1
|
Abstract
Atlastin (ATL) GTPases undergo trans dimerization and a power strokelike crossover conformational rearrangement to drive endoplasmic reticulum membrane fusion. Fusion depends on GTP, but the role of nucleotide hydrolysis has remained controversial. For instance, nonhydrolyzable GTP analogs block fusion altogether, suggesting a requirement for GTP hydrolysis in ATL dimerization and crossover, but this leaves unanswered the question of how the ATL dimer is disassembled after fusion. We recently used the truncated cytoplasmic domain of wild-type Drosophila ATL (DATL) and a novel hydrolysis-deficient D127N variant in single turnover assays to reveal that dimerization and crossover consistently precede GTP hydrolysis, with hydrolysis coinciding more closely with dimer disassembly. Moreover, while nonhydrolyzable analogs can bind the DATL G domain, they fail to fully recapitulate the GTP-bound state. This predicted that nucleotide hydrolysis would be dispensable for fusion. Here we report that the D127N variant of full-length DATL drives both outer and inner leaflet membrane fusion with little to no detectable hydrolysis of GTP. However, the trans dimer fails to disassemble and subsequent rounds of fusion fail to occur. Our findings confirm that ATL mediated fusion is driven in the GTP-bound state, with nucleotide hydrolysis serving to reset the fusion machinery for recycling.
Collapse
Affiliation(s)
- Daniel Crosby
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H. Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,*Address correspondence to: Tina H. Lee ()
| |
Collapse
|
2
|
Yang Y, Margam NN. Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Cells 2021; 10:cells10010160. [PMID: 33467484 PMCID: PMC7830690 DOI: 10.3390/cells10010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease.
Collapse
|
3
|
The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Appl Environ Microbiol 2020; 86:AEM.02720-19. [PMID: 32220839 DOI: 10.1128/aem.02720-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized Sey1/atlastin homologue FgSey1 in F. graminearum Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis, and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. The GTPase, helix bundle (HB), transmembrane segment (TM), and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TM domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87A lacked GTPase activity and failed to rescue the defects of the ΔFgsey1 mutant. Collectively, our data suggest that the dynamin-like GTPase protein FgSey1 affects the generation of LDs and toxisomes and is required for DON biosynthesis and pathogenesis in F. graminearum IMPORTANCE Fusarium graminearum is a major plant pathogen that causes Fusarium head blight (FHB) of wheats worldwide. In addition to reducing the plant yield, F. graminearum infection of wheats also results in the production of deoxynivalenol (DON) mycotoxins, which are harmful to humans and animals and therefore cause great economic losses through pollution of food products and animal feed. At present, effective strategies for controlling FHB are not available. Therefore, understanding the regulation mechanisms of fungal development, pathogenesis, and DON biosynthesis is important for the development of effective control strategies of this disease. In this study, we demonstrated that a dynamin-like GTPase protein Sey1/atlastin homologue, FgSey1, is required for vegetative growth, DON production, and pathogenicity in F. graminearum Our results provide novel information on critical roles of FgSey1 in fungal pathogenicity; therefore, FgSey1 could be a potential target for effective control of the disease caused by F. graminearum.
Collapse
|
4
|
Winsor J, Machi U, Han Q, Hackney DD, Lee TH. GTP hydrolysis promotes disassembly of the atlastin crossover dimer during ER fusion. J Cell Biol 2018; 217:4184-4198. [PMID: 30249723 PMCID: PMC6279388 DOI: 10.1083/jcb.201805039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/15/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The GTPase atlastin mediates homotypic ER fusion through trans-crossover dimerization, but how dimerization is coupled to the GTPase cycle has remained unclear. Winsor et al. show that GTP binding causes crossover dimerization for fusion, whereas GTP hydrolysis promotes disassembly of the crossover dimer for subunit recycling. Membrane fusion of the ER is catalyzed when atlastin GTPases anchored in opposing membranes dimerize and undergo a crossed over conformational rearrangement that draws the bilayers together. Previous studies have suggested that GTP hydrolysis triggers crossover dimerization, thus directly driving fusion. In this study, we make the surprising observations that WT atlastin undergoes crossover dimerization before hydrolyzing GTP and that nucleotide hydrolysis and Pi release coincide more closely with dimer disassembly. These findings suggest that GTP binding, rather than its hydrolysis, triggers crossover dimerization for fusion. In support, a new hydrolysis-deficient atlastin variant undergoes rapid GTP-dependent crossover dimerization and catalyzes fusion at an initial rate similar to WT atlastin. However, the variant cannot sustain fusion activity over time, implying a defect in subunit recycling. We suggest that GTP binding induces an atlastin conformational change that favors crossover dimerization for fusion and that the input of energy from nucleotide hydrolysis promotes complex disassembly for subunit recycling.
Collapse
Affiliation(s)
- James Winsor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ursula Machi
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Qixiu Han
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
5
|
|
6
|
Shih YT, Hsueh YP. The involvement of endoplasmic reticulum formation and protein synthesis efficiency in VCP- and ATL1-related neurological disorders. J Biomed Sci 2018; 25:2. [PMID: 29310658 PMCID: PMC5757295 DOI: 10.1186/s12929-017-0403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is the biggest organelle in cells and is involved in versatile cellular processes. Formation and maintenance of ER morphology are regulated by a series of proteins controlling membrane fusion and curvature. At least six different ER morphology regulators have been demonstrated to be involved in neurological disorders-including Valosin-containing protein (VCP), Atlastin-1 (ATL1), Spastin (SPAST), Reticulon 2 (RTN2), Receptor expression enhancing protein 1 (REEP1) and RAB10-suggesting a critical role of ER formation in neuronal activity and function. Among these genes, mutations in VCP gene involve in inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD), familial amyotrophic lateral sclerosis (ALS), autism spectrum disorders (ASD), and hereditary spastic paraplegia (HSP). ATL1 is also one of causative genes of HSP. RAB10 is associated with Parkinson's disease (PD). A recent study showed that VCP and ATL1 work together to regulate dendritic spine formation by controlling ER formation and consequent protein synthesis efficiency. RAB10 shares the same function with VCP and ATL1 to control ER formation and protein synthesis efficiency but acts independently. Increased protein synthesis by adding extra leucine to cultured neurons ameliorated dendritic spine deficits caused by VCP and ATL1 deficiencies, strengthening the significance of protein synthesis in VCP- and ATL1-regulated dendritic spine formation. These findings provide new insight into the roles of ER and protein synthesis in controlling dendritic spine formation and suggest a potential etiology of neurodegenerative disorders caused by mutations in VCP, ATL1 and other genes encoding proteins regulating ER formation and morphogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan.
| |
Collapse
|
7
|
Winsor J, Hackney DD, Lee TH. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion. J Cell Biol 2017; 216:1321-1335. [PMID: 28356327 PMCID: PMC5412568 DOI: 10.1083/jcb.201609071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
The GTPase atlastin mediates homotypic membrane ER fusion through trans-dimerization between GTPase heads. Winsor et al. use a mutagenesis approach to show that, upon contact between atlastin heads, the proteins concurrently display GTP hydrolysis-catalyzed head-to-head dimerization and a crossover conformational shift, and these changes energize fusion. The homotypic fusion of endoplasmic reticulum membranes is catalyzed by the atlastin GTPase. The mechanism involves trans-dimerization between GTPase heads and a favorable crossover conformational shift, catalyzed by GTP hydrolysis, that converts the dimer from a “prefusion” to “postfusion” state. However, whether crossover formation actually energizes fusion remains unclear, as do the sequence of events surrounding it. Here, we made mutations in atlastin to selectively destabilize the crossover conformation and used fluorescence-based kinetic assays to analyze the variants. All variants underwent dimerization and crossover concurrently, and at wild-type rates. However, certain variants were unstable once in the crossover dimer conformation, and crossover dimer stability closely paralleled lipid-mixing activity. Tethering, however, appeared to be unimpaired in all mutant variants. The results suggest that tethering and lipid mixing are catalyzed concurrently by GTP hydrolysis but that the energy requirement for lipid mixing exceeds that for tethering, and the full energy released through crossover formation is necessary for fusion.
Collapse
Affiliation(s)
- James Winsor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
8
|
McLelland GL, Lee SA, McBride HM, Fon EA. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol 2016; 214:275-91. [PMID: 27458136 PMCID: PMC4970327 DOI: 10.1083/jcb.201603105] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Vesicular transport from mitochondria to lysosomes is an emerging mitochondrial quality control mechanism. Here, McLelland et al. identify how mitochondrial vesicles are targeted for degradation, showing that syntaxin-17 is recruited to these structures to govern their SNARE-dependent fusion with endolysosomes. Mitochondria are considered autonomous organelles, physically separated from endocytic and biosynthetic pathways. However, recent work uncovered a PINK1/parkin-dependent vesicle transport pathway wherein oxidized or damaged mitochondrial content are selectively delivered to the late endosome/lysosome for degradation, providing evidence that mitochondria are indeed integrated within the endomembrane system. Given that mitochondria have not been shown to use canonical soluble NSF attachment protein receptor (SNARE) machinery for fusion, the mechanism by which mitochondrial-derived vesicles (MDVs) are targeted to the endosomal compartment has remained unclear. In this study, we identify syntaxin-17 as a core mitochondrial SNARE required for the delivery of stress-induced PINK1/parkin-dependent MDVs to the late endosome/lysosome. Syntaxin-17 remains associated with mature MDVs and forms a ternary SNARE complex with SNAP29 and VAMP7 to mediate MDV–endolysosome fusion in a manner dependent on the homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Syntaxin-17 can be traced to the last eukaryotic common ancestor, hinting that the removal of damaged mitochondrial content may represent one of the earliest vesicle transport routes in the cell.
Collapse
Affiliation(s)
- Gian-Luca McLelland
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sydney A Lee
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Heidi M McBride
- Rare Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
9
|
Fusion of the endoplasmic reticulum by membrane-bound GTPases. Semin Cell Dev Biol 2016; 60:105-111. [PMID: 27269373 DOI: 10.1016/j.semcdb.2016.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) membrane forms an elaborate network of tubules and sheets that is continuously remodeled. This dynamic behavior requires membrane fusion that is mediated by dynamin-like GTPases: the atlastins in metazoans and Sey1p and related proteins in yeast and plants. Crystal structures of the cytosolic domains of these membrane proteins and biochemical experiments can now be integrated into a model that explains many aspects of the molecular mechanism by which these membrane-bound GTPases mediate membrane fusion.
Collapse
|
10
|
Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci U S A 2015; 112:E1851-60. [PMID: 25825753 DOI: 10.1073/pnas.1504368112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions.
Collapse
|
11
|
Ulengin I, Park JJ, Lee TH. ER network formation and membrane fusion by atlastin1/SPG3A disease variants. Mol Biol Cell 2015; 26:1616-28. [PMID: 25761634 PMCID: PMC4436774 DOI: 10.1091/mbc.e14-10-1447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Atlastin catalyzes GTP-dependent membrane fusion to form the ER network. Mutations in atlastin1 cause the disease hereditary spastic paraplegia (HSP), implying that defects in ER membrane fusion cause HSP. Surprisingly, several disease variants are functional in assays for ER network formation and membrane fusion, warranting rethinking of HSP causation by atlastin1 mutations. At least 38 distinct missense mutations in the neuronal atlastin1/SPG3A GTPase are implicated in an autosomal dominant form of hereditary spastic paraplegia (HSP), a motor-neurological disorder manifested by lower limb weakness and spasticity and length-dependent axonopathy of corticospinal motor neurons. Because the atlastin GTPase is sufficient to catalyze membrane fusion and required to form the ER network, at least in nonneuronal cells, it is logically assumed that defects in ER membrane morphogenesis due to impaired fusion activity are the primary drivers of SPG3A-associated HSP. Here we analyzed a subset of established atlastin1/SPG3A disease variants using cell-based assays for atlastin-mediated ER network formation and biochemical assays for atlastin-catalyzed GTP hydrolysis, dimer formation, and membrane fusion. As anticipated, some variants exhibited clear deficits. Surprisingly however, at least two disease variants, one of which represents that most frequently identified in SPG3A HSP patients, displayed wild-type levels of activity in all assays. The same variants were also capable of co-redistributing ER-localized REEP1, a recently identified function of atlastins that requires its catalytic activity. Taken together, these findings indicate that a deficit in the membrane fusion activity of atlastin1 may be a key contributor, but is not required, for HSP causation.
Collapse
Affiliation(s)
- Idil Ulengin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - John J Park
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
12
|
Abstract
Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.
Collapse
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005;
| | | | | | | | | |
Collapse
|
13
|
Chen S, Novick P, Ferro-Novick S. ER structure and function. Curr Opin Cell Biol 2013; 25:428-33. [PMID: 23478217 DOI: 10.1016/j.ceb.2013.02.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/13/2013] [Indexed: 12/31/2022]
Abstract
The ER forms a contiguous structure of interconnected sheets and tubules that spreads from the nuclear envelope to the cell cortex. Through its attachment to the cytoskeleton, the ER undergoes dynamic rearrangements, such as tubule extension and movement. ER shaping proteins (reticulons and DP1/Yop1p) play key roles in generating and maintaining the unique reticular morphology of the ER. Atlastin and its yeast homologue, Sey1p, mediate homotypic ER membrane fusion, which leads to the formation of new three-way junctions within the polygonal network. At these junctions, the Lunapark protein, Lnp1p, works in conjunction with the reticulons, DP1/Yop1p, and in antagonism to atlastin/Sey1p to maintain the network in a dynamic equilibrium. Defects in ER morphology have been linked to certain neurological disorders.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Cellular and Molecular Medicine, Howard Hughes, Medical Institute, University of California at San Diego, La Jolla, CA 92093-0668, USA
| | | | | |
Collapse
|
14
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Morin-Leisk J, Saini SG, Meng X, Makhov AM, Zhang P, Lee TH. An intramolecular salt bridge drives the soluble domain of GTP-bound atlastin into the postfusion conformation. ACTA ACUST UNITED AC 2011; 195:605-15. [PMID: 22065636 PMCID: PMC3257528 DOI: 10.1083/jcb.201105006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum (ER) network branching requires homotypic tethering and fusion of tubules mediated by the atlastin (ATL) guanosine triphosphatase (GTPase). Recent structural studies on the ATL soluble domain reveal two dimeric conformers proposed to correspond to a tethered prefusion state and a postfusion state. How the prefusion conformer transitions to the postfusion conformer is unknown. In this paper, we identify an intramolecular salt bridge mediated by two residues outside the GTPase domain near the point of rotation that converts the prefusion dimer to the postfusion state. Charge reversal of either residue blocked ER network branching, whereas a compensatory charge reversal to reestablish electrostatic attraction restored function. In vitro assays using the soluble domain revealed that the salt bridge was dispensable for GTP binding and hydrolysis but was required for forming the postfusion dimer. Unexpectedly, the postfusion conformation of the soluble domain was achieved when bound to the nonhydrolyzable GTP analogue guanosine 5'-[β,γ-imido]triphosphate, suggesting that nucleotide hydrolysis might not be required for the prefusion to postfusion conformational change.
Collapse
Affiliation(s)
- Jeanne Morin-Leisk
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
16
|
Moss TJ, Daga A, McNew JA. Fusing a lasting relationship between ER tubules. Trends Cell Biol 2011; 21:416-23. [PMID: 21550242 DOI: 10.1016/j.tcb.2011.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
Atlastin is an integral membrane GTPase localized to the endoplasmic reticulum (ER). In vitro and in vivo analyses indicate that atlastin is a membrane fusogen capable of driving membrane fusion, suggesting a role in ER structure and maintenance. Interestingly, mutations in the human atlastin-1 gene, SPG3A, cause a form of autosomal dominant hereditary spastic paraplegia (HSP). The etiology of HSP is unclear, but two predominant forms of the disorder are caused by mutant proteins that affect ER structure, formation and maintenance in motor neurons. In this review, we describe the current knowledge about the molecular mechanism of atlastin function and its potential role in HSP. Greater understanding of the function of atlastin and associated proteins should provide important insight into normal ER biogenesis and maintenance, as well as the pathology of disease.
Collapse
Affiliation(s)
- Tyler J Moss
- Department of Biochemistry and Cell Biology, Rice University, MS601, Houston, TX 77005, USA
| | | | | |
Collapse
|