1
|
BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology. PLoS One 2017; 12:e0172292. [PMID: 28467407 PMCID: PMC5415003 DOI: 10.1371/journal.pone.0172292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023] Open
Abstract
The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.
Collapse
|
2
|
Minassian NA, Gibbs A, Shih AY, Liu Y, Neff RA, Sutton SW, Mirzadegan T, Connor J, Fellows R, Husovsky M, Nelson S, Hunter MJ, Flinspach M, Wickenden AD. Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (μ-TRTX-Hh2a). J Biol Chem 2013; 288:22707-20. [PMID: 23760503 DOI: 10.1074/jbc.m113.461392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.
Collapse
Affiliation(s)
- Natali A Minassian
- Department of Neuroscience Discovery, Janssen Research & Development, LLC, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? ENVIRONMENT INTERNATIONAL 2006; 32:967-76. [PMID: 16859745 DOI: 10.1016/j.envint.2006.06.014] [Citation(s) in RCA: 682] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotechnology is a major innovative scientific and economic growth area, which may present a variety of hazards for environmental and human health. The surface properties and very small size of nanoparticles and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. There is a wealth of evidence for the harmful effects of nanoscale combustion-derived particulates (ultrafines), which when inhaled can cause a number of pulmonary pathologies in mammals and humans. However, release of manufactured nanoparticles into the aquatic environment is largely an unknown. This review addresses the possible hazards associated with nanomaterials and harmful effects that may result from exposure of aquatic animals to nanoparticles. Possible nanoparticle association with naturally occurring colloids and particles is considered together with how this could affect their bioavailability and uptake into cells and organisms. Uptake by endocytotic routes are identified as probable major mechanisms of entry into cells; potentially leading to various types of toxic cell injury. The higher level consequences for damage to animal health, ecological risk and possible food chain risks for humans are also considered based on known behaviours and toxicities for inhaled and ingested nanoparticles in the terrestrial environment. It is concluded that a precautionary approach is required with individual evaluation of new nanomaterials for risk to the health of the environment. Although current toxicity testing protocols should be generally applicable to identify harmful effects associated with nanoparticles, research into new methods is required to address the special properties of nanomaterials.
Collapse
Affiliation(s)
- M N Moore
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
4
|
Roden DM. Intracellular sodium overload: a system biology problem with implications for drug target identification. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S149-S150. [PMID: 16686670 DOI: 10.1111/j.1540-8167.2006.00403.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Moore MN, Icarus Allen J, McVeigh A. Environmental prognostics: an integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. MARINE ENVIRONMENTAL RESEARCH 2006; 61:278-304. [PMID: 16343609 DOI: 10.1016/j.marenvres.2005.10.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 05/05/2023]
Abstract
The potential prognostic use of lysosomal reactions to environmental pollutants is explored in relation to predicting animal health in marine mussels, based on diagnostic biomarker data. Cellular lysosomes are already known to accumulate many metals and organic xenobiotics and the lysosomal accumulation of the carcinogenic polycyclic aromatic hydrocarbon 3-methylcholanthrene (3-MC) is demonstrated here in the hepatopancreatic digestive cells and ovarian oocytes of the blue mussel. Lysosomal membrane integrity or stability appears to be a generic indicator of cellular well-being in eukaryotes; and in bivalve molluscs it is correlated with total oxygen and nitrogen radical scavenging capacity (TOSC), protein synthesis, scope for growth and larval viability; and inversely correlated with DNA damage (micronuclei), as well as lysosomal swelling (volume density), lipidosis and lipofuscinosis, which are all characteristic of failed or incomplete autophagy. Integration of multiple biomarker data is achieved using multivariate statistics and then mapped onto "health status space" by using lysosomal membrane stability as a measure of cellular well-being. This is viewed as a crucial step towards the derivation of explanatory frameworks for prediction of pollutant impact on animal health; and has facilitated the development of a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells, tissues and the whole animal. This model has also complemented the creation and use of a cell-based bioenergetic computational model of molluscan hepatopancreatic cells that simulates lysosomal and cellular reactions to pollutants. More speculatively, the use of coupled empirical measurements of biomarker reactions and modelling is proposed as a practical approach to the development of an operational toolbox for predicting the health of the environment.
Collapse
Affiliation(s)
- Michael N Moore
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom.
| | | | | |
Collapse
|
6
|
Clancy CE, Kass RS. Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 2004; 86:2606-14. [PMID: 15041696 PMCID: PMC1304107 DOI: 10.1016/s0006-3495(04)74315-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a paroxysmal neurological disorder resulting from abnormal cellular excitability and is a common cause of disability. Recently, some forms of idiopathic epilepsy have been causally related to genetic mutations in neuronal ion channels. To understand disease mechanisms, it is crucial to understand how a gene defect can disrupt channel gating, which in turn can affect complex cellular dynamic processes. We develop a theoretical Markovian model of the neuronal Na+ channel NaV1.1 to explore and explain gating mechanisms underlying cellular excitability and physiological and pathophysiological mechanisms of abnormal neuronal excitability in the context of epilepsy. Genetic epilepsy has been shown to result from both mutations that give rise to a gain of channel function and from those that reduce the Na+ current. These data may suggest that abnormal excitation can result from both hyperexcitability and hypoexcitability, the mechanisms of which are presumably distinct, and as yet elusive. Revelation of the molecular origins will allow for translation into targeted pharmacological interventions that must be developed to treat syndromes resulting from divergent mechanisms. This work represents a first step in developing a comprehensive theoretical model to investigate the molecular mechanisms underlying runaway excitation that cause epilepsy.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
7
|
Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M. Computational physiology and the Physiome Project. Exp Physiol 2004; 89:1-26. [PMID: 15109205 DOI: 10.1113/expphysiol.2003.026740] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
Collapse
Affiliation(s)
- Edmund J Crampin
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Computational modelling of whole biological systems from cells to organs is gaining momentum in cell biology and disease studies. This pathway is essential for the derivation of explanatory frameworks that will facilitate the development of a predictive capacity for estimating outcomes or risk associated with particular disease processes and therapeutic or stressful treatments. This article introduces a series of invited papers covering a hierarchy of issues and modelling problems, ranging from crucial conceptual considerations of the validity of cellular modelling through to multi-scale modelling up to organ level. The challenges and approaches in cellular modelling are described, including the potential of 'in silico ' modelling applications for receptor-ligand interactions in cell signalling, simulated organ dysfunction (i.e., heart), human and environmental toxicity and the progress of the IUPS Physiome Project. A major challenge now facing biologists is how to translate the wealth of reductionist detail about cells and tissues into a real understanding of how these systems function and are perturbed in disease processes. In biomedicine, simulation models of biological systems now contain sufficient detail, not only to reconstruct normal functions, but also, to reconstruct major disease states. More widely, simulation modelling will aid the targeting of current 'knowledge gaps' and how to fill them; and also provide a research tool for selecting critical factors from multiple simulated experiments for real experimental design. The envisaged longer-term end- product is the creation of simulation models for predicting drug interactions and harmful side-effects; and their use in therapeutic and environmental health risk management. Finally, we take a speculative look at possible future scenarios in cellular modelling, where it is envisioned that integrative biology will move from being largely qualitative and instead become a highly quantitative, computer-intensive discipline.
Collapse
|
9
|
Moore MN, Depledge MH, Readman JW, Paul Leonard DR. An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res 2004; 552:247-68. [PMID: 15288556 DOI: 10.1016/j.mrfmmm.2004.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 04/30/2023]
Abstract
Environmental impacts by both natural events and man-made interventions are a fact of life; and developing the capacity to minimise these impacts and their harmful consequences for biological resources, ecosystems and human health is a daunting task for environmental legislators and regulators. A major challenge in impact and risk assessment, as part of integrated environmental management (IEM), is to link harmful effects of pollution (including toxic chemicals) in individual sentinel animals to their ecological consequences. This obstacle has resulted in a knowledge-gap for those seeking to develop effective policies for sustainable use of resources and environmental protection. Part of the solution to this problem may lie with the use of diagnostic clinical-type laboratory-based ecotoxicological tests or biomarkers, utilising sentinel animals as integrators of pollution, coupled with direct immunochemical tests for contaminants. These rapid and cost-effective ecotoxicological tools can provide information on the health status of individuals and populations based on relatively small samples of individuals. In the context of ecosystem status or health of the environment, biomarkers are also being used to link processes of molecular and cellular damage through to higher levels (i.e., prognostic capability), where they can result in pathology with reduced physiological performance and reproductive success. Complex issues are involved in evaluating environmental risk, such as the effects of the physico-chemical environment on the speciation and uptake of pollutant chemicals and inherent inter-individual and inter-species differences in vulnerability to toxicity; and the toxicity of complex mixtures. Effectively linking the impact of pollutants through the various hierarchical levels of biological organisation to ecosystem and human health requires a pragmatic integrated approach based on existing information that either links or correlates processes of pollutant uptake, detoxication and pathology with each other and higher level effects. It is further proposed here that this process will be facilitated by pursuing a holistic or whole systems approach with the development of computational simulation models of cells, organs and animals in tandem with empirical data (i.e., the middle-out approach). In conclusion, an effective integrated environmental management strategy to secure resource sustainability requires an integrated capability for risk assessment and prediction. Furthermore, if such a strategy is to influence and help in the formulation of environmental policy decisions, then it is crucial to demonstrate scientific robustness of predictions concerning the long-term consequences of pollution to politicians, industrialists and environmental managers; and also increase stakeholder awareness of environmental problems.
Collapse
Affiliation(s)
- Michael N Moore
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK.
| | | | | | | |
Collapse
|
10
|
Abstract
Models of the heart have been developed since 1960, starting with the discovery and modeling of potassium channels. The first models of calcium balance were made in the 1980s and have now reached a high degree of physiological detail. During the 1990s, these cell models were incorporated into anatomically detailed tissue and organ models.
Collapse
Affiliation(s)
- Denis Noble
- University Laboratory of Physiology Oxford OX1 3PT, UK.
| |
Collapse
|
11
|
|
12
|
Hunter PJ. The IUPS Physiome Project: a framework for computational physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:551-69. [PMID: 15142761 DOI: 10.1016/j.pbiomolbio.2004.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The IUPS Physiome Project is an internationally collaborative open-source project to provide a public domain framework for computational physiology, including the development of modelling standards, computational tools and web-accessible databases of models of structure and function at all spatial scales. A number of papers in this volume deal with the development of specific mathematical models of physiological processes. This paper stands back from the detail of individual models and reviews the current state of the IUPS Physiome Project including organ and organ system continuum models, the interpretation of constitutive law parameters in terms of micro-structural models, and markup languages for standardizing cellular processes. Some current practical applications of the physiome models are given and some of the challenges for the next 5 years of the Physiome Project at the level of organs, cells and proteins are proposed.
Collapse
Affiliation(s)
- P J Hunter
- Bioengineering Institute, University of Auckland, New Zealand.
| |
Collapse
|
13
|
Abstract
The successful identification of drug targets requires an understanding of the high-level functional interactions between the key components of cells, organs and systems, and how these interactions change in disease states. This information does not reside in the genome, or in the individual proteins that genes code for, it is to be found at a higher level. Genomics will succeed in revolutionising pharmaceutical research and development only if these interactions are also understood by determining the logic of healthy and diseased states. The rapid growth in biological databases, models of cells, tissues and organs, and in computing power has made it possible to explore functionality all the way from the level of genes to whole organs and systems. Combined with genomic and proteomic data, in silico simulation technology is set to transform all stages of drug discovery and development. The major obstacle to achieving this will be obtaining the relevant experimental data at levels higher than genomics and proteomics.
Collapse
Affiliation(s)
- Denis Noble
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
14
|
Saumarez RC, Chojnowska L, Derksen R, Pytkowski M, Sterlinski M, Huang CLH, Sadoul N, Hauer RNW, Ruzyłło W, Grace AA. Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation. Circulation 2003; 107:2595-600. [PMID: 12743006 DOI: 10.1161/01.cir.0000068342.96569.a1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Slowed or delayed myocardial activation and dispersed refractoriness predispose to reentrant excitation that may lead to ventricular fibrillation (VF). Increased ventricular electrogram duration (DeltaED) in response to extrastimuli and increased S1S2 coupling intervals at which electrogram duration starts to increase (S1S2delay) are seen both in hypertrophic cardiomyopathy (HCM) in those at risk of VF and in patients with idiopathic VF (IVF). METHODS AND RESULTS DeltaED and S1S2delay have been measured using paced electrogram fractionation analysis in 266 patients with noncoronary heart disease. Of these, one group of 61 patients had a history of VF and included 21 HCM, 17 IVF, 13 long-QT syndrome (LQTS), 5 dilated cardiomyopathy (DCM), and 5 others. These were compared with 205 patients with similar diseases with no VF history (non-VF group) and a control group (n=12) without heart disease. Results from HCM VF patients (DeltaED, 19+/-3.3 ms; S1S2delay, 350+/-9.7 ms) differed sharply from observations in HCM non-VF patients (DeltaED, 7.3+/-1.35 ms; S1S2delay, 312+/-6.7 ms; P<0.001). DCM VF patients had longer delays (DeltaED, 14.3+/-5.9; S1S2delay, 344+/-11.2) than DCM non-VF patients (DeltaED, 5.8+/-1.87 ms; S1S2delay, 311+/-5.7 ms; P<0.001), with major differences also seen comparing LQTS VF (DeltaED, 12.4+/-5.3 ms; S1S2delay, 343+/-13.8 ms) and LQTS non-VF patients (DeltaED, 11.0+/-2.7 ms; S1S2delay, 320+/-5.4 ms; P<0.001). IVF patients had both severely abnormal and normal areas of myocardium. CONCLUSIONS Slowed or delayed myocardial activation is a common feature in patients with noncoronary heart disease with a history of VF, and its assessment may allow the prospective prediction of VF risk in these patients.
Collapse
MESH Headings
- Cardiac Pacing, Artificial
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Hypertrophic/complications
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/physiopathology
- Death, Sudden, Cardiac/etiology
- Diagnosis, Differential
- Discriminant Analysis
- Electrocardiography
- Electrophysiologic Techniques, Cardiac
- Heart Conduction System/physiopathology
- Heart Diseases/complications
- Heart Diseases/diagnosis
- Heart Diseases/physiopathology
- Humans
- Long QT Syndrome/complications
- Long QT Syndrome/diagnosis
- Long QT Syndrome/physiopathology
- Tachycardia, Ventricular/complications
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/physiopathology
- Ventricular Dysfunction/complications
- Ventricular Dysfunction/diagnosis
- Ventricular Dysfunction/physiopathology
- Ventricular Fibrillation/complications
- Ventricular Fibrillation/diagnosis
- Ventricular Fibrillation/physiopathology
Collapse
Affiliation(s)
- Richard C Saumarez
- Department of Cardiology, Papworth Hospital, University of Cambridge, Cambridge CB3 8RE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Clancy CE, Tateyama M, Liu H, Wehrens XHT, Kass RS. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation 2003; 107:2233-7. [PMID: 12695286 DOI: 10.1161/01.cir.0000069273.51375.bd] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many long-QT syndrome (LQTS) mutations in the cardiac Na+ channel result in a gain of function due to a fraction of channels that fail to inactivate (burst), leading to sustained current (Isus) during depolarization. However, some Na+ channel mutations that are causally linked to cardiac arrhythmia do not result in an obvious gain of function as measured using standard patch-clamp techniques. An example presented here, the SCN5A LQTS mutant I1768V, does not act to increase Isus (<0.1% of peak) compared with wild-type (WT) channels. In fact, it is difficult to reconcile the seemingly innocuous kinetic alterations in I1768V as measured during standard protocols under steady-state conditions with the disease phenotype. METHODS AND RESULTS We developed new experimental approaches based on theoretical analyses to investigate Na+ channel gating under non-equilibrium conditions, which more closely approximate physiological changes in membrane potential that occur during the course of a cardiac action potential. We used this new approach to investigate channel-gating transitions that occur subsequent to channel activation. CONCLUSIONS Our data suggest an original mechanism for development of LQT-3 arrhythmias. This work demonstrates that a combination of computational and experimental analysis of mutations provides a framework to understand complex mechanisms underlying a range of disorders, from molecular defect to cellular and systems function.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
The Physiome Project will provide a framework for modelling the human body, using computational methods that incorporate biochemical, biophysical and anatomical information on cells, tissues and organs. The main project goals are to use computational modelling to analyse integrative biological function and to provide a system for hypothesis testing.
Collapse
Affiliation(s)
- Peter J Hunter
- Bioengineering Institute, University of Auckland, New Zealand
| | | |
Collapse
|