1
|
Wang F, Bashiri Dezfouli A, Multhoff G. The immunomodulatory effects of cannabidiol on Hsp70-activated NK cells and tumor target cells. Mol Immunol 2024; 174:1-10. [PMID: 39126837 DOI: 10.1016/j.molimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression. RESULTS Apart from an increase in the density of NTB-A and a reduced expression of LAMP-1, the expression of all other activatory NK cell receptors including NKp30, NKG2D and CD69 which are significantly up-regulated after stimulation with TKD+IL-2 remained unaffected after a co-treatment with CBD. However, the release of major pro-inflammatory cytokines by NK cells such as interferon-γ (IFN-γ) and the effector molecule granzyme B (GrzB) was significantly reduced upon CBD treatment. With respect to the tumor target cells, CBD significantly reduced the elevated expression of mHsp70 but had no effect on the low basal mHsp70 expression. Expression of other NK cell ligands such as MICA and MICB remained unaffected, and the NK cell ligands ULBP and B7-H6 were not expressed on these target cells. Consistent with the reduced mHsp70 expression, treatment of both effector and target cells with CBD reduced the killing of high mHsp70 expressing tumor cells by TKD+IL-2+CBD pre-treated NK cells but had no effect on the killing of low mHsp70 expressing tumor cells. Concomitantly, CBD treatment reduced the TKD+IL-2 induced increased release of IFN-γ, IL-4, TNF-α and GrzB, but CBD had no effect on the release of IFN-α when NK cells were co-incubated with tumor target cells. CONCLUSION Cannabidiol (CBD) may potentially diminish the anti-tumor effectiveness of TKD+IL-2 activated natural killer (NK) cells.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich and Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China; Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
2
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Yazdi M, Hasanzadeh Kafshgari M, Khademi Moghadam F, Zarezade V, Oellinger R, Khosravi M, Haas S, Hoch CC, Pockley AG, Wagner E, Wollenberg B, Multhoff G, Bashiri Dezfouli A. Crosstalk Between NK Cell Receptors and Tumor Membrane Hsp70-Derived Peptide: A Combined Computational and Experimental Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305998. [PMID: 38298098 PMCID: PMC11005703 DOI: 10.1002/advs.202305998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mina Yazdi
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical ElectronicsCampus Klinikum München rechts der IsarTranslaTUMTechnische Universität München81675MunichGermany
| | | | - Vahid Zarezade
- Behbahan Faculty of Medical SciencesBehbahan6361796819Iran
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsSchool of MedicineTechnische Universität München81675MunichGermany
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
| | - Mohammad Khosravi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvaz6135783151Iran
| | - Stefan Haas
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Cosima C. Hoch
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Alan Graham Pockley
- John van Geest Cancer Research CentreSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - Ernst Wagner
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Barbara Wollenberg
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| |
Collapse
|
4
|
Alekseeva LG, Ovsyanikova OV, Schulga AA, Grechikhina MV, Shustova OA, Kovalenko EI, Svirshchevskaya EV, Deyev SM, Sapozhnikov AM. Targeted Delivery of HSP70 to Tumor Cells via Supramolecular Complex Based on HER2-Specific DARPin9_29 and the Barnase:Barstar Pair. Cells 2024; 13:317. [PMID: 38391930 PMCID: PMC10887201 DOI: 10.3390/cells13040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: We have previously shown that the use of an artificial supramolecular two-component system based on chimeric recombinant proteins 4D5scFv-barnase and barstar-heat shock protein 70 KDa (HSP70) allows targeted delivery of HSP70 to the surface of tumor cells bearing HER2/neu antigen. In this work, we studied the possibility to using DARPin9_29-barnase as the first targeting module recognizing HER2/neu-antigen in the HSP70 delivery system. (2) Methods: The effect of the developed systems for HSP70 delivery to human carcinomas SK-BR-3 and BT474 cells hyperexpressing HER2/neu on the activation of cytotoxic effectors of the immune cells was studied in vitro. (3) Results: The results obtained by confocal microscopy and cytofluorimetric analysis confirmed the binding of HSP70 or its fragment HSP70-16 on the surface of the treated cells. In response to the delivery of HSP70 to tumor cells, we observed an increase in the cytolytic activity of different cytotoxic effector immune cells from human peripheral blood. (4) Conclusions: Targeted modification of the tumor cell surface with molecular structures recognized by cytotoxic effectors of the immune system is among new promising approaches to antitumor immunotherapy.
Collapse
Affiliation(s)
- Ludmila G. Alekseeva
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Olga V. Ovsyanikova
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Schulga
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Maria V. Grechikhina
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Olga A. Shustova
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Elena I. Kovalenko
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Elena V. Svirshchevskaya
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
| | - Sergey M. Deyev
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander M. Sapozhnikov
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (O.V.O.); (A.A.S.); (M.V.G.); (O.A.S.); (E.I.K.); (E.V.S.); (S.M.D.); (A.M.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Thomsen AR, Sahlmann J, Bronsert P, Schilling O, Poensgen F, May AM, Timme-Bronsert S, Grosu AL, Vaupel P, Gebbers JO, Multhoff G, Lüchtenborg AM. Protocol of the HISTOTHERM study: assessing the response to hyperthermia and hypofractionated radiotherapy in recurrent breast cancer. Front Oncol 2023; 13:1275222. [PMID: 38169879 PMCID: PMC10759986 DOI: 10.3389/fonc.2023.1275222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Breast cancer is globally the leading cancer in women, and despite the high 5-year survival rate the most frequent cause of cancer related deaths. Surgery, systemic therapy and radiotherapy are the three pillars of curative breast cancer treatment. However, locoregional recurrences frequently occur after initial treatment and are often challenging to treat, amongst others due to high doses of previous radiotherapy treatments. Radiotherapy can be combined with local hyperthermia to sensitize tumor cells to radiation and thereby significantly reduce the required radiation dose. Therefore, the combination treatment of mild local hyperthermia, i.e. locally heating of the tissue to 39-43°C, and re-irradiation with a reduced total dose is a relevant treatment option for previously irradiated patients. The mechanisms of this effect in the course of the therapy are to date not well understood and will be investigated in the HISTOTHERM study. Methods and analyses Patients with local or (loco)regional recurrent breast cancer with macroscopic tumors are included in the study. Local tumor control is evaluated clinically and histologically during the course of a combination treatment of 60 minutes mild superficial hyperthermia (39 - 43°C) using water-filtered infrared A (wIRA) irradiation, immediately followed by hypofractionated re-irradiation with a total dose of 20-24 Gy, administered in weekly doses of 4 Gy. Tumor and tumor stroma biopsies as well as blood samples will be collected prior to treatment, during therapy (at a dose of 12 Gy) and in the follow-up to monitor therapy response. The treatment represents the standard operating procedure for hyperthermia plus re-irradiation. Various tissue and blood-based markers are analyzed. We aim at pinpointing key mechanisms and markers for therapy response which may help guiding treatment decisions in future. In addition, quality of life in the course of treatment will be assessed and survival data will be evaluated. Registration The study is registered at the German Clinical Trials Register, Deutsches Register Klinischer Studien (DRKS00029221).
Collapse
Affiliation(s)
- Andreas R. Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
| | - Jörg Sahlmann
- Institute for Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicia Poensgen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Pediatric Department, Black Forest Baar Clinic, Villingen-Schwenningen, Germany
| | - Annette M. May
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinisches Versorgungszentrum Laaff, Freiburg, Germany
| | - Sylvia Timme-Bronsert
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
| | - Jan-Olaf Gebbers
- Department of Pathology, Working Group Digital Pathology, University of Berne, Bern, Switzerland
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University Munich (TUM), Munich, Germany
| | - Anne-Marie Lüchtenborg
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Nytko KJ, Weyland MS, Dressel-Böhm S, Scheidegger S, Salvermoser L, Werner C, Stangl S, Carpinteiro AC, Alkotub B, Multhoff G, Bodis S, Rohrer Bley C. Extracellular heat shock protein 70 levels in tumour-bearing dogs and cats treated with radiation therapy and hyperthermia. Vet Comp Oncol 2023; 21:605-615. [PMID: 37653682 DOI: 10.1111/vco.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023]
Abstract
Hyperthermia is a form of a cancer treatment which is frequently applied in combination with radiotherapy (RT) to improve therapy responses and radiosensitivity. The mode of action of hyperthermia is multifactorial; the one hand by altering the amount of the blood circulation in the treated tissue, on the other hand by modulating molecular pathways involved in cell survival processes and immunogenic interactions. One of the most dominant proteins induced by hyperthermia is the major stress-inducible heat shock protein 70 (Hsp70). Hsp70 can be found in the blood either as a free-protein (free HSP70) derived from necrotic cells, or lipid-bound (liposomal Hsp70) when it is actively released in extracellular vesicles (EVs) by living cells. The aim of the study was to evaluate the levels of free and liposomal Hsp70 before and after treatment with RT alone or hyperthermia combined with radiotherapy (HTRT) in dogs and cats to evaluate therapy responses. Peripheral blood was collected from feline and canine patients before and at 2, 4, 6 and 24 h after treatment with RT or HTRT. Hsp70 enzyme-linked immunosorbent assays (ELISAs) were performed to determine the free and liposomal Hsp70 concentrations in the serum. The levels were analysed after the first fraction of radiation to study immediate effects and after all applied fractions to study cumulative effects. The levels of free and liposomal Hsp70 levels in the circulation were not affected by the first singular treatment and cumulative effects of RT in cats however, after finalizing all treatment cycles with HTRT free and liposomal Hsp70 levels significantly increased. In dogs, HTRT, but not treatment with RT alone, significantly affected liposomal Hsp70 levels during the first fraction. Free Hsp70 levels were significantly increased after RT, but not HTRT, during the first fraction in dogs. In dogs, on the other hand, RT alone resulted in a significant increase in liposomal Hsp70, but HTRT did not significantly affect the liposomal Hsp70 when cumulative effects were analysed. Free Hsp70 was significantly induced in dogs after both, RT and HTRT when cumulative effects were analysed. RT and HTRT treatments differentially affect the levels of free and liposomal Hsp70 in dogs and cats. Both forms of Hsp70 could potentially be further investigated as potential liquid biopsy markers to study responses to RT and HTRT treatment in companion animals.
Collapse
Affiliation(s)
- K J Nytko
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - M S Weyland
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - S Dressel-Böhm
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - S Scheidegger
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - L Salvermoser
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - C Werner
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - S Stangl
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - A C Carpinteiro
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - B Alkotub
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - G Multhoff
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TranslaTUM-Central Institute for Translational Cancer Research, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - S Bodis
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - C Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Saini C, Jiang S, Devlin J, Pan L, Tang Y, Tang J, Sun JA, Lorenzo MM, Wang Q, Pasquale LR, Cho KS, Chen DF, Shen LQ. Association between HSP-Specific T-Cell Counts and Retinal Nerve Fiber Layer Thickness in Patients with Primary Open-Angle Glaucoma. OPHTHALMOLOGY SCIENCE 2023; 3:100310. [PMID: 37197701 PMCID: PMC10183658 DOI: 10.1016/j.xops.2023.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Objective Previous laboratory reports implicate heat shock protein (HSP)-specific T-cell responses in glaucoma pathogenesis; here, we aimed to provide direct clinical evidence by correlating systemic HSP-specific T-cell levels with glaucoma severity in patients with primary open-angle glaucoma (POAG). Design Cross-sectional case-control study. Subjects Thirty-two adult patients with POAG and 38 controls underwent blood draw and optic nerve imaging. Methods Peripheral blood monocytes (PBMC) were stimulated in culture with HSP27, α-crystallin, a member of the small HSP family, or HSP60. Both interferon-γ (IFN-γ)+ CD4+ T helper type 1 cells (Th1) and transforming growth factor-β1 (TGF-β1)+ CD4+ regulatory T cells (Treg) were quantified by flow cytometry and presented as a percentage of total PBMC counts. Relevant cytokines were measured using enzyme-linked immunosorbent assays. Retinal nerve fiber layer thickness (RNFLT) was measured with OCT. Pearson's correlation (r) was used to assess correlations. Main Outcome Measures Correlations of HSP-specific T-cell counts, and serum levels of corresponding cytokine levels with RNFLT. Results Patients with POAG (visual field mean deviation, -4.7 ± 4.0 dB) and controls were similar in age, gender, and body mass index. Moreover, 46.9% of POAG and 60.0% of control subjects had prior cataract surgery (P = 0.48). Although no significant difference in total nonstimulated CD4+ Th1 or Treg cells was detected, patients with POAG exhibited significantly higher frequencies of Th1 cells specific for HSP27, α-crystallin, or HSP60 than controls (7.3 ± 7.9% vs. 2.6 ± 2.0%, P = 0.004; 5.8 ± 2.7% vs. 1.8 ± 1.3%, P < 0.001; 13.2 ± 13.3 vs. 4.3 ± 5.2, P = 0.01; respectively), but similar Treg specific for the same HSPs compared with controls (P ≥ 0.10 for all). Concordantly, the serum levels of IFN-γ were higher in POAG than in controls (36.2 ± 12.1 pg/ml vs. 10.0 ± 4.3 pg/ml; P < 0.001), but TGF-β1 levels did not differ. Average RNFLT of both eyes negatively correlated with HSP27- and α-crystallin-specific Th1 cell counts, and IFN-γ levels in all subjects after adjusting for age (partial correlation coefficient r = -0.31, P = 0.03; r = -0.52, p = 0.002; r = -0.72, P < 0.001, respectively). Conclusions Higher levels of HSP-specific Th1 cells are associated with thinner RNFLT in patients with POAG and control subjects. The significant inverse relationship between systemic HSP-specific Th1 cell count and RNFLT supports the role of these T cells in glaucomatous neurodegeneration. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Julia Devlin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yizhen Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
- Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China
| | - Jessica A. Sun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Dong Feng Chen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Lucy Q. Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Correspondence: Lucy Q. Shen, MD, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114.
| |
Collapse
|
8
|
Sha G, Jiang Z, Zhang W, Jiang C, Wang D, Tang D. The multifunction of HSP70 in cancer: Guardian or traitor to the survival of tumor cells and the next potential therapeutic target. Int Immunopharmacol 2023; 122:110492. [PMID: 37390645 DOI: 10.1016/j.intimp.2023.110492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Heat shock protein 70 (HSP70) is a highly conserved protein composed of nucleotide-binding domains (NBD) and C-terminal substrate binding domain (SBD) that can function as a "molecular chaperone". HSP70 was discovered to directly or indirectly play a regulatory role in both internal and external apoptosis pathways. Studies have shown that HSP70 can not only promote tumor progression, enhance tumor cell resistance and inhibit anticancer effects but also induce an anticancer response by activating immune cells. In addition, chemotherapy, radiotherapy and immunotherapy for cancer may be affected by HSP70, which has shown promising potential as an anticancer drug. In this review, we summarized the molecular structure and mechanism of HSP70 and discussed the dual effects of HSP70 on tumor cells and the possibility and potential methods of using HSP70 as a target to treat cancer.
Collapse
Affiliation(s)
- Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Chuwen Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| |
Collapse
|
9
|
Xanthopoulos A, Samt AK, Guder C, Taylor N, Roberts E, Herf H, Messner V, Trill A, Holzmann KLK, Kiechle M, Seifert-Klauss V, Zschaeck S, Schatka I, Tauber R, Schmidt R, Enste K, Pockley AG, Lobinger D, Multhoff G. Hsp70-A Universal Biomarker for Predicting Therapeutic Failure in Human Female Cancers and a Target for CTC Isolation in Advanced Cancers. Biomedicines 2023; 11:2276. [PMID: 37626772 PMCID: PMC10452093 DOI: 10.3390/biomedicines11082276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is frequently overexpressed in many different tumor types. However, Hsp70 has also been shown to be selectively presented on the plasma membrane of tumor cells, but not normal cells, and this membrane form of Hsp70 (mHsp70) could be considered a universal tumor biomarker. Since viable, mHsp70-positive tumor cells actively release Hsp70 in lipid micro-vesicles, we investigated the utility of Hsp70 in circulation as a universal tumor biomarker and its potential as an early predictive marker of therapeutic failure. We have also evaluated mHsp70 as a target for the isolation and enumeration of circulating tumor cells (CTCs) in patients with different tumor entities. Circulating vesicular Hsp70 levels were measured in the peripheral blood of tumor patients with the compHsp70 ELISA. CTCs were isolated using cmHsp70.1 and EpCAM monoclonal antibody (mAb)-based bead approaches and characterized by immunohistochemistry using cytokeratin and CD45-specific antibodies. In two out of 35 patients exhibiting therapeutic failure two years after initial diagnosis of non-metastatic breast cancer, progressively increasing levels of circulating Hsp70 had already been observed during therapy, whereas levels in patients without subsequent recurrence remained unaltered. With regards to CTC isolation from patients with different tumors, an Hsp70 mAb-based selection system appears superior to an EpCAM mAb-based approach. Extracellular and mHsp70 can therefore serve as a predictive biomarker for therapeutic failure in early-stage tumors and as a target for the isolation of CTCs in various tumor diseases.
Collapse
Affiliation(s)
- Alexia Xanthopoulos
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Ann-Kathrin Samt
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Christiane Guder
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Nicholas Taylor
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Erika Roberts
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Hannah Herf
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Verena Messner
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Anskar Trill
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Katharina Larissa Kreszentia Holzmann
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.K.); (V.S.-K.)
| | - Vanadin Seifert-Klauss
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.K.); (V.S.-K.)
| | - Sebastian Zschaeck
- Department of Radiation Oncology and Radiotherapy, Charité Berlin, 10117 Berlin, Germany;
| | - Imke Schatka
- Department of Nuclear Medicine, Charité Berlin, 10117 Berlin, Germany;
| | - Robert Tauber
- Department of Urology, Klinkum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Robert Schmidt
- Krankenhaus für Naturheilweisen, 81545 Munich, Germany; (R.S.); (K.E.)
| | - Katrin Enste
- Krankenhaus für Naturheilweisen, 81545 Munich, Germany; (R.S.); (K.E.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Dominik Lobinger
- Department of Thoracic Surgery, München Klinik Bogenhausen, Lehrkrankenhaus der TU München, 81925 Munich, Germany;
| | - Gabriele Multhoff
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
10
|
Ramatsui L, Dongola TH, Zininga T, Multhoff G, Shonhai A. Human granzyme B binds Plasmodium falciparum Hsp70-x and mediates antiplasmodial activity in vitro. Cell Stress Chaperones 2023; 28:321-331. [PMID: 37074531 PMCID: PMC10167072 DOI: 10.1007/s12192-023-01339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Cell surface-bound human Hsp70 (hHsp70) sensitises tumour cells to the cytolytic attack of natural killer (NK) cells through the mediation of apoptosis-inducing serine protease, granzyme B (GrB). hHsp70 is thought to recruit NK cells to the immunological synapse via the extracellularly exposed 14 amino acid sequence, TKDNNLLGRFELSG, known as the TKD motif of Hsp70. Plasmodium falciparum-infected red blood cells (RBCs) habour both hHsp70 and an exported parasite Hsp70 termed PfHsp70-x. Both PfHsp70-x and hHsp70 share conserved TKD motifs. The role of PfHsp70-x in facilitating GrB uptake in malaria parasite-infected RBCs remains unknown, but hHsp70 enables a perforin-independent uptake of GrB into tumour cells. In the current study, we comparatively investigated the direct binding of GrB to either PfHsp70-x or hHsp70 in vitro. Using ELISA, slot blot assay and surface plasmon resonance (SPR) analysis, we demonstrated a direct interaction of GrB with hHsp70 and PfHsp70-x. SPR analysis revealed a higher affinity of GrB for PfHsp70-x than hHsp70. In addition, we established that the TKD motif of PfHsp70-x directly interacts with GrB. The data further suggest that the C-terminal EEVN motif of PfHsp70-x augments the affinity of PfHsp70-x for GrB but is not a prerequisite for the binding. A potent antiplasmodial activity (IC50 of 0.5 µM) of GrB could be demonstrated. These findings suggest that the uptake of GrB by parasite-infected RBCs might be mediated by both hHsp70 and PfHsp70-x. The combined activity of both proteins could account for the antiplasmodial activity of GrB at the blood stage.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gabriele Multhoff
- Klinik Und Poliklinik Für Strahlentherapie Und Radiologische Onkologie, Klinikum Rechts Der Isar and Central Institute for Translational Cancer Research TU München, TranslaTUM) Einsteinstr. 25, 81675, Munich, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa.
| |
Collapse
|
11
|
Sojka DR, Abramowicz A, Adamiec-Organiściok M, Karnas E, Mielańczyk Ł, Kania D, Blamek S, Telka E, Scieglinska D. Heat shock protein A2 is a novel extracellular vesicle-associated protein. Sci Rep 2023; 13:4734. [PMID: 36959387 PMCID: PMC10036471 DOI: 10.1038/s41598-023-31962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
70-kDa Heat Shock Proteins (HSPA/HSP70) are chaperones playing a central role in the proteostasis control mechanisms. Their basal expression can be highly elevated as an adaptive response to environmental and pathophysiological stress conditions. HSPA2, one of poorly characterised chaperones of the HSPA/HSP70 family, has recently emerged as epithelial cells differentiation-related factor. It is also commonly expressed in cancer cells, where its functional significance remains unclear. Previously, we have found that proteotoxic stress provokes a decrease in HSPA2 levels in cancer cells. In the present study we found that proteasome inhibition-related loss of HSPA2 from cancer cells neither is related to a block in the gene transcription nor does it relate to increased autophagy-mediated disposals of the protein. Proteotoxic stress stimulated extracellular release of HSPA2 in extracellular vesicles (EVs). Interestingly, EVs containing HSPA2 are also released by non-stressed cancer and normal cells. In human urinary EVs levels of HSPA2 were correlated with the levels of TSG101, one of the main EVs markers. We conclude that HSPA2 may constitute basic components of EVs. Nevertheless, its specific role in EVs and cell-to-cell communication requires further investigation.
Collapse
Affiliation(s)
- Damian Robert Sojka
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agata Abramowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Małgorzata Adamiec-Organiściok
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Kraków, Poland
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Daria Kania
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Sławomir Blamek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Ewa Telka
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Dorota Scieglinska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
12
|
Wu Z, Stangl S, Hernandez-Schnelzer A, Wang F, Hasanzadeh Kafshgari M, Bashiri Dezfouli A, Multhoff G. Functionalized Hybrid Iron Oxide-Gold Nanoparticles Targeting Membrane Hsp70 Radiosensitize Triple-Negative Breast Cancer Cells by ROS-Mediated Apoptosis. Cancers (Basel) 2023; 15:cancers15041167. [PMID: 36831510 PMCID: PMC9954378 DOI: 10.3390/cancers15041167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) a highly aggressive tumor entity with an unfavorable prognosis, is treated by multimodal therapies, including ionizing radiation (IR). Radiation-resistant tumor cells, as well as induced normal tissue toxicity, contribute to the poor clinical outcome of the disease. In this study, we investigated the potential of novel hybrid iron oxide (Fe3O4)-gold (Au) nanoparticles (FeAuNPs) functionalized with the heat shock protein 70 (Hsp70) tumor-penetrating peptide (TPP) and coupled via a PEG4 linker (TPP-PEG4-FeAuNPs) to improve tumor targeting and uptake of NPs and to break radioresistance in TNBC cell lines 4T1 and MDA-MB-231. Hsp70 is overexpressed in the cytosol and abundantly presented on the cell membrane (mHsp70) of highly aggressive tumor cells, including TNBCs, but not on corresponding normal cells, thus providing a tumor-specific target. The Fe3O4 core of the NPs can serve as a contrast agent enabling magnetic resonance imaging (MRI) of the tumor, and the nanogold shell radiosensitizes tumor cells by the release of secondary electrons (Auger electrons) upon X-ray irradiation. We demonstrated that the accumulation of TPP-PEG4-FeAuNPs into mHsp70-positive TNBC cells was superior to that of non-conjugated FeAuNPs and FeAuNPs functionalized with a non-specific, scrambled peptide (NGL). After a 24 h co-incubation period of 4T1 and MDA-MB-231 cells with TPP-PEG4-FeAuNPs, but not with control hybrid NPs, ionizing irradiation (IR) causes a cell cycle arrest at G2/M and induces DNA double-strand breaks, thus triggering apoptotic cell death. Since the radiosensitizing effect was completely abolished in the presence of the ROS inhibitor N-acetyl-L-cysteine (NAC), we assume that the TPP-PEG4-FeAuNP-induced apoptosis is mediated via an increased production of ROS.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Stefan Stangl
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alicia Hernandez-Schnelzer
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Fei Wang
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Morteza Hasanzadeh Kafshgari
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technischen Universität München, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4514; Fax: +49-89-4140-4299
| |
Collapse
|
13
|
Salvermoser L, Flisikowski K, Dressel-Böhm S, Nytko KJ, Rohrer Bley C, Schnieke A, Samt AK, Thölke D, Lennartz P, Schwab M, Wang F, Bashiri Dezfouli A, Multhoff G. Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species. Cell Stress Chaperones 2023; 28:105-118. [PMID: 36399258 PMCID: PMC9877270 DOI: 10.1007/s12192-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany.
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Susann Dressel-Böhm
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Katarzyna J Nytko
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Carla Rohrer Bley
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Angelika Schnieke
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Ann-Kathrin Samt
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Dennis Thölke
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Fei Wang
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| |
Collapse
|
14
|
Jung S, Jiang L, Zhao J, Shultz LD, Greiner DL, Bae M, Li X, Ordikhani F, Kuai R, Joseph J, Kasinath V, Elmaleh DR, Abdi R. Clathrin light chain-conjugated drug delivery for cancer. Bioeng Transl Med 2023; 8:e10273. [PMID: 36684105 PMCID: PMC9842032 DOI: 10.1002/btm2.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Targeted drug delivery systems hold the remarkable potential to improve the therapeutic index of anticancer medications markedly. Here, we report a targeted delivery platform for cancer treatment using clathrin light chain (CLC)-conjugated drugs. We conjugated CLC to paclitaxel (PTX) through a glutaric anhydride at high efficiency. Labeled CLCs localized to 4T1 tumors implanted in mice, and conjugation of PTX to CLC enhanced its delivery to these tumors. Treatment of three different mouse models of cancer-melanoma, breast cancer, and lung cancer-with CLC-PTX resulted in significant growth inhibition of both the primary tumor and metastatic lesions, as compared to treatment with free PTX. CLC-PTX treatment caused a marked increase in apoptosis of tumor cells and reduction of tumor angiogenesis. Our data suggested HSP70 as a binding partner for CLC. Our study demonstrates that CLC-based drug-conjugates constitute a novel drug delivery platform that can augment the effects of chemotherapeutics in treating a variety of cancers. Moreover, conjugation of therapeutics with CLC may be used as means by which drugs are delivered specifically to primary tumors and metastatic lesions, thereby prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Sungwook Jung
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Liwei Jiang
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Institute of Health and Medical TechnologyHefei Institutes of Physical Science, Chinese Academy of SciencesBostonHefeiChina
| | - Jing Zhao
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Dale L. Greiner
- Department of Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiaofei Li
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Kasinath
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David R. Elmaleh
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Reza Abdi
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
15
|
Dezfouli AB, Stangl S, Foulds GA, Lennartz P, Pilkington GJ, Pockley AG, Multhoff G. Immunohistochemical, Flow Cytometric, and ELISA-Based Analyses of Intracellular, Membrane-Expressed, and Extracellular Hsp70 as Cancer Biomarkers. Methods Mol Biol 2023; 2693:307-324. [PMID: 37540444 DOI: 10.1007/978-1-0716-3342-7_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The major stress-inducible 70 kDa heat shock (stress) protein 70 (Hsp70) is frequently overexpressed in highly aggressive tumor cells and thus might serve as a tumor-specific biomarker of aggressive disease and/or therapeutic resistance. We have previously shown that, in contrast to normal cells, tumor cells present Hsp70 on their plasma membrane. In order to elucidate the role of intracellular, membrane-bound and extracellular Hsp70 as a potential tumor biomarker in cancer, herein we describe protocols for the staining of cytosolic Hsp70 in tumor formalin-fixed paraffin-embedded (FFPE) sections from patients with glioblastoma multiforme using immunohistochemistry, for detecting the expression of plasma membrane-bound Hsp70 by a range of cancer-derived cells using multi-parametric flow cytometry using the cmHsp70.1 monoclonal antibody (mAb) and for the measurement of free and vesicular-associated Hsp70 in the circulation of patients with cancer using a unique enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Stefan Stangl
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany.
| |
Collapse
|
16
|
Mohan AK, M M, Kumar TRS, Kumar GSV. Multi-Layered PLGA-PEI Nanoparticles Functionalized with TKD Peptide for Targeted Delivery of Pep5 to Breast Tumor Cells and Spheroids. Int J Nanomedicine 2022; 17:5581-5600. [PMID: 36444195 PMCID: PMC9700446 DOI: 10.2147/ijn.s376358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE Peptide-based therapy is a promising strategy for cancer treatment because of its low drug resistance. However, the major challenge is their inability to target cancer cells specifically. So, a targeted nano-delivery system that could deliver therapeutic peptides selectively to cancer cells to stimulate their action is highly desirable. This study aims to deliver the antitumor peptide, Pep5, to breast tumor cells selectively using a targeting peptide functionalised multi-layered PLGA-PEI nanoparticles. METHODS In this study, Pep5 entrapped PLGA-PEI (Pep5-PPN) dual layered nanoparticles were developed. These nanoparticles were decorated with TKD (Pep5-TPPN) on their surface for site-specific delivery of Pep5 to breast tumor cells. The particles were then characterized using various instrumental analyses. In vitro cytotoxicity of the particles was evaluated in estrogen receptor positive (ER+ve) and triple negative breast cancer (TNBC) cells. An ex vivo tumor spheroid model was used to analyze the antitumor activity of the particles. RESULTS Uniformly round Pep5-TPPN particles were synthesized with an average diameter of 420.8 ± 14.72 nm. The conjugation of PEI over Pep5-PLGA nanoparticles shifted the zeta potential from -11.6 ± 2.16 mV to +20.01 ± 2.97 mV. In vitro cytotoxicity analysis proved that TKD conjugation to nanoparticles enhanced the antitumor activity of Pep5 in tested breast cancer cells. Pep5-TPPN induced cytoskeletal damage and apoptosis in the tested cells, which showed that the mechanism of action of Pep5 is conserved but potentiated. Active targeting of Pep5 suppressed the tumor growth in ex vivo spheroid models. CONCLUSION A multi-layered nanoparticle functionalized with dual peptide was fabricated for active tumor targeting, which stimulated Pep5 activity to reduce the tumor growth in vitro and ex vivo.
Collapse
Affiliation(s)
- Akhil K Mohan
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Research Centre, Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Minsa M
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - T R Santhosh Kumar
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
17
|
Elevated Levels of Circulating Hsp70 and an Increased Prevalence of CD94+/CD69+ NK Cells Is Predictive for Advanced Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14225701. [PMID: 36428793 PMCID: PMC9688749 DOI: 10.3390/cancers14225701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the second most frequently diagnosed tumor worldwide. Despite the clinical progress which has been achieved by multimodal therapies, including radiochemotherapy, and immune checkpoint inhibitor blockade, the overall survival of patients with advanced-stage NSCLC remains poor, with less than 16 months. It is well established that many aggressive tumor entities, including NSCLC, overexpress the major stress-inducible heat shock protein 70 (Hsp70) in the cytosol, present it on the plasma membrane in a tumor-specific manner, and release Hsp70 into circulation. Although high Hsp70 levels are associated with tumor aggressiveness and therapy resistance, membrane-bound Hsp70 can serve as a tumor-specific antigen for Hsp70-primed natural killer (NK) cells, expressing the C-type lectin receptor CD94, which is part of the activator receptor complex CD94/NKG2C. Therefore, we investigated circulating Hsp70 levels and changes in the composition of peripheral blood lymphocyte subsets as potential biomarkers for the advanced Union for International Cancer Control (UICC) stages in NSCLC. As expected, circulating Hsp70 levels were significantly higher in NSCLC patients compared to the healthy controls, as well as in patients with advanced UICC stages compared to those in UICC stage I. Smoking status did not influence the circulating Hsp70 levels significantly. Concomitantly, the proportions of CD4+ T helper cells were lower compared to the healthy controls and stage I tumor patients, whereas that of CD8+ cytotoxic T cells was progressively higher. The prevalence of CD3-/CD56+, CD3-/NKp30, CD3-/NKp46+, and CD3-/NKG2D+ NK cells was higher in stage IV/IIIB of the disease than in stage IIIA but were not statistically different from that in healthy individuals. However, the proportion of NK cells expressing CD94 and the activation/exhaustion marker CD69 significantly increased in higher tumor stages compared with stage I and the healthy controls. We speculate that although elevated circulating Hsp70 levels might promote the prevalence of CD94+ NK cells in patients with advanced-stage NSCLC, the cytolytic activity of these NK cells also failed to control tumor growth due to insufficient support by pro-inflammatory cytokines from CD4+ T helper cells. This hypothesis is supported by a comparative multiplex cytokine analysis of the blood in lung cancer patients with a low proportion of CD4+ T cells, a high proportion of NK cells, and high Hsp70 levels versus patients with a high proportion of CD4+ T cells exhibiting lower IL-2, IL-4, IL-6, IFN-γ, granzyme B levels.
Collapse
|
18
|
Fu X, Liu J, Yan X, DiSanto ME, Zhang X. Heat Shock Protein 70 and 90 Family in Prostate Cancer. Life (Basel) 2022; 12:1489. [PMID: 36294924 PMCID: PMC9605364 DOI: 10.3390/life12101489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer that affects aging men worldwide. However, its exact pathogenesis has not been fully elucidated. The heat shock protein (HSP) family has cell-protective properties that may promote tumor growth and protect cancer cells from death. On a cellular level, HSP molecules have a strong relationship with multiple important biological processes, such as cell differentiation, epithelial-mesenchymal transition (EMT), and fibrosis. Because of the facilitation of HSP family molecules on tumorigenesis, a number of agents and inhibitors are being developed with potent antitumor effects whose target site is the critical structure of HSP molecules. Among all target molecules, HSP70 family and HSP90 are two groups that have been well studied, and therefore, the development of their inhibitors makes great progress. Only a small number of agents, however, have been clinically tested in recruited patients. As a result, more clinical studies are warranted for the establishment of the relationship between the HSP70 family, alongside the HSP90 molecule, and prostate cancer treatment.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
19
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
20
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
21
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
22
|
Bashiri Dezfouli A, Yazdi M, Benmebarek MR, Schwab M, Michaelides S, Miccichè A, Geerts D, Stangl S, Klapproth S, Wagner E, Kobold S, Multhoff G. CAR T Cells Targeting Membrane-Bound Hsp70 on Tumor Cells Mimic Hsp70-Primed NK Cells. Front Immunol 2022; 13:883694. [PMID: 35720311 PMCID: PMC9198541 DOI: 10.3389/fimmu.2022.883694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Strategies to boost anti-tumor immunity are urgently needed to treat therapy-resistant late-stage cancers, including colorectal cancers (CRCs). Cytokine stimulation and genetic modifications with chimeric antigen receptors (CAR) represent promising strategies to more specifically redirect anti-tumor activities of effector cells like natural killer (NK) and T cells. However, these approaches are critically dependent on tumor-specific antigens while circumventing the suppressive power of the solid tumor microenvironment and avoiding off-tumor toxicities. Previously, we have shown that the stress-inducible heat shock protein 70 (Hsp70) is frequently and specifically expressed on the cell surface of many different, highly aggressive tumors but not normal tissues. We could take advantage of tumors expressing Hsp70 on their membrane (‘mHsp70’) to attract and engage NK cells after in vitro stimulation with the 14-mer Hsp70 peptide TKDNNLLGRFELSG (TKD) plus low dose interleukin (IL)-2. However, a potential limitation of activated primary NK cells after adoptive transfer is their comparably short life span. T cells are typically long-lived but do not recognize mHsp70 on tumor cells, even after stimulation with TKD/IL-2. To combine the advantages of mHsp70-specificity with longevity, we constructed a CAR having specificity for mHsp70 and retrovirally transduced it into primary T cells. Co-culture of anti-Hsp70 CAR-transduced T cells with mHsp70-positive tumor cells stimulates their functional responsiveness. Herein, we demonstrated that human CRCs with a high mHsp70 expression similarly attract TKD/IL-2 stimulated NK cells and anti-Hsp70 CAR T cells, triggering the release of their lytic effector protein granzyme B (GrB) and the pro-inflammatory cytokine interferon (IFN)-γ, after 4 and 24 hours, respectively. In sum, stimulated NK cells and anti-Hsp70 CAR T cells demonstrated comparable anti-tumor effects, albeit with somewhat differing kinetics. These findings, together with the fact that mHsp70 is expressed on a large variety of different cancer entities, highlight the potential of TKD/IL-2 pre-stimulated NK, as well as anti-Hsp70 CAR T cells to provide a promising direction in the field of targeted, cell-based immunotherapies which can address significant unmet clinical needs in a wide range of cancer settings.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany
| | - Melissa Schwab
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Stefanos Michaelides
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany
| | | | | | - Stefan Stangl
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany.,Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany.,German Center for Translational Cancer Research Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
23
|
Hou C, Nicholas SC. Perceptual learning with dichoptic attention tasks improves attentional modulation in V1 and IPS and reduces interocular suppression in human amblyopia. Sci Rep 2022; 12:9660. [PMID: 35690626 PMCID: PMC9188564 DOI: 10.1038/s41598-022-13747-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term and chronic visual suppression to the non-preferred eye in early childhood is a key factor in developing amblyopia, as well as a critical barrier to treat amblyopia. To explore the relationship between selective visual attention and amblyopic suppression and its role in the success of amblyopic training, we used EEG source-imaging to show that training human adults with strabismic and anisometropic amblyopia with dichoptic attention tasks improved attentional modulation of neural populations in the primary visual cortex (V1) and intraparietal sulcus (IPS). We also used psychophysics to show that training reduced interocular suppression along with visual acuity and stereoacuity improvements. Importantly, our results revealed that the reduction of interocular suppression by training was significantly correlated with the improvement of selective visual attention in both training-related and -unrelated tasks in the amblyopic eye, relative to the fellow eye. These findings suggest a relation between interocular suppression and selective visual attention bias between eyes in amblyopic vision, and that dichoptic training with high-attention demand tasks in the amblyopic eye might be an effective way to treat amblyopia.
Collapse
Affiliation(s)
- Chuan Hou
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, 94115, USA.
| | - Spero C Nicholas
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, 94115, USA
| |
Collapse
|
24
|
Fang HY, Stangl S, Marcazzan S, Carvalho MJB, Baumeister T, Anand A, Strangmann J, Huspenina JS, Wang TC, Schmid RM, Feith M, Friess H, Ntziachristos V, Multhoff G, Gorpas D, Quante M. Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett's esophagus. Eur J Nucl Med Mol Imaging 2022; 49:2049-2063. [PMID: 34882260 PMCID: PMC9016004 DOI: 10.1007/s00259-021-05582-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/03/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Sabrina Marcazzan
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Marcos J. Braz Carvalho
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | | | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Roland M. Schmid
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Marcus Feith
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Michael Quante
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
25
|
Albakova Z, Mangasarova Y. The HSP Immune Network in Cancer. Front Immunol 2021; 12:796493. [PMID: 34917098 PMCID: PMC8669653 DOI: 10.3389/fimmu.2021.796493] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins are molecular chaperones which support tumor development by regulating various cellular processes including unfolded protein response, mitochondrial bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis, cancer cell stemness, epithelial-mesenchymal transition and tumor immunity. Apart from their intracellular activities, HSPs have also distinct extracellular functions. However, the role that HSP chaperones play in the regulation of immune responses inside and outside the cell is not yet clear. Herein, we explore the intracellular and extracellular immunologic functions of HSPs in cancer. A broader understanding of how HSPs modulate immune responses may provide critical insights for the development of effective immunotherapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
26
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
27
|
Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G. NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells 2021; 10:cells10123390. [PMID: 34943898 PMCID: PMC8699535 DOI: 10.3390/cells10123390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, cell-based immunotherapies have demonstrated promising results in the treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have been most frequently applied in the treatment of hematological malignancies. Clinical challenges in their application primarily include cytokine release syndrome, neurological symptoms, severe inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells. As a consequence, there remains a significant medical need for more potent technology platforms leveraging cell-based approaches with enhanced safety profiles. A promising population that has been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells which belong to the innate arm of the immune system recognize and kill virally infected cells as well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells play an important role in the host’s immune defense against cancer due to their specialized lytic mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as their immunoregulatory potential via cytokine/chemokine release. To develop and implement a highly effective CAR NK cell-based therapy with low side effects, the following three principles which are specifically addressed in this review have to be considered: unique target selection, well-designed CAR, and optimized gene delivery.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4140-6013
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany;
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
| |
Collapse
|
28
|
Li WB, Stangl S, Klapproth A, Shevtsov M, Hernandez A, Kimm MA, Schuemann J, Qiu R, Michalke B, Bernal MA, Li J, Hürkamp K, Zhang Y, Multhoff G. Application of High-Z Gold Nanoparticles in Targeted Cancer Radiotherapy-Pharmacokinetic Modeling, Monte Carlo Simulation and Radiobiological Effect Modeling. Cancers (Basel) 2021; 13:5370. [PMID: 34771534 PMCID: PMC8582555 DOI: 10.3390/cancers13215370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to improve tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent healthy tissue. This paper summarizes the main findings of a joint research program which applied AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparamagnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically based mathematical model was developed to predict the biological response of AuNPs in radiation enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement, simulations relating to the generation of chemical radicals and the induction of DNA strand breaks induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simulated enhancements at molecular and cellular levels indicate that further investigations are necessary to better understand the impact of the physical, chemical, and biological parameters in preclinical experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
| | - Stefan Stangl
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Alexander Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Maxim Shevtsov
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 Saint Petersburg, Russia
| | - Alicia Hernandez
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Melanie A. Kimm
- Department of Diagnostic and Interventional Radiology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, 81337 Munich, Germany;
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital (MGH) & Harvard Medical School, Boston, MA 02114, USA;
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Mario A. Bernal
- Gleb Wataghin Institute of Physics, State University of Campinas, Campinas 13083-859, SP, Brazil;
| | - Junli Li
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, 81337 Munich, Germany;
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China;
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
29
|
Abi Zamer B, El-Huneidi W, Eladl MA, Muhammad JS. Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells 2021; 10:cells10112862. [PMID: 34831085 PMCID: PMC8616065 DOI: 10.3390/cells10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells can reprogram their metabolic activities and undergo uncontrolled proliferation by utilizing the power of heat shock proteins (HSPs). HSPs are highly conserved chaperones that facilitate the folding of intracellular proteins under stress. Constitutively, HSPs are expressed at low levels, but their expression upregulates in response to a wide variety of insults, including anticancer drugs, allowing cancer cells to develop chemoresistance. In recent years, several researchers have reported that HSPs could be an important therapeutic target in difficult-to-treat cancers such as colorectal carcinoma (CRC). Worldwide, CRC is the second most common type of cancer and the second leading cause of cancer-related deaths. The molecular complexity of CRC and the coexisting inflammatory conditions present a significant obstacle to developing effective treatment. Recently, considerable progress has been made in enhancing our understanding of the role of HSPs in CRC pathogenesis. Moreover, novel therapeutic strategies targeting HSPs, either alone or in combination with other anticancer agents, have been reported. Herein, we present an overview of the functional mechanisms and the diagnostic and prognostic potential of HSPs in CRC. We also discuss emerging anti-CRC strategies based on targeting HSPs.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6-5057293
| |
Collapse
|
30
|
Linder M, Pogge von Strandmann E. The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers (Basel) 2021; 13:cancers13184721. [PMID: 34572948 PMCID: PMC8466959 DOI: 10.3390/cancers13184721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The intracellular heat shock protein 70 (HSP70) is essential for cells to respond to stress, for instance, by refolding damaged proteins or inhibiting apoptosis. However, in cancer, HSP70 is overexpressed and can translocate to the extracellular milieu, where it emerged as an important modulator of tumor-associated immune cells. By targeting the tumor microenvironment (TME) through different mechanisms, extracellular HSP70 can trigger pro- or anti-tumorigenic responses. Therefore, understanding the pathways and their consequences is crucial for therapeutically targeting cancer and its surrounding microenvironment. In this review, we summarize current knowledge on the translocation of extracellular HSP70. We further elucidate its functions within the TME and provide an overview of potential therapeutic options. Abstract Extracellular vesicles released by tumor cells (T-EVs) are known to contain danger-associated molecular patterns (DAMPs), which are released in response to cellular stress to alert the immune system to the dangerous cell. Part of this defense mechanism is the heat shock protein 70 (HSP70), and HSP70-positive T-EVs are known to trigger anti-tumor immune responses. Moreover, extracellular HSP70 acts as an immunogen that contributes to the cross-presentation of major histocompatibility complex (MHC) class I molecules. However, the release of DAMPs, including HSP70, may also induce chronic inflammation or suppress immune cell activity, promoting tumor growth. Here, we summarize the current knowledge on soluble, membrane-bound, and EV-associated HSP70 regarding their functions in regulating tumor-associated immune cells in the tumor microenvironment. The molecular mechanisms involved in the translocation of HSP70 to the plasma membrane of tumor cells and its release via exosomes or soluble proteins are summarized. Furthermore, perspectives for immunotherapies aimed to target HSP70 and its receptors for cancer treatment are discussed and presented.
Collapse
|
31
|
Jaishankar D, Cosgrove C, Ramesh P, Mahon J, Shivde R, Dellacecca ER, Yang SF, Mosenson J, Guevara-Patiño JA, Le Poole IC. HSP70i Q435A to subdue autoimmunity and support anti-tumor responses. Cell Stress Chaperones 2021; 26:845-857. [PMID: 34542825 PMCID: PMC8492854 DOI: 10.1007/s12192-021-01229-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
Developing immunosuppressive therapies for autoimmune diseases comes with a caveat that immunosuppression may promote the risk of developing other conditions or diseases. We have previously shown that biolistic delivery of an expression construct encoding inducible HSP70 (HSP70i) with one amino acid modification in the dendritic cell (DC) activating moiety 435-445 (HSP70iQ435A) to mouse skin resulted in significant immunosuppressive activity of autoimmune vitiligo, associated with fewer tissue infiltrating T cells. To prepare HSP70iQ435A as a potential therapeutic for autoimmune vitiligo, in this study we evaluated whether and how biolistic delivery of HSP70iQ435A in mice affects anti-tumor responses. We found that HSP70iQ435A in fact supports anti-tumor responses in melanoma-challenged C57BL/6 mice. Biolistic delivery of the HSP70iQ435A-encoding construct to mice elicited significant anti-HSP70 titers, and anti-HSP70 IgG and IgM antibodies recognize surface-expressed and cytoplasmic HSP70i in human and mouse melanoma cells. A peptide scan revealed that the anti-HSP70 antibodies recognize a specific C-terminal motif within the HSP70i protein. The antibodies elicited surface CD107A expression among mouse NK cells, representative of antibody-mediated cellular cytotoxicity (ADCC), supporting the concept, that HSP70iQ435A-encoding DNA elicits a humoral response to the stress protein expressed selectively on the surface of melanoma cells. Thus, besides limiting autoimmunity and inflammation, HSP70iQ435A elicits humoral responses that limit tumor growth and may be used in conjunction with immune checkpoint inhibitors to not only control tumor but to also limit adverse events following tumor immunotherapy.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Cormac Cosgrove
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Prathyaya Ramesh
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - James Mahon
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | - Rohan Shivde
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Emilia R Dellacecca
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Shiayin F Yang
- Department of Otolaryngology - Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Jeffrey Mosenson
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | - José A Guevara-Patiño
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - I Caroline Le Poole
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA.
- Department of Microbiology & Immunology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
32
|
Hsp70 in Liquid Biopsies-A Tumor-Specific Biomarker for Detection and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:cancers13153706. [PMID: 34359606 PMCID: PMC8345117 DOI: 10.3390/cancers13153706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
In contrast to normal cells, tumor cells of multiple entities overexpress the Heat shock protein 70 (Hsp70) not only in the cytosol, but also present it on their plasma membrane in a tumor-specific manner. Furthermore, membrane Hsp70-positive tumor cells actively release Hsp70 in small extracellular vesicles with biophysical characteristics of exosomes. Due to conformational changes of Hsp70 in a lipid environment, most commercially available antibodies fail to detect membrane-bound and vesicular Hsp70. To fill this gap and to assess the role of vesicular Hsp70 in circulation as a potential tumor biomarker, we established the novel complete (comp)Hsp70 sandwich ELISA, using two monoclonal antibodies (mAbs), that is able to recognize both free and lipid-associated Hsp70 on the cell surface of viable tumor cells and on small extracellular vesicles. The epitopes of the mAbs cmHsp70.1 (aa 451-461) and cmHsp70.2 (aa 614-623) that are conserved among different species reside in the substrate-binding domain of Hsp70 with measured affinities of 0.42 nM and 0.44 nM, respectively. Validation of the compHsp70 ELISA revealed a high intra- and inter-assay precision, linearity in a concentration range of 1.56 to 25 ng/mL, high recovery rates of spiked liposomal Hsp70 (>84%), comparable values between human serum and plasma samples and no interference by food intake or age of the donors. Hsp70 concentrations in the circulation of patients with glioblastoma, squamous cell or adeno non-small cell lung carcinoma (NSCLC) at diagnosis were significantly higher than those of healthy donors. Hsp70 concentrations dropped concomitantly with a decrease in viable tumor mass upon irradiation of patients with approximately 20 Gy (range 18-22.5 Gy) and after completion of radiotherapy (60-70 Gy). In summary, the compHsp70 ELISA presented herein provides a sensitive and reliable tool for measuring free and vesicular Hsp70 in liquid biopsies of tumor patients, levels of which can be used as a tumor-specific biomarker, for risk assessment (i.e., differentiation of grade III vs. IV adeno NSCLC) and monitoring of therapeutic outcomes.
Collapse
|
33
|
Manzo G. Specific and Aspecific Molecular Checkpoints as Potential Targets for Dismantling Tumor Hierarchy and Preventing Relapse and Metastasis Through Shielded Cytolytic Treatments. Front Cell Dev Biol 2021; 9:665321. [PMID: 34295890 PMCID: PMC8291084 DOI: 10.3389/fcell.2021.665321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
I have recently theorized that several similarities exist between the tumor process and embryo development. Starting from an initial cancer stem cell (CSC0), similar to an embryonic stem cell (ESC), after implantation in a niche, primary self-renewing CSCs (CSC1s) would arise, which then generate secondary proliferating CSCs (CSC2s). From these epithelial CSCs, tertiary mesenchymal CSCs (CSC3s) would arise, which, under favorable stereotrophic conditions, by asymmetric proliferation, would generate cancer progenitor cells (CPCs) and then cancer differentiated cells (CDCs), thus giving a defined cell heterogeneity and hierarchy. CSC1s-CSC2s-CSC3s-CPCs-CDCs would constitute a defined "tumor growth module," able to generate new tumor modules, forming a spherical avascular mass, similar to a tumor sphere. Further growth in situ of this initial tumor would require implantation in the host and vascularization through the overexpression of some aspecific checkpoint molecules, such as CD44, ID, LIF, HSP70, and HLA-G. To expand and spread in the host tissues, this vascularized tumor would then carry on a real growth strategy based on other specific checkpoint factors, such as those contained in the extracellular vesicles (EVs), namely, microRNAs, messenger RNAs, long non-coding RNAs, and integrins. These EV components would be crucial in tumor progression because they can mediate intercellular communications in the surrounding microenvironment and systemically, dictating to recipient cells a new tumor-enslaved phenotype, thus determining pre-metastatic conditions. Moreover, by their induction properties, the EV contents could also frustrate in time the effects of cytolytic tumor therapies, where EVs released by killed CSCs might enter other cancer and non-cancer cells, thus giving chemoresistance, non-CSC/CSC transition (recurrence), and metastasis. Thus, antitumor cytotoxic treatments, "shielded" from the EV-specific checkpoints by suitable adjuvant agents, simultaneously targeting the aforesaid aspecific checkpoints should be necessary for dismantling the hierarchic tumor structure, avoiding recurrence and preventing metastasis.
Collapse
|
34
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
35
|
Lobinger D, Gempt J, Sievert W, Barz M, Schmitt S, Nguyen HT, Stangl S, Werner C, Wang F, Wu Z, Fan H, Zanth H, Shevtsov M, Pilz M, Riederer I, Schwab M, Schlegel J, Multhoff G. Potential Role of Hsp70 and Activated NK Cells for Prediction of Prognosis in Glioblastoma Patients. Front Mol Biosci 2021; 8:669366. [PMID: 34079819 PMCID: PMC8165168 DOI: 10.3389/fmolb.2021.669366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Despite rapid progress in the treatment of many cancers, glioblastoma remains a devastating disease with dismal prognosis. The aim of this study was to identify chaperone- and immune-related biomarkers to improve prediction of outcome in glioblastoma. Depending on its intra- or extracellular localization the major stress-inducible heat shock protein 70 (Hsp70) fulfills different tasks. In the cytosol Hsp70 interferes with pro-apoptotic signaling pathways and thereby protects tumor cells from programmed cell death. Extracellular Hsp70 together with pro-inflammatory cytokines are reported to stimulate the expression of activatory NK cell receptors, recognizing highly aggressive human tumor cells that present Hsp70 on their cell surface. Therefore, intra-, extracellular and membrane-bound Hsp70 levels were assessed in gliomas together with activatory NK cell receptors. All gliomas were found to be membrane Hsp70-positive and high grade gliomas more frequently show an overexpression of Hsp70 in the nucleus and cytosol. Significantly elevated extracellular Hsp70 levels are detected in glioblastomas with large necrotic areas. Overall survival (OS) is more favorable in patients with low Hsp70 serum levels indicating that a high Hsp70 expression is associated with an unfavorable prognosis. The data provide a first hint that elevated frequencies of activated NK cells at diagnosis might be associated with a better clinical outcome.
Collapse
Affiliation(s)
- Dominik Lobinger
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, School of Medicine, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Sven Schmitt
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Huyen Thie Nguyen
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Caroline Werner
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Fei Wang
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Zhiyuan Wu
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Hengyi Fan
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Hannah Zanth
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Mathias Pilz
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, School of Medicine, Technical University Munich (TUM), Munich, Germany
| | - Melissa Schwab
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
36
|
Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer. Cells 2021; 10:cells10020344. [PMID: 33562088 PMCID: PMC7914642 DOI: 10.3390/cells10020344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Researchers have developed several three-dimensional (3D) culture systems, including spheroids, organoids, and tumoroids with increased properties of cancer stem cells (CSCs), also called cancer-initiating cells (CICs). Drug resistance is a crucial issue involving recurrence in cancer patients. Many studies on anti-cancer drugs have been reported using 2D culture systems, whereas 3D cultured tumoroids have many advantages for assessing drug sensitivity and resistance. Here, we aimed to investigate whether Cisplatin (a DNA crosslinker), Imatinib (a multiple tyrosine kinase inhibitor), and 5-Fluorouracil (5-FU: an antimetabolite) alter the tumoroid growth of metastatic colorectal cancer (mCRC). Gene expression signatures of highly metastatic aggregative CRC (LuM1 cells) vs. low-metastatic, non-aggregative CRC (Colon26 and NM11 cells) were analyzed using microarray. To establish a 3D culture-based multiplexing reporter assay system, LuM1 was stably transfected with the Mmp9 promoter-driven ZsGreen fluorescence reporter gene, which was designated as LuM1/m9 cells and cultured in NanoCulture Plate®, a gel-free 3D culture device. LuM1 cells highly expressed mRNA encoding ABCG2 (a drug resistance pump, i.e., CSC/CIC marker), other CSC/CIC markers (DLL1, EpCAM, podoplanin, STAT3/5), pluripotent stem cell markers (Sox4/7, N-myc, GATA3, Nanog), and metastatic markers (MMPs, Integrins, EGFR), compared to the other two cell types. Hoechst efflux stem cell-like side population was increased in LuM1 (7.8%) compared with Colon26 (2.9%), both of which were markedly reduced by verapamil treatment, an ABCG2 inhibitor. Smaller cell aggregates of LuM1 were more sensitive to Cisplatin (at 10 μM), whereas larger tumoroids with increased ABCG2 expression were insensitive. Notably, Cisplatin (2 μM) and Imatinib (10 μM) at low concentrations significantly promoted tumoroid formation (cell aggregation) and increased Mmp9 promoter activity in mCRC LuM1/m9, while not cytotoxic to them. On the other hand, 5-FU significantly inhibited tumoroid growth, although not completely. Thus, drug resistance in cancer with increased stem cell properties was modeled using the gel-free 3D cultured tumoroid system. The tumoroid culture is useful and easily accessible for the assessment of drug sensitivity and resistance.
Collapse
|
37
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
38
|
Lin CN, Tsai YC, Hsu CC, Liang YL, Wu YY, Kang CY, Lin CH, Hsu PH, Lee GB, Hsu KF. An aptamer interacting with heat shock protein 70 shows therapeutic effects and prognostic ability in serous ovarian cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:757-768. [PMID: 33614227 PMCID: PMC7868721 DOI: 10.1016/j.omtn.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecologic malignancy owing to its high chemoresistance and late diagnosis, which lead to a poor prognosis. Hence, developing new therapeutic modalities is important for OvCa patient treatment. Our previous results indicated that a novel aptamer, Tx-01, can specifically recognize serous carcinoma cells and tissues. Here, we aim to clarify the clinical role and possible molecular mechanisms of Tx-01 in OvCa. Immunostaining and statistical analysis were performed to detect the interaction of Tx-01 and heat shock protein 70/Notch1 intracellular domain (HSP70/NICD) in OvCa. The in vitro and in vivo experiments were carried out to demonstrate the potential mechanisms of Tx-01. Results show that Tx-01 reduced serous OvCa OVCAR3 cell migration and invasion and inhibited HSP70 nuclear translocation by interrupting the intracellular HSP70/NICD interaction. Furthermore, Tx-01 suppressed serous-type OVCAR3 cell tumor growth in vivo. Tx-01 acts as a prognostic factor through its interaction with membrane-bound HSP70 (mHSP70 that locates on the cell surface without direct interaction to NICD) on ascitic circulating tumor cells (CTCs) and is reported to be involved in natural killer (NK) cell recognition and activation. Our data demonstrated that Tx-01 interacted with HSP70 and showed therapeutic and prognostic effects in serous OvCa. Tx-01 might be a potential inhibitor for use in serous OvCa treatment.
Collapse
Affiliation(s)
- Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Cheng Hsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-Yi Kang
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chun-Hong Lin
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Hyun SY, Le HT, Min HY, Pei H, Lim Y, Song I, Nguyen YTK, Hong S, Han BW, Lee HY. Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70. Theranostics 2021; 11:2932-2952. [PMID: 33456581 PMCID: PMC7806467 DOI: 10.7150/thno.49876] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cancer stem cells (CSCs) are known to cause tumor recurrence and drug resistance. The heat shock protein (HSP) system plays a major role in preserving expression and function of numerous oncoproteins, including those involved in the CSC activities. We explored novel anticancer drugs, especially those targeting HSP components required for the functional role of CSCs. Methods: Investigation of the role of the HSP system in CSCs and screening of a natural product chemical library were performed by utilizing cancer cell lines, primary cultures of patient-derived xenografts (PDXs), and their putative CSC subpopulations (i.e., those grown under sphere-forming conditions, stably transfected with reporter vectors carrying NANOG or POUSF1 promoters, or carrying high ALDH activity) in vitro and PDX and KrasG12D/+-driven tumor models in vivo. Regulation of the HSP system was investigated by immunoprecipitation, drug affinity responsive target stability assay, binding experiments using ATP-agarose beads and biotinylated drug, and docking analysis. Results: The HSP system was activated in CSCs via transcriptional upregulation of the HSP system components, especially HSP70. Evodiamine (Evo) was identified to induce apoptosis in both CSC and bulk non-CSC populations in human lung, colon, and breast cancer cells and their sublines with chemoresistance. Evo administration decreased the multiplicity, volume, and load of lung tumors in KrasG12D/+ transgenic mice and the growth of cancer cell line- and PDX-derived tumors without detectable toxicity. Mechanistically, Evo disrupted the HSP system by binding the N-terminal ATP-binding pocket of HSP70 and causing its ubiquitin-mediated degradation. Conclusions: Our findings illustrate HSP70 as a potential target for eliminating CSCs and Evo as an effective HSP70-targeting anticancer drug eradicating both CSCs and non-CSCs with a minimal toxicity.
Collapse
|
40
|
Zhang Z, Jing J, Ye Y, Chen Z, Jing Y, Li S, Hong W, Ruan H, Liu Y, Hu Q, Wang J, Li W, Lin C, Diao L, Zhou Y, Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med 2020; 12:101. [PMID: 33225964 PMCID: PMC7682077 DOI: 10.1186/s13073-020-00795-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. METHODS We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. RESULTS We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions. We experimentally characterized the dual function of two genes, DNAJC9 and HSPA14, in lung cancer cells. We further demonstrated the generalization of this dual direction of associations between HSPs and cancer hallmarks, suggesting the necessity to more carefully evaluate HSPs as therapeutic targets and develop highly specific HSP inhibitors for cancer intervention. CONCLUSIONS Our study furnishes a holistic view of functional associations of HSPs with cancer hallmarks to aid the development of HSP inhibitors as well as other drugs in cancer therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiao Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wei Hong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaoming Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Vostakolaei MA, Hatami-Baroogh L, Babaei G, Molavi O, Kordi S, Abdolalizadeh J. Hsp70 in cancer: A double agent in the battle between survival and death. J Cell Physiol 2020; 236:3420-3444. [PMID: 33169384 DOI: 10.1002/jcp.30132] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70-1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane-associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Collapse
Affiliation(s)
- Mehdi A Vostakolaei
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hatami-Baroogh
- Department of Reproduction and Development, Royan Institute for Animal Biotechnology, ACER, Isfahan, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirafkan Kordi
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Multhoff G, Seier S, Stangl S, Sievert W, Shevtsov M, Werner C, Pockley AG, Blankenstein C, Hildebrandt M, Offner R, Ahrens N, Kokowski K, Hautmann M, Rödel C, Fietkau R, Lubgan D, Huber R, Hautmann H, Duell T, Molls M, Specht H, Haller B, Devecka M, Sauter A, Combs SE. Targeted Natural Killer Cell-Based Adoptive Immunotherapy for the Treatment of Patients with NSCLC after Radiochemotherapy: A Randomized Phase II Clinical Trial. Clin Cancer Res 2020; 26:5368-5379. [PMID: 32873573 DOI: 10.1158/1078-0432.ccr-20-1141] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a fatal disease with poor prognosis. A membrane-bound form of Hsp70 (mHsp70) which is selectively expressed on high-risk tumors serves as a target for mHsp70-targeting natural killer (NK) cells. Patients with advanced mHsp70-positive NSCLC may therefore benefit from a therapeutic intervention involving mHsp70-targeting NK cells. The randomized phase II clinical trial (EudraCT2008-002130-30) explores tolerability and efficacy of ex vivo-activated NK cells in patients with NSCLC after radiochemotherapy (RCT). PATIENTS AND METHODS Patients with unresectable, mHsp70-positive NSCLC (stage IIIa/b) received 4 cycles of autologous NK cells activated ex vivo with TKD/IL2 [interventional arm (INT)] after RCT (60-70 Gy, platinum-based chemotherapy) or RCT alone [control arm (CTRL)]. The primary objective was progression-free survival (PFS), and secondary objectives were the assessment of quality of life (QoL, QLQ-LC13), toxicity, and immunobiological responses. RESULTS The NK-cell therapy after RCT was well tolerated, and no differences in QoL parameters between the two study arms were detected. Estimated 1-year probabilities for PFS were 67% [95% confidence interval (CI), 19%-90%] for the INT arm and 33% (95% CI, 5%-68%) for the CTRL arm (P = 0.36, 1-sided log-rank test). Clinical responses in the INT group were associated with an increase in the prevalence of activated NK cells in their peripheral blood. CONCLUSIONS Ex vivo TKD/IL2-activated, autologous NK cells are well tolerated and deliver positive clinical responses in patients with advanced NSCLC after RCT.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany. .,Radiation Immuno-Oncology, Center for Translational Cancer Research TUM (TranslaTUM), Munich, Germany
| | - Sophie Seier
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany
| | - Stefan Stangl
- Radiation Immuno-Oncology, Center for Translational Cancer Research TUM (TranslaTUM), Munich, Germany
| | - Wolfgang Sievert
- Radiation Immuno-Oncology, Center for Translational Cancer Research TUM (TranslaTUM), Munich, Germany
| | - Maxim Shevtsov
- Radiation Immuno-Oncology, Center for Translational Cancer Research TUM (TranslaTUM), Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Caroline Werner
- Radiation Immuno-Oncology, Center for Translational Cancer Research TUM (TranslaTUM), Munich, Germany
| | - A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and multimmune GmbH, Munich, Germany
| | | | | | - Robert Offner
- Department of Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Norbert Ahrens
- Department of Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Konrad Kokowski
- Pneumology and Pneumologic Oncology, Klinikum Bogenhausen, Munich, Germany
| | - Matthias Hautmann
- Department of Radiation Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dorota Lubgan
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rudolf Huber
- Division of Respiratory Medicine and Thoracic Oncology Centre Munich and Thoracic Oncology Centre Munich, University München, LMU, Munich, Germany
| | - Hubert Hautmann
- Pneumology Group Med I, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Thomas Duell
- Asklepios Lung Hospital München-Gauting, Thoracal Pneumology, LMU, Munich, Germany
| | - Michael Molls
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany
| | - Hanno Specht
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, TUM, Munich, Germany
| | - Michal Devecka
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany
| | | | - Stephanie E Combs
- Department Radiation Oncology, Klinikum rechts der Isar, TU München, (TUM), Munich, Germany.,Institute of Radiation Medicine (IRM), Helmholtz Zentrum München (HMGU), Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| |
Collapse
|
43
|
Jones RJ, Singh RK, Shirazi F, Wan J, Wang H, Wang X, Ha MJ, Baljevic M, Kuiatse I, Davis RE, Orlowski RZ. Intravenous Immunoglobulin G Suppresses Heat Shock Protein (HSP)-70 Expression and Enhances the Activity of HSP90 and Proteasome Inhibitors. Front Immunol 2020; 11:1816. [PMID: 32903557 PMCID: PMC7438474 DOI: 10.3389/fimmu.2020.01816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Intravenous immunoglobulin G (IVIgG) is approved for primary immunodeficiency syndromes but may induce anti-cancer effects, and while this has been attributed to its anti-inflammatory properties, IgG against specific tumor targets may play a role. We evaluated IVIgG alone, and with a Heat shock protein (HSP)-90 or proteasome inhibitor, using multiple myeloma and mantle cell lymphoma (MCL) cells in vitro, and with the proteasome inhibitor bortezomib in vivo. IVIgG inhibited the growth of all cell lines tested, induced G1 cell cycle arrest, and suppressed pro-tumor cytokines including Interleukin (IL)-6, IL-8, and IL-10. Genomic and proteomic studies showed that IVIgG reduced tumor cell HSP70-1 levels by suppressing the ability of extracellular HSP70-1 to stimulate endogenous HSP70-1 promoter activity, and reduced extracellular vesicle uptake. Preparations of IVIgG were found to contain high titers of anti-HSP70-1 IgG, and recombinant HSP70-1 reduced the efficacy of IVIgG to suppress HSP70-1 levels. Combining IVIgG with the HSP90 inhibitor AUY922 produced superior cell growth inhibition and correlated with HSP70-1 suppression. Also, IVIgG with bortezomib or carfilzomib was superior to each single agent, and enhanced bortezomib's activity in bortezomib-resistant myeloma cells. Moreover, IVIgG reduced transfer of extracellular vesicles (EVs) to cells, and blocked transfer of bortezomib resistance through EVs. Finally, IVIgG with bortezomib were superior to the single agents in an in vivo myeloma model. These studies support the possibility that anti-HSP70-1 IgG contained in IVIgG can inhibit myeloma and MCL growth by interfering with a novel mechanism involving uptake of exogenous HSP70-1 which then induces its own promoter.
Collapse
Affiliation(s)
- Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ram K Singh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fazal Shirazi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jie Wan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaobin Wang
- The Urology Department, ShengJing Hospital, China Medical University, ShenYang, China
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Muhamed Baljevic
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Uribe J, Liu HY, Mohamed Z, Chiou AE, Fischbach C, Daniel S. Supported Membrane Platform to Assess Surface Interactions between Extracellular Vesicles and Stromal Cells. ACS Biomater Sci Eng 2020; 6:3945-3956. [PMID: 33463350 DOI: 10.1021/acsbiomaterials.0c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles secreted by eukaryotic cells that stimulate cell communication and horizontal cargo exchange. EV interactions with stromal cells can result in molecular changes in the recipient cell and, in some cases, lead to disease progression. However, mechanisms leading to these changes are poorly understood. A few model systems are available for studying the outcomes of surface interactions between EV membranes with stromal cells. Here, we created a hybrid supported bilayer incorporating EVs membrane material, called an extracellular vesicle supported bilayer, EVSB. Using EVSBs, we investigated the surface interactions between breast cancer EVs and adipose-derived stem cells (ADSCs) by culturing ADSCs on EVSBs and analyzing cell adhesion, spreading, viability, vascular endothelial growth factor (VEGF) secretion, and myofibroblast differentiation. Results show that cell viability, adhesion, spreading, and proangiogenic activity were enhanced, conditions that promote oncogenic activity, but cell differentiation was not. This model system could be used to develop therapeutic strategies to limit EV-ADSC interactions and proangiogenic conditions. Finally, this model system is not limited to the study of cancer but can be used to study surface interactions between EVs from any origin and any target cell to investigate EV mechanisms leading to cellular changes in other diseases.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
45
|
Kimm MA, Shevtsov M, Werner C, Sievert W, Zhiyuan W, Schoppe O, Menze BH, Rummeny EJ, Proksa R, Bystrova O, Martynova M, Multhoff G, Stangl S. Gold Nanoparticle Mediated Multi-Modal CT Imaging of Hsp70 Membrane-Positive Tumors. Cancers (Basel) 2020; 12:cancers12051331. [PMID: 32456049 PMCID: PMC7281090 DOI: 10.3390/cancers12051331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
Imaging techniques such as computed tomographies (CT) play a major role in clinical imaging and diagnosis of malignant lesions. In recent years, metal nanoparticle platforms enabled effective payload delivery for several imaging techniques. Due to the possibility of surface modification, metal nanoparticles are predestined to facilitate molecular tumor targeting. In this work, we demonstrate the feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody functionalized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging. Membrane-associated Hsp70 is exclusively presented on the plasma membrane of malignant cells of multiple tumor entities but not on corresponding normal cells, predestining this target for a tumor-selective in vivo imaging. In vitro microscopic analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell lines after internalization via the endo-lysosomal pathway. In preclinical models, the biodistribution as well as the intratumoral enrichment of AuNPs were examined 24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis, histological analysis confirmed the presence of AuNPs within tumor cells. In contrast to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected selectively inside tumor cells in different tumor mouse models. Furthermore, a machine-learning approach was developed to analyze AuNP accumulations in tumor tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic imaging techniques and spectral-CT-based tumor delineation in vivo.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.A.K.); (E.J.R.)
| | - Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
- Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia; (O.B.); (M.M.)
| | - Caroline Werner
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
| | - Wolfgang Sievert
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
| | - Wu Zhiyuan
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
| | - Oliver Schoppe
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
- Institute for Advanced Studies, Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Bjoern H. Menze
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
- Institute for Advanced Studies, Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.A.K.); (E.J.R.)
| | - Roland Proksa
- Philips GmbH Innovative Technologies, Research Laboratories, 22335 Hamburg, Germany;
| | - Olga Bystrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia; (O.B.); (M.M.)
| | - Marina Martynova
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia; (O.B.); (M.M.)
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
| | - Stefan Stangl
- Central Institute for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (M.S.); (C.W.); (W.S.); (W.Z.); (O.S.); (B.H.M.); (G.M.)
- Correspondence: ; Tel.: +49-89-4140-6013; Fax: +49-89-4140-4299
| |
Collapse
|
46
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
47
|
Wu Y, Li J, Jabbarzadeh Kaboli P, Shen J, Wu X, Zhao Y, Ji H, Du F, Zhou Y, Wang Y, Zhang H, Yin J, Wen Q, Cho CH, Li M, Xiao Z. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020; 155:104691. [DOI: 10.1016/j.phrs.2020.104691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|
48
|
Rigo MM, Borges TJ, Lang BJ, Murshid A, Nitika, Wolfgeher D, Calderwood SK, Truman AW, Bonorino C. Host expression system modulates recombinant Hsp70 activity through post-translational modifications. FEBS J 2020; 287:10.1111/febs.15279. [PMID: 32144867 PMCID: PMC7483562 DOI: 10.1111/febs.15279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
The use of model organisms for recombinant protein production results in the addition of model-specific post-translational modifications (PTMs) that can affect the structure, charge, and function of the protein. The 70-kDa heat shock proteins (Hsp70) were originally described as intracellular chaperones, with ATPase and foldase activity. More recently, new extracellular activities of Hsp70 proteins (e.g. as immunomodulators) have been identified. While some studies indicate an inflammatory potential for extracellular Hsp70 proteins, others suggest an immunosuppressive activity. We hypothesized that the production of recombinant Hsp70 in different expression systems would result in the addition of different PTMs, perhaps explaining at least some of these opposing immunological outcomes. We produced and purified Mycobacterium tuberculosis DnaK from two different systems, Escherichia coli and Pichia pastoris, and analyzed by mass spectrometry the protein preparations, investigating the impact of PTMs in an in silico and in vitro perspective. The comparisons of DnaK structures in silico highlighted that electrostatic and topographical differences exist that are dependent upon the expression system. Production of DnaK in the eukaryotic system dramatically affected its ATPase activity, and significantly altered its ability to downregulate MHC II and CD86 expression on murine dendritic cells (DCs). Phosphatase treatment of DnaK indicated that some of these differences related specifically to phosphorylation. Altogether, our data indicate that PTMs are an important characteristic of the expression system, with differences that impact interactions of Hsps with their ligands and subsequent functional activities.
Collapse
Affiliation(s)
- Mauricio M Rigo
- School of Medicine, Pontificia Universidade Catolica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre Rio Grande do Sul, Zip Code: 90619-900, Brazil
| | - Thiago J Borges
- Schuster Family Transplantation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre Rio Grande do Sul, Zip Code: 90050-170, Brazil
- Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, 92037
| |
Collapse
|
49
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
50
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|