1
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Kandiyoth FB, Michelot A. Reconstitution of actin-based cellular processes: Why encapsulation changes the rules. Eur J Cell Biol 2023; 102:151368. [PMID: 37922812 DOI: 10.1016/j.ejcb.2023.151368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
While in vitro reconstitution of cellular processes is progressing rapidly, the encapsulation of biomimetic systems to reproduce the cellular environment is a major challenge. Here we review the difficulties, using reconstitution of processes dependent on actin polymerization as an example. Some of the problems are purely technical, due to the need for engineering strategies to encapsulate concentrated solutions in micrometer-sized compartments. However, other significant issues arise from the reduction of experimental volumes, which alters the chemical evolution of these non-equilibrium systems. Important parameters to consider for successful reconstitutions are the amount of each component, their consumption and renewal rates to guarantee their continuous availability.
Collapse
Affiliation(s)
| | - Alphée Michelot
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Lopes Dos Santos R, Malo M, Campillo C. Spatial Control of Arp2/3-Induced Actin Polymerization on Phase-Separated Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:3267-3274. [PMID: 37909673 DOI: 10.1021/acssynbio.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Deciphering the physical mechanisms underlying cell shape changes, while avoiding the cellular interior's complexity, involves the development of controlled basic biomimetic systems that imitate cell functions. In particular, the reconstruction of cytoskeletal dynamics on cell-sized giant unilamellar vesicles (GUVs) has allowed for the reconstituting of some cell-like processes in vitro. In fact, such a bottom-up strategy could be the basis for forming protocells able to reorganize or even move autonomously. However, reconstituting the subtle and controlled dynamics of the cytoskeleton-membrane interface in vitro remains an experimental challenge. Taking advantage of the lipid-induced segregation of an actin polymerization activator, we present a system that targets actin polymerization in specific domains of phase-separated GUVs. We observe actin networks localized on Lo, Ld, or on both types of domains and the actin-induced deformation or reorganization of these domains. These results suggest that the system we have developed here could pave the way for future experiments further detailing the interplay between actin dynamics and membrane heterogeneities.
Collapse
Affiliation(s)
- Rogério Lopes Dos Santos
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
5
|
Nakamura H, Rho E, Lee CT, Itoh K, Deng D, Watanabe S, Razavi S, Matsubayashi HT, Zhu C, Jung E, Rangamani P, Watanabe S, Inoue T. ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization. Cell Rep 2023; 42:113089. [PMID: 37734382 PMCID: PMC10872831 DOI: 10.1016/j.celrep.2023.113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kyoto University Hakubi Center for Advanced Research, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Kyoto University Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Katsura Int'tech Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan.
| | - Elmer Rho
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kie Itoh
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daqi Deng
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Satoshi Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T Matsubayashi
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cuncheng Zhu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Eleanor Jung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shigeki Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Sadhu RK, Iglič A, Gov NS. A minimal cell model for lamellipodia-based cellular dynamics and migration. J Cell Sci 2023; 136:jcs260744. [PMID: 37497740 DOI: 10.1242/jcs.260744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
One ubiquitous cellular structure for performing various tasks, such as spreading and migration over external surfaces, is the sheet-like protrusion called a lamellipodium, which propels the leading edge of the cell. Despite the detailed knowledge about the many components of this cellular structure, it is not yet fully understood how these components self-organize spatiotemporally to form lamellipodia. We review here recent theoretical works where we have demonstrated that membrane-bound protein complexes that have intrinsic curvature and recruit the protrusive forces of the cytoskeleton result in a simple, yet highly robust, organizing feedback mechanism that organizes the cytoskeleton and the membrane. This self-organization mechanism accounts for the formation of flat lamellipodia at the leading edge of cells spreading over adhesive substrates, allowing for the emergence of a polarized, motile 'minimal cell' model. The same mechanism describes how lamellipodia organize to drive robust engulfment of particles during phagocytosis and explains in simple physical terms the spreading and migration of cells over fibers and other curved surfaces. This Review highlights that despite the complexity of cellular composition, there might be simple general physical principles that are utilized by the cell to drive cellular shape dynamics.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris 75005, France
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Vickery JM, Toperzer JD, Raab JE, Lenz LL, Colgan SP, Russo BC. Synaptopodin is necessary for Shigella flexneri intercellular spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537990. [PMID: 37163027 PMCID: PMC10168286 DOI: 10.1101/2023.04.25.537990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood. Here, we identify the mammalian actin binding protein synaptopodin as required for efficient intercellular spread. Using a model cytosolic pathogen, Shigella flexneri , we show that synaptopodin contributes to organization of actin around bacteria and increases the length of the actin tail at the posterior pole of the bacteria. We show that synaptopodin presence enables protrusions to form and to resolve at a greater rate, indicating that greater stability of the actin tail enables the bacteria to push against the membrane with greater force. We demonstrate that synaptopodin recruitment around bacteria requires the bacterial protein IcsA, and we show that this recruitment is further enhanced in a type 3 secretion system dependent manner. These data establish synaptopodin as required for intracellular bacteria to reprogram the actin cytoskeleton in a manner that enables efficient protrusion formation and enhance our understanding of the cellular function of synaptopodin. Authors Summary Intercellular spread is essential for many cytosolic dwelling pathogens during their infectious life cycle. Despite knowing the steps required for intercellular spread, relatively little is known about the host-pathogen interactions that enable these steps to occur. Here, we identify a requirement for the actin binding protein synaptopodin during intercellular spread by cytosolic bacteria. We show synaptopodin is necessary for the stability and recruitment of polymerized actin around bacteria. We also demonstrate synaptopodin is necessary to form plasma membrane structures known as protrusions that are necessary for the movement of these bacteria between cells. Thus, these findings implicate synaptopodin as an important actin-binding protein for the virulence of intracellular pathogens that require the actin cytoskeleton for their spread between cells.
Collapse
|
8
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Lopes dos Santos R, Campillo C. Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks. Biochem Soc Trans 2022; 50:1527-1539. [PMID: 36111807 PMCID: PMC9704537 DOI: 10.1042/bst20220900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 10/05/2023]
Abstract
Cell shape changes that are fuelled by the dynamics of the actomyosin cytoskeleton control cellular processes such as motility and division. However, the mechanisms of interplay between cell membranes and actomyosin are complicated to decipher in the complex environment of the cytoplasm. Using biomimetic systems offers an alternative approach to studying cell shape changes in assays with controlled biochemical composition. Biomimetic systems allow quantitative experiments that can help to build physical models describing the processes of cell shape changes. This article reviews works in which actin networks are reconstructed inside or outside cell-sized Giant Unilamellar Vesicles (GUVs), which are models of cell membranes. We show how various actin networks affect the shape and mechanics of GUVs and how some cell shape changes can be reproduced in vitro using these minimal systems.
Collapse
Affiliation(s)
- Rogério Lopes dos Santos
- LAMBE, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- LAMBE, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Jasnin M, Hervy J, Balor S, Bouissou A, Proag A, Voituriez R, Schneider J, Mangeat T, Maridonneau-Parini I, Baumeister W, Dmitrieff S, Poincloux R. Elasticity of podosome actin networks produces nanonewton protrusive forces. Nat Commun 2022; 13:3842. [PMID: 35789161 PMCID: PMC9253342 DOI: 10.1038/s41467-022-30652-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.
Collapse
Affiliation(s)
- Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jordan Hervy
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Balor
- Plateforme de Microscopie Électronique Intégrative, Centre de Biologie Intégrative, CNRS, UPS, Toulouse, France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Amsha Proag
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | | | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. Snf7 spirals sense and alter membrane curvature. Nat Commun 2022; 13:2174. [PMID: 35449207 PMCID: PMC9023468 DOI: 10.1038/s41467-022-29850-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Endosomal Sorting Complex Required for Transport III (ESCRT-III) is a conserved protein system involved in many cellular processes resulting in membrane deformation and scission, topologically away from the cytoplasm. However, little is known about the transition of the planar membrane-associated protein assembly into a 3D structure. High-speed atomic force microscopy (HS-AFM) provided insights into assembly, structural dynamics and turnover of Snf7, the major ESCRT-III component, on planar supported lipid bilayers. Here, we develop HS-AFM experiments that remove the constraints of membrane planarity, crowdedness, and support rigidity. On non-planar membranes, Snf7 monomers are curvature insensitive, but Snf7-spirals selectively adapt their conformation to membrane geometry. In a non-crowded system, Snf7-spirals reach a critical radius, and remodel to minimize internal stress. On non-rigid supports, Snf7-spirals compact and buckle, deforming the underlying bilayer. These experiments provide direct evidence that Snf7 is sufficient to mediate topological transitions, in agreement with the loaded spiral spring model.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alma P Perrino
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211, Geneva, Switzerland
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY, 14853, USA.
| |
Collapse
|
12
|
The Effect of Magnetic Field Gradient and Gadolinium-Based MRI Contrast Agent Dotarem on Mouse Macrophages. Cells 2022; 11:cells11050757. [PMID: 35269379 PMCID: PMC8909262 DOI: 10.3390/cells11050757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely used in diagnostic medicine. MRI uses the static magnetic field to polarize nuclei spins, fast-switching magnetic field gradients to generate temporal and spatial resolution, and radiofrequency (RF) electromagnetic waves to control the spin orientation. All these forms of magnetic static and electromagnetic RF fields interact with human tissue and cells. However, reports on the MRI technique's effects on the cells and human body are often inconsistent or contradictory. In both research and clinical MRI, recent progress in improving sensitivity and resolution is associated with the increased magnetic field strength of MRI magnets. Additionally, to improve the contrast of the images, the MRI technique often employs contrast agents, such as gadolinium-based Dotarem, with effects on cells and organs that are still disputable and not fully understood. Application of higher magnetic fields requires revisiting previously observed or potentially possible bio-effects. This article focuses on the influence of a static magnetic field gradient with and without a gadolinium-based MRI contrast agent (Dotarem) and the cellular and molecular effects of Dotarem on macrophages.
Collapse
|
13
|
Zhovmer AS, Chandler M, Manning A, Afonin KA, Tabdanov ED. Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102442. [PMID: 34284132 DOI: 10.1016/j.nano.2021.102442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
14
|
Allard A, Lopes Dos Santos R, Campillo C. Remodelling of membrane tubules by the actin cytoskeleton. Biol Cell 2021; 113:329-343. [PMID: 33826772 DOI: 10.1111/boc.202000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.
Collapse
Affiliation(s)
- Antoine Allard
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France.,Sorbonne Université, UPMC, Paris 06, Paris, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Clément Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| |
Collapse
|
15
|
Gat S, Simon C, Campillo C, Bernheim-Groswasser A, Sykes C. Finger-like membrane protrusions are favored by heterogeneities in the actin network. SOFT MATTER 2020; 16:7222-7230. [PMID: 32435778 DOI: 10.1039/c9sm02444a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Finger-like protrusions in cells are mostly generated by an active actin cytoskeleton pushing against the cell membrane. Conventional filopodia, localized at the leading edge of the cells, are long and thin protrusions composed of parallel actin filaments that emanate from a branched actin network. In contrast, dendritic filopodia, precursors of dendritic spines in neurons, are entirely filled in with a branched actin network. Here, we investigate in vitro how the dynamics of branched actin structures, polymerized at a membrane surface, trigger the formation of both protrusion types. Using supported bilayers and liposomes, we show that a decrease in the amount of activation sites at the membrane surface leads to the appearance of heterogeneities in the actin network coverage. Such heterogeneities promote the formation of membrane protrusions, and the size of heterogeneity patches matches the one of the protrusion base. Protrusion shape, cylindrical or conical, directly correlates with the absence or the presence of actin branches, respectively.
Collapse
Affiliation(s)
- Shachar Gat
- Department of Chemical Engineering, Ilse Kats Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
16
|
Zhang B, Zhu M, Li Z, Lung PS, Chrzanowski W, Kwok CT, Lu J, Li Q. Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomater 2020; 112:182-189. [PMID: 32470525 DOI: 10.1016/j.actbio.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Deformability of micro/nanometer sized particles plays an important role in particle-cell interactions and thus becomes a key parameter in carrier design in biomedicine application such as drug delivery and vaccinology. Yet the influence of material's deformability on the cellular fate of the particles as well as physiology response of live cells are to be understood. Here we show the cellular fate of needle shaped (high aspect ratio ~25) PLGA-PEG copolymer fibers depending on their deformability. We found that all the fibers entered murine macrophage cells (RAW 264.7) via phagocytosis. While the fibers of high apparent Young's modulus (average value = 872 kPa) maintained their original shape upon phagocytosis, their counterparts of low apparent Young's modulus (average value = 56 kPa) curled in cells. The observed deformation of fibers of low apparent Young's modulus in cells coincided with abnormal intracellular actin translocation and absence of lysosome/phagosome fusion in macrophages, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology. STATEMENT OF SIGNIFICANCE: Particles are increasingly important in the field of biomedicine, especially when they are serving as drug carriers. Physical cues, such as mechanical properties, were shown to provide insight into their stability and influence on physiology inside the cell. In the current study, we managed to fabricate 5 types of needle shaped PLGA-PEG fibers with controlled Young's modulus. We found that hard fibers maintained their original shape upon phagocytosis, while soft fibers were curled by actin compressive force inside the cell, causing abnormal actin translocation and impediment of lysosome/phagosome fusion, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology.
Collapse
|
17
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
18
|
Nawa-Okita E, Nakao Y, Yamamoto D, Shioi A. A Molecular Assembly Machine Working under a Quasi-Steady State pH Gradient. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Erika Nawa-Okita
- Organization for Research Initiatives and Development, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuki Nakao
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
19
|
Kühn S, Enninga J. The actin comet guides the way: How
Listeria
actin subversion has impacted cell biology, infection biology and structural biology. Cell Microbiol 2020; 22:e13190. [DOI: 10.1111/cmi.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Sonja Kühn
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| | - Jost Enninga
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| |
Collapse
|
20
|
Banerjee S, Gardel ML, Schwarz US. The Actin Cytoskeleton as an Active Adaptive Material. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS 2020; 11:421-439. [PMID: 33343823 PMCID: PMC7748259 DOI: 10.1146/annurev-conmatphys-031218-013231] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Actin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein.Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials.
Collapse
Affiliation(s)
- Shiladitya Banerjee
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Margaret L Gardel
- Department of Physics, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Xie J, Minc N. Cytoskeleton Force Exertion in Bulk Cytoplasm. Front Cell Dev Biol 2020; 8:69. [PMID: 32117991 PMCID: PMC7031414 DOI: 10.3389/fcell.2020.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
The microtubule and actin cytoskeletons generate forces essential to position centrosomes, nuclei, and spindles for division plane specification. While the largest body of work has documented force exertion at, or close to the cell surface, mounting evidence suggests that cytoskeletal polymers can also produce significant forces directly from within the cytoplasm. Molecular motors such as kinesin or dynein may for instance displace cargos and endomembranes in the viscous cytoplasm yielding friction forces that pull or push microtubules. Similarly, the dynamics of bulk actin assembly/disassembly or myosin-dependent contractions produce cytoplasmic forces which influence the spatial organization of cells in a variety of processes. We here review the molecular and physical mechanisms supporting bulk cytoplasmic force generation by the cytoskeleton, their limits and relevance to organelle positioning, with a particular focus on cell division.
Collapse
Affiliation(s)
- Jing Xie
- Institut Jacques Monod, Université de Paris, CNRS UMR 7592, Paris, France
| | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS UMR 7592, Paris, France
| |
Collapse
|
22
|
Motahari F, Carlsson AE. Pulling-force generation by ensembles of polymerizing actin filaments. Phys Biol 2019; 17:016005. [PMID: 31747656 DOI: 10.1088/1478-3975/ab59bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The process by which actin polymerization generates pulling forces in cellular processes such as endocytosis is less well understood than pushing-force generation. To clarify the basic mechanisms of pulling-force generation, we perform stochastic polymerization simulations for a square array of polymerizing semiflexible actin filaments, having different interactions with the membrane. The filaments near the array center have a strong attractive component. Filament bending and actin-network elasticity are treated explicitly. We find that the outer filaments push on the membrane and the inner filaments pull, with a net balance of forces. The total calculated pulling force is maximized when the central filaments have a very deep potential well, and the outer filaments have no well. The steady-state force is unaffected by the gel rigidity, but equilibration takes longer for softer gels. The force distributions are flat over the pulling and pushing regions. Actin polymerization is enhanced by softening the gel or reducing the filament binding to the membrane. Filament-membrane detachment can occur for softer gels, even if the total binding energy of the filaments to the membrane is 100 [Formula: see text] or more. It propagates via a stress-concentration mechanism similar to that of a brittle crack in a solid, and the breaking stress is determined by a criterion similar to that of the 'Griffith' theory of crack propagation.
Collapse
Affiliation(s)
- F Motahari
- Department of Physics and Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, United States of America
| | | |
Collapse
|
23
|
Kim YK, Noh J, Nayani K, Abbott NL. Soft matter from liquid crystals. SOFT MATTER 2019; 15:6913-6929. [PMID: 31441481 DOI: 10.1039/c9sm01424a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions (e.g., autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomes fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy (e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies.
Collapse
Affiliation(s)
- Young-Ki Kim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, USA. and Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyengbuk 37673, Korea
| | - JungHyun Noh
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, USA.
| | - Karthik Nayani
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, USA.
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, USA.
| |
Collapse
|
24
|
Meenderink LM, Gaeta IM, Postema MM, Cencer CS, Chinowsky CR, Krystofiak ES, Millis BA, Tyska MJ. Actin Dynamics Drive Microvillar Motility and Clustering during Brush Border Assembly. Dev Cell 2019; 50:545-556.e4. [PMID: 31378589 DOI: 10.1016/j.devcel.2019.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 05/03/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Transporting epithelial cells generate arrays of microvilli, known as a brush border, to enhance functional capacity. To understand brush border formation, we used live cell imaging to visualize apical remodeling early in this process. Strikingly, we found that individual microvilli exhibit persistent active motility, translocating across the cell surface at ∼0.2 μm/min. Perturbation with inhibitors and photokinetic experiments revealed that microvillar motility is driven by actin assembly at the barbed ends of core bundles, which in turn is linked to robust treadmilling of these structures. Actin regulatory factors IRTKS and EPS8 localize to the barbed ends of motile microvilli, where they control the kinetics and nature of movement. As the apical surface of differentiating epithelial cells is crowded with nascent microvilli, persistent motility promotes collisions between protrusions and ultimately clustering and consolidation into higher-order arrays. Thus, microvillar motility represents a previously unrecognized driving force for apical surface remodeling and maturation during epithelial differentiation.
Collapse
Affiliation(s)
- Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA; Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Albini M, Salvi M, Altamura E, Dinarelli S, Di Donato L, Lucibello A, Mavelli F, Molinari F, Morbiducci U, Ramundo-Orlando A. Movement of giant lipid vesicles induced by millimeter wave radiation change when they contain magnetic nanoparticles. Drug Deliv Transl Res 2019; 9:131-143. [PMID: 30203364 DOI: 10.1007/s13346-018-0572-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. Recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Here we study the effect of external physical stimuli-such as millimeter wave radiation-on the induced movement of giant lipid vesicles in suspension containing or not containing iron oxide maghemite (γ-Fe2O3) nanoparticles (MNPs). To increase our understanding of this phenomenon, we used a new microscope image-based analysis to reveal millimeter wave (MMW)-induced effects on the movement of the vesicles. We found that in the lipid vesicles not containing MNPs, an exposure to MMW induced collective reorientation of vesicle motion occurring at the onset of MMW switch "on." Instead, no marked changes in the movements of lipid vesicles containing MNPs were observed at the onset of first MMW switch on, but, importantly, by examining the course followed; once the vesicles are already irradiated, a directional motion of vesicles was induced. The latter vesicles were characterized by a planar motion, absence of gravitational effects, and having trajectories spanning a range of deflection angles narrower than vesicles not containing MNPs. An explanation for this observed delayed response could be attributed to the possible interaction of MNPs with components of lipid membrane that, influencing, e.g., phospholipids density and membrane stiffening, ultimately leads to change vesicle movement.
Collapse
Affiliation(s)
- Martina Albini
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Massimo Salvi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | | | - Loreto Di Donato
- Department of Electrical, Electronics, and Computer Engineering, University of Catania, Catania, Italy
| | - Andrea Lucibello
- Institute of Microelectronics and Microsystems, CNR, Rome, Italy
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Bari, Italy
| | - Filippo Molinari
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|
26
|
Wosik J, Chen W, Qin K, Ghobrial RM, Kubiak JZ, Kloc M. Magnetic Field Changes Macrophage Phenotype. Biophys J 2019; 114:2001-2013. [PMID: 29694876 DOI: 10.1016/j.bpj.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 01/26/2023] Open
Abstract
Macrophages play a crucial role in homeostasis, regeneration, and innate and adaptive immune responses. Functionally different macrophages have different shapes and molecular phenotypes that depend on the actin cytoskeleton, which is regulated by the small GTPase RhoA. The naive M0 macrophages are slightly elongated, proinflammatory M1 are round, and M2 antiinflammatory macrophages are elongated. We have recently shown in the rodent model system that genetic or pharmacologic interference with the RhoA pathway deregulates the macrophage actin cytoskeleton, causes extreme macrophage elongation, and prevents macrophage migration. Here, we report that an exposure of macrophages to a nonuniform magnetic field causes extreme elongation of macrophages and has a profound effect on their molecular components and organelles. Using immunostaining and Western blotting, we observed that magnetic force rearranges the macrophage actin cytoskeleton, the Golgi complex, and the cation channel receptor TRPM2, and modifies the expression of macrophage molecular markers. We have found that the magnetic-field-induced alterations are very similar to changes caused by RhoA interference. We also analyzed magnetic-field-induced forces acting on macrophages and found that the location and alignment of magnetic-field-elongated macrophages correlate very well with the simulated distribution and orientation of such magnetic force lines.
Collapse
Affiliation(s)
- Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas; Texas Center for Superconductivity, University of Houston, Houston, Texas.
| | - Wei Chen
- The Houston Methodist Research Institute, Houston, Texas; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Kuang Qin
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas; Texas Center for Superconductivity, University of Houston, Houston, Texas
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Jacek Z Kubiak
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Cell Cycle Group, Faculty of Medicine, Rennes, France; Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
27
|
Shamipour S, Kardos R, Xue SL, Hof B, Hannezo E, Heisenberg CP. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes. Cell 2019; 177:1463-1479.e18. [PMID: 31080065 DOI: 10.1016/j.cell.2019.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shi-Lei Xue
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | | |
Collapse
|
28
|
Lacy MM, Ma R, Ravindra NG, Berro J. Molecular mechanisms of force production in clathrin-mediated endocytosis. FEBS Lett 2018; 592:3586-3605. [PMID: 30006986 PMCID: PMC6231980 DOI: 10.1002/1873-3468.13192] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/21/2023]
Abstract
During clathrin-mediated endocytosis (CME), a flat patch of membrane is invaginated and pinched off to release a vesicle into the cytoplasm. In yeast CME, over 60 proteins-including a dynamic actin meshwork-self-assemble to deform the plasma membrane. Several models have been proposed for how actin and other molecules produce the forces necessary to overcome the mechanical barriers of membrane tension and turgor pressure, but the precise mechanisms and a full picture of their interplay are still not clear. In this review, we discuss the evidence for these force production models from a quantitative perspective and propose future directions for experimental and theoretical work that could clarify their various contributions.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Neal G Ravindra
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
30
|
Alimohamadi H, Vasan R, Hassinger J, Stachowiak J, Rangamani P. The role of traction in membrane curvature generation. Mol Biol Cell 2018; 29:2024-2035. [PMID: 30044708 PMCID: PMC6232966 DOI: 10.1091/mbc.e18-02-0087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape.
Collapse
Affiliation(s)
- H. Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - R. Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - J.E. Hassinger
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - J.C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
31
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
32
|
Simon C, Caorsi V, Campillo C, Sykes C. Interplay between membrane tension and the actin cytoskeleton determines shape changes. Phys Biol 2018; 15:065004. [DOI: 10.1088/1478-3975/aad1ab] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, Jang JH, Huang H, Safavi-Sohi R, Haghjoo N, Nejadnik H, Aghaverdi H, Vali H, Kinsella JM, Presley J, Xu K, Yang PCM, Mahmoudi M. Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS NANO 2018. [PMID: 29536733 DOI: 10.1021/acsnano.7b06212] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular uptake of nanoparticles (NPs) depends on the nature of the nanobio system including the solid nanocomponents ( e. g., physicochemical properties of NPs), nanobio interfaces ( e. g., protein corona composition), and the cellular characteristics ( e. g., cell type). In this study, we document the role of sex in cellular uptake of NPs as an "overlooked" factor in nanobio interface investigations. We demonstrate that cell sex leads to differences in NP uptake between male and female human amniotic stem cells (hAMSCs), with greater uptake by female cells. hAMSCs are one of the earliest sources of somatic stem cells. The experiments were replicated with primary fibroblasts isolated from the salivary gland of adult male and female donors of similar ages, and again the extent of NP uptake was altered by cell sex. However, in contrast to hAMSCs, uptake was greater in male cells. We also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs) by the Yamanaka factors. Thus, future studies should consider the effect of sex on the nanobio interactions to optimize clinical translation of NPs and iPSC biology and to help researchers to better design and produce safe and efficient therapeutic sex-specific NPs.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Biomedical Engineering , Georgia Institute of Technology & Emory University School of Medicine , Atlanta , Georgia 30322 , United States
- Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Sara Sheibani
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Pooja Pushparaj
- Department of Bioengineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Michal Wojcik
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Albert Y Jang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Joyce H Jang
- Meakins Christie Laboratories , McGill University Health Centre and McGill University , Montreal , Quebec H4A 3J1 , Canada
| | - Haina Huang
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Reihaneh Safavi-Sohi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute , Shahid Beheshti University , Tehran 1983963113 , Iran
| | - Niloofar Haghjoo
- Institute of Biochemistry and Biophysics , University of Tehran , Tehran 14174 , Iran
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS) , Stanford School of Medicine , Stanford , California 94305 , United States
| | - Haniyeh Aghaverdi
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | | | - John Presley
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Ke Xu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Division of Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Morteza Mahmoudi
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
34
|
Tarama M. Swinging motion of active deformable particles in Poiseuille flow. Phys Rev E 2017; 96:022602. [PMID: 28950457 DOI: 10.1103/physreve.96.022602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Collapse
Affiliation(s)
- Mitsusuke Tarama
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
35
|
Design principles for robust vesiculation in clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2017; 114:E1118-E1127. [PMID: 28126722 DOI: 10.1073/pnas.1617705114] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advantage of some set of physical design principles to ensure robust vesiculation against opposing forces like membrane tension. Using a theoretical model for membrane mechanics and membrane protein interaction, we have systematically investigated the influence of membrane rigidity, curvature induced by the protein coat, area covered by the protein coat, membrane tension, and force from actin polymerization on bud formation. Under low tension, the membrane smoothly evolves from a flat to budded morphology as the coat area or spontaneous curvature increases, whereas the membrane remains essentially flat at high tensions. At intermediate, physiologically relevant, tensions, the membrane undergoes a "snap-through instability" in which small changes in the coat area, spontaneous curvature or membrane tension cause the membrane to "snap" from an open, U-shape to a closed bud. This instability can be smoothed out by increasing the bending rigidity of the coat, allowing for successful budding at higher membrane tensions. Additionally, applied force from actin polymerization can bypass the instability by inducing a smooth transition from an open to a closed bud. Finally, a combination of increased coat rigidity and force from actin polymerization enables robust vesiculation even at high membrane tensions.
Collapse
|
36
|
Wen FL, Leung KT, Chen HY. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Phys Rev E 2016; 94:012401. [PMID: 27575158 DOI: 10.1103/physreve.94.012401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/07/2022]
Abstract
Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
37
|
Zhang R, Zhou Y, Martínez-González JA, Hernández-Ortiz JP, Abbott NL, de Pablo JJ. Controlled deformation of vesicles by flexible structured media. SCIENCE ADVANCES 2016; 2:e1600978. [PMID: 27532056 PMCID: PMC4980106 DOI: 10.1126/sciadv.1600978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023]
Abstract
Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ye Zhou
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Sadhu RK, Chatterjee S. Actin filaments growing against a barrier with fluctuating shape. Phys Rev E 2016; 93:062414. [PMID: 27415305 DOI: 10.1103/physreve.93.062414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 01/23/2023]
Abstract
We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
39
|
Wen FL, Chen HY, Leung KT. Statistics of actin-propelled trajectories in noisy environments. Phys Rev E 2016; 93:062405. [PMID: 27415296 DOI: 10.1103/physreve.93.062405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| |
Collapse
|
40
|
Siton-Mendelson O, Bernheim-Groswasser A. Toward the reconstitution of synthetic cell motility. Cell Adh Migr 2016; 10:461-474. [PMID: 27019160 DOI: 10.1080/19336918.2016.1170260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.
Collapse
Affiliation(s)
- Orit Siton-Mendelson
- a Department of Chemical Engineering and the Ilse Kats Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Anne Bernheim-Groswasser
- a Department of Chemical Engineering and the Ilse Kats Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
41
|
Ban T, Fukuyama T, Makino S, Nawa E, Nagatsu Y. Self-Propelled Vesicles Induced by the Mixing of Two Polymeric Aqueous Solutions through a Vesicle Membrane Far from Equilibrium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2574-2581. [PMID: 26927801 DOI: 10.1021/acs.langmuir.6b00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study describes the development of self-propelled vesicles using transient interfacial energy in an aqueous two-phase system composed of polyethylene glycol (PEG), dextran (DEX), and water. The transient interfacial energy was generated at the mixing boundary between the PEG and DEX solutions when the two miscible liquids were in contact with each other far from equilibrium. Vesicles encapsulating 20 wt % DEX solution traveled spontaneously when the PEG concentration in the environmental media was >15 wt %. The motility of the vesicles varied with the permeability of the vesicle membrane. The permeability increased significantly when the concentration of PEG was >15 wt %. PEG had a profound effect not only on mass transfer through the membrane but also on the motility of the vesicles.
Collapse
Affiliation(s)
- Takahiko Ban
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University , Machikaneyamacho 1-3, Toyonaka City, Osaka 560-8531, Japan
| | - Takashi Fukuyama
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University , Machikaneyamacho 1-3, Toyonaka City, Osaka 560-8531, Japan
| | - Shouta Makino
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University , Machikaneyamacho 1-3, Toyonaka City, Osaka 560-8531, Japan
| | - Erika Nawa
- Department of Chemical Engineering & Materials Science, Doshisha University , Tatara Miyakodani 1-3, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuichiro Nagatsu
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
42
|
Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol 2016; 38:81-9. [PMID: 26986983 DOI: 10.1016/j.ceb.2016.02.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
Abstract
The plasma membrane serves as a barrier, separating the cell from its external environment. Simultaneously it acts as a site for information transduction, entry of nutrients, receptor signaling, and adapts to the shape of the cell. This requires local control of organization at multiple scales in this heterogeneous fluid lipid bilayer with a plethora of proteins and a closely juxtaposed dynamic cortical cytoskeleton. New membrane models highlight the influence of the underlying cortical actin on the diffusion of membrane components. Myosin motors as well as proteins that remodel actin filaments have additionally been implicated in defining the organization of many membrane constituents. Here we provide a perspective of the intimate relationship of the membrane lipid matrix and the underlying cytoskeleton.
Collapse
|
43
|
Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc Natl Acad Sci U S A 2016; 113:E1645-54. [PMID: 26929326 DOI: 10.1073/pnas.1514030113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization.
Collapse
|
44
|
Schwarz US. Physical constraints for pathogen movement. Semin Cell Dev Biol 2015; 46:82-90. [DOI: 10.1016/j.semcdb.2015.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
45
|
Reconstituting the actin cytoskeleton at or near surfaces in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3006-14. [PMID: 26235437 DOI: 10.1016/j.bbamcr.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
Actin filament dynamics have been studied for decades in pure protein solutions or in cell extracts, but a breakthrough in the field occurred at the turn of the century when it became possible to reconstitute networks of actin filaments, growing in a controlled but physiological manner on surfaces, mimicking the actin assembly that occurs at the plasma membrane during cell protrusion and cell shape changes. The story begins with the bacteria Listeria monocytogenes, the study of which led to the reconstitution of cellular actin polymerization on a variety of supports including plastic beads. These studies made possible the development of liposome-type substrates for filament assembly and micropatterning of actin polymerization nucleation. Based on the accumulated expertise of the last 15 years, many exciting approaches are being developed, including the addition of myosin to biomimetic actin networks to study the interplay between actin structure and contractility. The field is now poised to make artificial cells with a physiological and dynamic actin cytoskeleton, and subsequently to put these cells together to make in vitro tissues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
46
|
Abstract
Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.
Collapse
|
47
|
Miklavc P, Ehinger K, Sultan A, Felder T, Paul P, Gottschalk KE, Frick M. Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles. J Cell Sci 2015; 128:1193-203. [PMID: 25637593 PMCID: PMC4359923 DOI: 10.1242/jcs.165571] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In many secretory cells actin and myosin are specifically recruited to the surface of secretory granules following their fusion with the plasma membrane. Actomyosin-dependent compression of fused granules is essential to promote active extrusion of cargo. However, little is known about molecular mechanisms regulating actin coat formation and contraction. Here, we provide a detailed kinetic analysis of the molecules regulating actin coat contraction on fused lamellar bodies in primary alveolar type II cells. We demonstrate that ROCK1 and myosin light chain kinase 1 (MLCK1, also known as MYLK) translocate to fused lamellar bodies and activate myosin II on actin coats. However, myosin II activity is not sufficient for efficient actin coat contraction. In addition, cofilin-1 and α-actinin translocate to actin coats. ROCK1-dependent regulated actin depolymerisation by cofilin-1 in cooperation with actin crosslinking by α-actinin is essential for complete coat contraction. In summary, our data suggest a complementary role for regulated actin depolymerisation and crosslinking, and myosin II activity, to contract actin coats and drive secretion.
Collapse
Affiliation(s)
- Pika Miklavc
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Konstantin Ehinger
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Ayesha Sultan
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tatiana Felder
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Patrick Paul
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
48
|
Fletcher D, Powell K. Dan Fletcher: a recipe for cooking up cellular machines. J Cell Biol 2014; 207:320-1. [PMID: 25385182 PMCID: PMC4226735 DOI: 10.1083/jcb.2073pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fletcher specializes in reconstituting subcellular structures to test their behavior.
Collapse
|
49
|
John K, Caillerie D, Misbah C. Spontaneous polarization in an interfacial growth model for actin filament networks with a rigorous mechanochemical coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052706. [PMID: 25493815 DOI: 10.1103/physreve.90.052706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
Many processes in eukaryotic cells, including cell motility, rely on the growth of branched actin networks from surfaces. Despite its central role the mechanochemical coupling mechanisms that guide the growth process are poorly understood, and a general continuum description combining growth and mechanics is lacking. We develop a theory that bridges the gap between mesoscale and continuum limit and propose a general framework providing the evolution law of actin networks growing under stress. This formulation opens an area for the systematic study of actin dynamics in arbitrary geometries. Our framework predicts a morphological instability of actin growth on a rigid sphere, leading to a spontaneous polarization of the network with a mode selection corresponding to a comet, as reported experimentally. We show that the mechanics of the contact between the network and the surface plays a crucial role, in that it determines directly the existence of the instability. We extract scaling laws relating growth dynamics and network properties offering basic perspectives for new experiments on growing actin networks.
Collapse
Affiliation(s)
- Karin John
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Denis Caillerie
- Université Grenoble Alpes, 3SR, F-38000 Grenoble, France and CNRS, 3SR, F-38000 Grenoble, France
| | - Chaouqi Misbah
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
50
|
Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 2014; 94:235-63. [PMID: 24382887 DOI: 10.1152/physrev.00018.2013] [Citation(s) in RCA: 870] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.
Collapse
|