 strains of cyanobacteria isolated from terrestrial, freshwater and marine intertidal settings to probe their potential to produce hydrogen from excess reductant, in the hope of finding novel strains with improved traits for biohydrogen production. The set was diverse with respect to origin, morphology, taxonomy and phylogeny. We found that about one half of the strains could produce hydrogen from hydrogenases in standard assays, a trait that corresponded invariably with the presence of homologues of the gene hoxH, coding for subunit H in the bidirectional Ni-Fe hydrogenase. Strains from freshwater and intertidal settings had a high incidence of hydrogen producing, hoxH containing strains, but all terrestrial isolates were negative for both. While specific rates of hydrogen production varied among strains, some novel strains displayed rates several fold higher than those previously reported. We detected two different patterns in hydrogen production. Pattern 1, corresponding to that previously known in Synechocystis PCC 6803, encompassed strains whose hydrogenase system produced hydrogen only temporarily to revert to hydrogen consumption within a short time and after reaching moderate hydrogen concentrations. Cyanobacteria displaying pattern 2, in the genera Lyngbya and Microcoleus, tended to have higher rates, did not reverse the direction of the reaction and reached much higher concentrations of hydrogen at steady state, making them of interest as potential platforms for biohydrogen production.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | |
Collapse
|
43
|
Ramírez-Reinat EL, Garcia-Pichel F. CHARACTERIZATION OF A MARINE CYANOBACTERIUM THAT BORES INTO CARBONATES AND THE REDESCRIPTION OF THE GENUS MASTIGOCOLEUS(1). JOURNAL OF PHYCOLOGY 2012; 48:740-749. [PMID: 27011091 DOI: 10.1111/j.1529-8817.2012.01157.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A marine, filamentous, endolithic cyanobacterium, strain BC008, was obtained in pure culture and characterized using a polyphasic approach. BC008 could bore into calcium carbonate minerals (calcite, aragonite) and, weakly, into strontium carbonate (strontianite), but not into other carbonates, phosphates, sulfates, silicates, or oxides, including those of calcium. We describe procedures for its continued cultivation in an actively boring state. BC008 was developmentally complex: it displayed lateral, terminal, and intercalary heterocysts; true branching; trichome tapering; and motile hormogonia. It also displayed considerable morphological plasticity between boring and nonboring modes. Boring brought about a halving of trichome diameter, a marked decrease in the ratio of heterocysts to vegetative cells, and a significant preference for lateral versus terminal heterocyst development. The cytoplasm of vegetative cells was filled with 20 nm thick, nanocompartment-like structures of polyhedral appearance and of unknown function. BC008 was capable of complementary chromatic adaptation but did not produce sheath pigments. When boring, it conformed well morphologically to Lagerheim's (1886) description of Mastigocoleus testarum, one of the most common and pervasive bioerosive agents of marine carbonates. We propose strain BC008 as type strain for the species. Multigene (16S rRNA, nif H, rbcL) phylogenies confirm that Mastigocoleus is a distinct, deeply branching genus of cyanobacteria that shares affinities and critical traits with two major taxonomic groups in the heterocystous clade (Nostocales and Stigonematales). We provide a revision of the genus and species descriptions based on our strain and findings.
Collapse
|
44
|
|
45
|
Prevalence of Ca²⁺-ATPase-mediated carbonate dissolution among cyanobacterial euendoliths. Appl Environ Microbiol 2011; 78:7-13. [PMID: 22038600 DOI: 10.1128/aem.06633-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent physiological work has shown that the filamentous euendolithic cyanobacterium Mastigocoleus testarum (strain BC008) is able to bore into solid carbonates using Ca²⁺-ATPases to take up Ca²⁺ from the medium at the excavation front, promoting dissolution of CaCO₃ there. It is not known, however, if this is a widespread mechanism or, rather, a unique capability of this model strain. To test this, we undertook a survey of multispecies euendolithic microbial assemblages infesting natural carbonate substrates in marine coastal waters of the Caribbean, Mediterranean, South Pacific, and Sea of Cortez. Microscopic examination revealed the presence of complex assemblages of euendoliths, encompassing 3 out of the 5 major cyanobacterial orders. 16S rRNA gene clone libraries detected even greater diversity, particularly among the thin-filamentous forms, and allowed us to categorize the endoliths in our samples into 8 distinct phylogenetic clades. Using real-time Ca²⁺ imaging under a confocal laser scanning microscope, we could show that all communities displayed light-dependent formation of Ca²⁺-supersaturated zones in and around boreholes, a staple of actively boring phototrophs. In 3 out of 4 samples, boring activity was sensitive to at least one of two inhibitors of Ca²⁺-ATPase transporters (thapsigargin or tert-butylhydroquinone), indicating that the Ca²⁺-ATPase mechanism is widespread among cyanobacterial euendoliths but perhaps not universal. Function-community structure correlations point to one particular clade of baeocyte-forming euendoliths as the potential exception.
Collapse
|
46
|
Environmental microbiology: boring bacteria? Nat Rev Microbiol 2011; 9:80. [PMID: 21287710 DOI: 10.1038/nrmicro2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|