1
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Sierra-Díaz DC, Cabrera R, Gonzalez-Vasquez LA, Angulo-Aguado M, Llinás-Caballero K, Fonseca-Mendoza DJ, Contreras-Bravo NC, Restrepo CM, Ortega-Recalde O, Morel A. Functional Analysis of BRCA1 3'UTR Variants Predisposing to Breast Cancer. Appl Clin Genet 2024; 17:57-62. [PMID: 38803352 PMCID: PMC11129763 DOI: 10.2147/tacg.s444546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Breast Cancer (BC) is the main female cancer diagnosed worldwide, and it has been described that few genes, such as BRCA1, have a high penetrance for this type of cancer. In this manuscript, we were interested in evaluating the effect of 3'UTR variants on BRCA1 expression. Patients and Methods To accomplish this objective, Whole Exome Sequencing (WES) data of 400 patients with unselected BC was used to filter variants located in the region of interest of BRCA1 gene, finding two of them (c.*36C>G and c.*369_373del). miRGate and miRanda in silico tools were used to predict microRNA (miRNA) interaction. Results The two variants (c.*36C>G, c.*369_373del) were predicted to affect miRNA interaction. After cloning of BRCA1 3'UTR into pMIR-Report vector, the construct was transfected into two BC cell lines (MDA-MB-231 and MCF-7), and the variant c.*36C>G evidenced overexpression of reporter gene luciferase, showing that the transcript was not being degraded by the miRNA in MDA-MB-231 cells. Conclusion The variant seems to protect against Triple Negative BC probably due to the expression level of miRNA in this particular cell line (MDA-MB-231). This is consistent with the clinical history of the patients who harbor BC Hormone Receptors positive (HR+).
Collapse
Affiliation(s)
- Diana Carolina Sierra-Díaz
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Rodrigo Cabrera
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Laura Alejandra Gonzalez-Vasquez
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Mariana Angulo-Aguado
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kevin Llinás-Caballero
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Nora Constanza Contreras-Bravo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Martin Restrepo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
3
|
Qi J, Wu W, Chen J, Han X, Hao Z, Han Y, Xu Y, Lai J, Chen J. Development and validation of a novel prognostic lncRNA signature based on the APOBEC3 family genes in gastric cancer. Heliyon 2024; 10:e28307. [PMID: 38560679 PMCID: PMC10979227 DOI: 10.1016/j.heliyon.2024.e28307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Gastric Cancer (GC) refers to a prevalent malignant cancer accompanied by a weak prognosis. The APOBEC3 family genes and lncRNAs are linked with cancer progression. Nevertheless, there is still a scarcity of data concerning the prognostic value of APOBEC3-related lncRNAs in GC. Methods We extracted the data from GC samples, including transcriptome as well as clinical data, obtained from the TCGA database. Then, we screened for lncRNAs that were correlated with the APOBEC3 family genes and constructed an APOBEC3-related lncRNA prognostic signature (LPS) by utilizing univariate Cox and lasso regression analysis. Furthermore, we validated our constructed signature and evaluated it thoroughly, including analysis of its function, immunity, mutations, and clinical applications via multiple methods, including Metascape, GSEA, and analyses including TIC and TME, immune checkpoints, CNV and SNPs, Kaplan-Meier survival curves, nomogram, decision tree and drug prediction analysis. Finally, we overexpressed LINC01094 to evaluate the impacts on the proliferation as well as migration with regards to KATO-2 cells. Results We selected eight lncRNAs for our APOBEC3-related LPS, which is demonstrated as a valuable tool in predicting the individual GC patients' prognosis. Subsequently, we segregated the samples into subgroups of high-as well as low-risk relying on the risk score with regards to APOBEC3-related LPS. By performing functional analysis, we have shown that immune-as well as tumor-related pathways were enriched in high- and low-risk GC patients. Furthermore, immune analysis revealed a robust correlation between the APOBEC3-related LPS and immunity. We found that immune checkpoints were significantly associated with the APOBEC3-related LPS and were greatly exhibited in GC tumor and high-risk samples. Mutational analysis suggested that the mutational rate was greater in low-risk samples. Furthermore, we predicted small molecular drugs displayed greater sensitivity in patients categorized as high-risk. Moreover, the immune response was also better in high-risk patients. Of these drugs, dasatinib was significant in both methods and might be considered a potential novel drug for treating high-risk GC patients. Finally, we found that LINC01094 has the potential to enhance the migration, proliferation as well as inhibit apoptosis of KATO-2 in GC cells. And Dasatinib has an inhibitory effect on the migration as well as proliferation in GC cells. Conclusion We created a novel APOBEC3-related LPS in predicting the prognosis with regards to individual GC patients. Importantly, this APOBEC3-related LPS was closely associated with immunity and might guide clinical treatment.
Collapse
Affiliation(s)
- Jia Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Wenxuan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xiaying Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Zhixing Hao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yaxuan Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yewei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jun Lai
- Department of Cardiology Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
4
|
Chauhan S, Mathur R, Jha AK. The Impact of microRNA SNPS on Breast Cancer: Potential Biomarkers for Disease Detection. Mol Biotechnol 2024:10.1007/s12033-024-01113-w. [PMID: 38512426 DOI: 10.1007/s12033-024-01113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Breast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression. Regional disparities in breast cancer incidence underscore the need for precise interventions, considering socio-cultural and economic factors. This review explores into the differential effects of SNP-miRNA interactions on breast cancer risk, emphasizing both risk-enhancing and protective associations across diverse populations. Furthermore, it explores the clinical implications of these findings, highlighting the potential of personalized approaches in breast cancer management. Additionally, it reviews the evolving therapeutic prospect of microRNAs (miRNAs), extending beyond cancer therapeutics to encompass various diseases, indicative of their versatility as therapeutic agents.
Collapse
Affiliation(s)
- Sakshi Chauhan
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Runjhun Mathur
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
- Dr APJ Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Yu X, Li W, Sun S, Li J. Investigating the prognostic value of mTORC1 signaling in bladder cancer via bioinformatics evaluation. Sci Rep 2023; 13:22066. [PMID: 38086955 PMCID: PMC10716140 DOI: 10.1038/s41598-023-49366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Bladder cancer, a prevalent and heterogeneous malignancy, necessitates the discovery of pertinent biomarkers to enable personalized treatment. The mammalian target of rapamycin complex 1 (mTORC1), a pivotal regulator of cellular growth, metabolism, and immune response, exhibits activation in a subset of bladder cancer tumors. In this study, we explore the prognostic significance of mTORC1 signaling in bladder cancer through the utilization of bioinformatics analysis. Our investigation incorporates transcriptomic, somatic mutation, and clinical data, examining the mTORC1 score of each sample, as well as the enrichment of differentially expressed genes (DEGs), differentiation characteristics, immunological infiltration, and metabolic activity. Our findings reveal that elevated mTORC1 levels serve as an adverse prognostic indicator for bladder cancer patients, exhibiting a significant association with Basal-type bladder cancer. Patients with heightened mTORC1 activation display heightened levels of pro-carcinogenic metabolism. Additionally, these individuals demonstrate enhanced response to immunotherapy. Finally, we develop an mTORC1-related signature capable of predicting the prognosis of bladder cancer patients.The signature offers novel mTORC1-related biomarkers and provides fresh insights into the involvement of mTORC1 in the pathogenesis of bladder cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
- Department of General Surgery, Taikang Tongji (Wuhan) Hospital, 322 Sixin North Road, Wuhan, 430050, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Liao K, Yang Q, Xu Y, He Y, Wang J, Li Z, Wu C, Hu J, Wang X. Identification of signature of tumor-infiltrating CD8 T lymphocytes in prognosis and immunotherapy of colon cancer by machine learning. Clin Immunol 2023; 257:109811. [PMID: 37858752 DOI: 10.1016/j.clim.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To explore the specific marker of CD8+ T cell subsets which are closely related to the prognosis and immunotherapy of patients with colon cancer. METHODS 18 kinds of immune cell expression profile data sets were obtained from GEO database. Compared with other immune cell types, the specific markers of CD8 (+) T cells (TI-CD8) in colorectal cancer were screened. Regression analyses were used to further screen prognostic related genes and construct a prognostic evaluation model. The patients were stratified and analyzed according to the risk scores, KRAS mutation status, stage, lymphatic infiltration and other indicators. The landscape of infiltration level, mutation and copy number variation of immune subsets in high and low TI-CD8Sig score groups were compared and analyzed. The difference of drug response between high and low TI-CD8Sig score groups was analyzed. Differential expression of the model genes was verified by the HPA database. RESULTS Six prognostic-related CD8T cell-specific gene targets were further screened, and the prognostic evaluation model was constructed. The AUC value of the model is >0.75. FAT3 and UNC13C showed a high mutation state in the low-risk group, while USH2A, MUC5B et al. specifically showed a high mutation state in the high-risk group. Compared with the low-risk group, the high-risk group had lower effective rate of drug response. The expression of PD-1 gene was positively correlated with the level of TI-CD8Sig score. CONCLUSION The risk assessment model based on CD8T cell-specific marker genes can effectively predict the prognosis and the drug response of patients with CRC.
Collapse
Affiliation(s)
- Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yuhan Xu
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yingcheng He
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jingyi Wang
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Zimeng Li
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Chengfeng Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Jialing Hu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
Huo X, Wang K, Yao B, Song L, Li Z, He W, Li Y, Ma J, Wang L, Wu Z. Function and regulation of miR-186-5p, miR-125b-5p and miR-1260a in chordoma. BMC Cancer 2023; 23:1152. [PMID: 38012562 PMCID: PMC10680222 DOI: 10.1186/s12885-023-11238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The function and regulation of miRNAs in progression of chordoma were unclear. METHODS Five miRNAs were identified by the machine learning method from the miRNA expression array. CCk-8 assay, EDU assay, wound healing migration assay, and trans-well assay were used to reveal the effect of the miRNAs in chordoma cell lines. Moreover, bioinformation analysis and the mRNA expression array between the primary chordomas and recurrent chordomas were used to find the target protein genes of miRNAs. Furthermore, qRT-PCR and luciferase reporter assay were used to verify the result. RESULTS miR-186-5p, miR-30c-5p, miR-151b, and miR-125b-5p could inhibit proliferation, migration, and invasion of chordoma while miR-1260a enhances proliferation, migration, and invasion of chordoma. Recurrent chordoma has a worse disease-free outcome than the primary chordoma patients. AMOT, NPTX1, RYR3, and P2RX5 were the target protein mRNAs of miR-186-5p; NPTX1 was the target protein mRNAs of miR-125b-5p; and AMOT and TNFSF14 were the target protein mRNAs of miR-1260a. CONCLUSIONS miR-186-5p, miR-125b-5p, miR-1260a, and their target protein mRNAs including AMOT, NPTX1, RYR3, P2RX5, TNFSF14 may be the basement of chordoma research.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
| | - Bohan Yao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Zirun Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, TianJin, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
8
|
Deng F, Fu M, Zhao C, Lei J, Xu T, Ji B, Ding H, Zhang Y, Chen J, Qiu J, Gao Q. Calcium signals and potential therapy targets in ovarian cancer (Review). Int J Oncol 2023; 63:125. [PMID: 37711071 PMCID: PMC10552713 DOI: 10.3892/ijo.2023.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Ovarian cancer (OC) is a deadly disease. The poor prognosis and high lethality of OC are attributed to its high degrees of aggressiveness, resistance to chemotherapy and recurrence rates. Calcium ion (Ca2+) signaling has received attention in recent years, as it appears to form an essential part of various aspects of cancer pathophysiology and is a potential therapeutic target for OC treatment. Disruption of normal Ca2+ signaling pathways can induce changes in cell cycle progression, apoptosis, proliferation and migration and invasion, leading to the development of the malignant phenotype of tumors. In the present review, the main roles of ion channel/receptor/pump‑triggered Ca2+ signaling pathways located at the plasma membrane and organelle Ca2+ transport in OC are summarized. In addition, the potential of Ca2+ signaling as a novel target for the development of effective treatment strategies for OC was discussed. Furthering the understanding into the role of Ca2+ signaling in OC is expected to facilitated the identification of novel therapeutic targets and improved clinical outcomes for patients.
Collapse
Affiliation(s)
- Fengying Deng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mengyu Fu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chenxuan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yueming Zhang
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Jie Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, P.R. China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
9
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
10
|
Nam B, Jo S, Bang SY, Park Y, Shin JH, Park YS, Lee S, Joo KB, Kim TH. Clinical and genetic factors associated with radiographic damage in patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:527-532. [PMID: 36543524 PMCID: PMC10086301 DOI: 10.1136/ard-2022-222796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To identify clinical and genetic factors associated with severe radiographic damage in patients with ankylosing spondylitis (AS). METHODS We newly generated genome-wide single nucleotide polymorphism data (833K) for 444 patients with AS. The severity of radiographic damage was assessed using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). To identify clinical and genetic factors associated with severe radiographic damage, multiple linear regression analyses were performed. Human AS-osteoprogenitor and control-osteoprogenitor cells were used for functional validation. RESULTS The significant clinical factors of final mSASSS were baseline mSASSS (β=0.796, p=3.22×10-75), peripheral joint arthritis (β=-0.246, p=6.85×10-6), uveitis (β=0.157, p=1.95×10-3), and smoking (β=0.130, p=2.72×10-2) after adjusting for sex, age and disease duration. After adjusting significant clinical factors, the Ryanodine receptor 3 (RYR3) gene was associated with severe radiographic damage (p=1.00×10-6). For pathway analysis, the PI3K-Akt signalling pathway was associated with severe radiographic damage in AS (p=2.21×10-4, false discovery rate=0.040). Treatment with rhodamine B, a ligand of RYR3, dose-dependently induced matrix mineralisation of AS osteoprogenitors. However, the rhodamine B-induced accelerated matrix mineralisation was not definitive in control osteoprogenitors. Knockdown of RYR3 inhibited matrix mineralisation in SaOS2 cell lines. CONCLUSIONS This study identified clinical and genetic factors that contributed to better understanding of the pathogenesis and biology associated with radiographic damage in AS.
Collapse
Affiliation(s)
- Bora Nam
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Youngho Park
- Department of Big Data Application College of Smart Convergence, Hannam University, Daejeon, South Korea
| | - Ji Hui Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Ye-Soo Park
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Guri Hospital, Guri, South Korea
| | - Seunghun Lee
- Department of Radiology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Kyung Bin Joo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| |
Collapse
|
11
|
Guo Q, Dong Z, Jiang L, Zhang L, Li Z, Wang D. Establishment and validation of an ultrasound-based nomogram with risk stratification for short disease-free survival in breast cancer. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:134-147. [PMID: 36054346 DOI: 10.1002/jcu.23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This retrospective study aimed to develop and validate an Ultrasound (US)-based nomogram to predict short disease-free survival (short-DFS, less than 120 months DFS) in breast cancer (BC). METHODS Nomogram was established based on a training data of 311 BC patients by multivariable logistic regression, and were assessed by discrimination, calibration, and clinical usefulness. Risk stratification was performed by X-tile. An independent testing data of 200 patients with BC was used for external validation. RESULTS Nine predictors including three US features and six clinical parameters were screened into the nomogram by Lasso (log λ = -3.594) in training data. Better performance was obtained in the training data (C-index: 0.942) and testing data (C-index: 0.914). Calibration analysis indicated optimal agreement between nomogram predictions and actual observations (p = 0.67). Decision curve analysis showed a great clinical benefit (Youden index: 0.634). Three risk levels are low-risk (<184.0), moderate-risk (184.0-345.3) and high-risk (>345.3). Our nomograms had larger area under the receiver operating characteristic (ROC) curves compared with Magee Equation and Nottingham Prognostic models (0.942 vs. 0.824, 0.790). CONCLUSION The US-based nomogram and the practical score system facilitate individualized prediction of short-DFS to optimize clinical decisions and improve prognosis in patients with BC.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lixin Jiang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Lei Zhang
- Department of Ultrasound Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyao Li
- Department of Ultrasound Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongmo Wang
- Department of Ultrasound Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Recent Developments on the Roles of Calcium Signals and Potential Therapy Targets in Cervical Cancer. Cells 2022; 11:cells11193003. [PMID: 36230965 PMCID: PMC9563098 DOI: 10.3390/cells11193003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.
Collapse
|
13
|
Zhang L, Au-Yeung CL, Huang C, Yeung TL, Ferri-Borgogno S, Lawson BC, Kwan SY, Yin Z, Wong ST, Thomas V, Lu KH, Yip KP, Sham JSK, Mok SC. Ryanodine receptor 1-mediated Ca2+ signaling and mitochondrial reprogramming modulate uterine serous cancer malignant phenotypes. J Exp Clin Cancer Res 2022; 41:242. [PMID: 35953818 PMCID: PMC9373370 DOI: 10.1186/s13046-022-02419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker ryanodine receptor 1 (RYR1) identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival or disease stage, and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of RYR1 in the tumors is associated with advanced stage of the disease. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through Ca2+-dependent activation of AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression and survival in mouse models. Conclusions These findings provided insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02419-w.
Collapse
|
14
|
Weng S, Liu Z, Xu H, Ge X, Ren Y, Dang Q, Liu L, Zhang J, Luo P, Ren J, Han X. ALOX12: A Novel Insight in Bevacizumab Response, Immunotherapy Effect, and Prognosis of Colorectal Cancer. Front Immunol 2022; 13:910582. [PMID: 35833141 PMCID: PMC9271859 DOI: 10.3389/fimmu.2022.910582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a highly malignant cancer with poor prognosis and mortality rates. As the first biological agent approved for metastatic colorectal cancer (mCRC), bevacizumab was confirmed to exhibit good performance when combined with chemotherapy and immunotherapy. However, the efficacy of both bevacizumab and immunotherapy is highly heterogeneous across CRC patients with different stages. Thus, exploring a novel biomarker to comprehensively assess the prognosis and bevacizumab and immunotherapy response of CRC is of great significance. In our study, weighted gene co-expression network analysis (WGCNA) and the receiver operating characteristic (ROC) curves were employed to identify bevacizumab-related genes. After verification in four public cohorts and our internal cohort, ALOX12 was identified as a key gene related to bevacizumab response. Prognostic analysis and in vitro experiments further demonstrated that ALOX12 was closely associated with the prognosis, tumor proliferation, invasion, and metastasis. Multi-omics data analysis based on mutation and copy number variation (CNV) revealed that RYR3 drove the expression of ALOX12 and the deletion of 17p12 inhibited ALOX12 expression, respectively. Moreover, we interrogated the relationship between ALOX12 and immune cells and checkpoints. The results exhibited that high ALOX12 expression predicted a higher immune infiltration and better immunotherapy response, which was further validated in Tumor Immune Dysfunction and Exclusion (TIDE) and Subclass Mapping (SubMap) methods. Above all, our study provides a stable biomarker for clinical protocol optimization, prognostic assessment, precise treatment, and individualized treatment of CRC.
Collapse
Affiliation(s)
- Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| |
Collapse
|
15
|
Paschou M, Papazafiri P, Charalampous C, Zachariadis M, Dedos SG, Doxakis E. Neuronal microRNAs safeguard ER Ca 2+ homeostasis and attenuate the unfolded protein response upon stress. Cell Mol Life Sci 2022; 79:373. [PMID: 35727337 PMCID: PMC11073139 DOI: 10.1007/s00018-022-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/23/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Ca2+ is a critical mediator of neurotransmitter release, synaptic plasticity, and gene expression, but also excitotoxicity. Ca2+ signaling and homeostasis are coordinated by an intricate network of channels, pumps, and calcium-binding proteins, which must be rapidly regulated at all expression levels. Τhe role of neuronal miRNAs in regulating ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs) was investigated to understand the underlying mechanisms that modulate ER Ca2+ release. RyRs and IP3Rs are critical in mounting and propagating cytosolic Ca2+ signals by functionally linking the ER Ca2+ content, while excessive ER Ca2+ release via these receptors is central to the pathophysiology of a wide range of neurological diseases. Herein, two brain-restricted microRNAs, miR-124-3p and miR-153-3p, were found to bind to RyR1-3 and IP3R3 3'UTRs, and suppress their expression at both the mRNA and protein level. Ca2+ imaging studies revealed that overexpression of these miRNAs reduced ER Ca2+ release upon RyR/IP3R activation, but had no effect on [Ca2+]i under resting conditions. Interestingly, treatments that cause excessive ER Ca2+ release decreased expression of these miRNAs and increased expression of their target ER Ca2+ channels, indicating interdependence of miRNAs, RyRs, and IP3Rs in Ca2+ homeostasis. Furthermore, by maintaining the ER Ca2+ content, miR-124 and miR-153 reduced cytosolic Ca2+ overload and preserved protein-folding capacity by attenuating PERK signaling. Overall, this study shows that miR-124-3p and miR-153-3p fine-tune ER Ca2+ homeostasis and alleviate ER stress responses.
Collapse
Affiliation(s)
- Maria Paschou
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Panagiota Papazafiri
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Chrysanthi Charalampous
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
| | - Michael Zachariadis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
- Material and Chemical Characterization Facility (MC2), Faculty of Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Skarlatos G Dedos
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece.
| | - Epaminondas Doxakis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
16
|
Acute RyR1 Ca 2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 2021; 12:7219. [PMID: 34893614 PMCID: PMC8664928 DOI: 10.1038/s41467-021-27422-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Collapse
|
17
|
Chen M, Xu WM, Wang GY, Hou YX, Tian TT, Li YQ, Qi HJ, Zhou M, Kong WJ, Lu MX. Genetic variants of cell cycle pathway genes are associated with head and neck squamous cell carcinoma in the Chinese population. Carcinogenesis 2021; 42:1337-1346. [PMID: 34643214 DOI: 10.1093/carcin/bgab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Genetic alterations in the cell cycle pathway are common in head and neck squamous cell carcinoma (HNSCC). We identified four novel HNSCC susceptibility loci (CDKN1C rs452338, CDK4 rs2072052, E2F2 rs3820028 and E2F2 rs2075993) through a two-stage matched case-control study. There was a combined effect among the four single nucleotide polymorphisms (SNPs), as the number of risk genotypes increased, the risk of HNSCC displayed an increasing trend (Ptrend < 0.001). And there were multiplicative interactions between rs452338 and rs2072052, rs2072052 and rs3820028, rs2072052 and rs2075993. Functional bioinformatics analysis and dual-luciferase reporter assay revealed that E2F2 rs2075993 T>C reduced the stability of E2F2 3'-UTR secondary structure and affected the binding of E2F2 to miR-940, which was up-regulated in HNSCC tumor tissues (P = 2.9e-8) and was correlated with poor overall survival of HNSCC (HR = 1.39, 95% CI = 1.02-1.90). In vitro assays, we discovered that the expression of miR-940 was regulated by METTL3, and miR-940 promoted the proliferation, migration and invasion, and inhibited the senescence and autophagy of tumor cells. In terms of mechanism, compared with rs2075993 allele T, we found that the protective variant rs2075993 allele C interfered with the translational inhibition of E2F2 by miR-940, resulting in increased expression of E2F2 protein, which further reduced the proliferation, migration, invasion, and increased the senescence of tumor cells.
Collapse
Affiliation(s)
- Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Mao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gui-Yang Wang
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Wuhan Pulmonary Hospital, Tuberculosis Control and Management Office, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Ya-Xuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206,China
| | - Yu-Qing Li
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Medical Insurance Office, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Hong-Jiao Qi
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei-Xia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Human microRNA similarity in breast cancer. Biosci Rep 2021; 41:229885. [PMID: 34612484 PMCID: PMC8529337 DOI: 10.1042/bsr20211123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in a variety of human diseases, including breast cancer. A number of miRNAs are up- and down-regulated in breast cancer. However, little is known about miRNA similarity and similarity network in breast cancer. Here, a collection of 272 breast cancer-associated miRNA precursors (pre-miRNAs) were utilized to calculate similarities of sequences, target genes, pathways and functions and construct a combined similarity network. Well-characterized miRNAs and their similarity network were highlighted. Interestingly, miRNA sequence-dependent similarity networks were not identified in spite of sequence–target gene association. Similarity networks with minimum and maximum number of miRNAs originate from pathway and mature sequence, respectively. The breast cancer-associated miRNAs were divided into seven functional classes (classes I–VII) followed by disease enrichment analysis and novel miRNA-based disease similarities were found. The finding would provide insight into miRNA similarity, similarity network and disease heterogeneity in breast cancer.
Collapse
|
19
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
20
|
Zhang T, Zhang SW, Li Y. Identifying Driver Genes for Individual Patients through Inductive Matrix Completion. Bioinformatics 2021; 37:4477-4484. [PMID: 34175939 DOI: 10.1093/bioinformatics/btab477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The driver genes play a key role in the evolutionary process of cancer. Effectively identifying these driver genes is crucial to cancer diagnosis and treatment. However, due to the high heterogeneity of cancers, it remains challenging to identify the driver genes for individual patients. Although some computational methods have been proposed to tackle this problem, they seldom consider the fact that the genes functionally similar to the well-established driver genes may likely play similar roles in cancer process, which potentially promotes the driver gene identification. Thus, here we developed a novel approach of IMCDriver to promote the driver gene identification both for cohorts and individual patients. RESULTS IMCDriver first considers the well-established driver genes as prior information, and adopts the using multi-omics data (e.g., somatic mutation, gene expression and protein-protein interaction) to compute the similarity between patients/genes. Then, IMCDriver prioritizes the personalized mutated genes according to their functional similarity to the well-established driver genes via Inductive Matrix Completion. Finally, IMCDriver identifies the highly rank-ordered genes as the personalized driver genes. The results on five cancer datasets from TCGA show that our IMCDriver outperforms other existing state-of-the-art methods both in the cohort and patient-specific driver gene identification. IMCDriver also reveals some novel driver genes that potentially drive cancer development. In addition, even for the driver genes rarely mutated among a population, IMCDriver can still identify them and prioritize them with high priorities. AVAILABILITY Code available at https://github.com/NWPU-903PR/IMCDriver. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China Xi'an.,School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China Xi'an
| | - Yan Li
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China Xi'an
| |
Collapse
|
21
|
Xu Y, Xu F, Lv Y, Wang S, Li J, Zhou C, Jiang J, Xie B, He F. A ceRNA-associated risk model predicts the poor prognosis for head and neck squamous cell carcinoma patients. Sci Rep 2021; 11:6374. [PMID: 33737696 PMCID: PMC7973582 DOI: 10.1038/s41598-021-86048-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant cancers with poor prognosis worldwide. Emerging evidence indicates that competing endogenous RNAs (ceRNAs) are involved in various diseases, however, the regulatory mechanisms of ceRNAs underlying HNSCC remain unclear. In this study, we retrieved differentially expressed long non-coding RNAs (DElncRNAs), messenger RNAs (DEmRNAs) and microRANs (DEmiRNAs) from The Cancer Genome Atlas database and constructed a ceRNA-based risk model in HNSCC by integrated bioinformatics approaches. Functional enrichment analyses showed that DEmRNAs might be involved in extracellular matrix related biological processes, and protein–protein interaction network further selected out prognostic genes, including MYL1 and ACTN2. Importantly, co-expressed RNAs identified by weighted co-expression gene network analysis constructed the ceRNA networks. Moreover, AC114730.3, AC136375.3, LAT and RYR3 were highly correlated to overall survival of HNSCC by Kaplan–Meier method and univariate Cox regression analysis, which were subsequently implemented multivariate Cox regression analysis to build the risk model. Our study provides a deeper understanding of ceRNAs on the regulatory mechanisms, which will facilitate the expansion of the roles on the ceRNAs in the tumorigenesis, development and treatment of HNSCC.
Collapse
Affiliation(s)
- Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Fengqin Xu
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, Jiangsu, People's Republic of China
| | - Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Siyuan Wang
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jia Li
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Chuan Zhou
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jimin Jiang
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, People's Republic of China.
| | - Fuming He
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395# Yanan Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Zhang L, Han L, Huang Y, Feng Z, Wang X, Li H, Song F, Liu L, Li J, Zheng H, Wang P, Song F, Chen K. SNPs within microRNA binding sites and the prognosis of breast cancer. Aging (Albany NY) 2021; 13:7465-7480. [PMID: 33658398 PMCID: PMC7993692 DOI: 10.18632/aging.202612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within microRNA binding sites can affect the binding of microRNA to mRNA and regulate gene expression, thereby contributing to cancer prognosis. Here we performed a two-stage study of 2647 breast cancer patients to explore the association between SNPs within microRNA binding sites and breast cancer prognosis. In stage I, we genotyped 192 SNPs within microRNA binding sites using the Illumina Goldengate platform. In stage II, we validated SNPs associated with breast cancer prognosis in another dataset using the TaqMan platform. We identified 8 SNPs significantly associated with breast cancer prognosis in stage I (P<0.05), and only rs10878441 was statistically significant in stage II (AA vs CC, HR=2.21, 95% CI: 1.11-4.42, P=0.024). We combined the data from stage I and stage II, and found that, compared with rs10878441 AA genotype, CC genotype was associated with poor survival of breast cancer (HR=2.19, 95% CI: 1.30-3.70, P=0.003). Stratified analyses demonstrated that rs10878441 was related to breast cancer prognosis in grade II and lymph node-negative patients (P<0.05). The Leucine-rich repeat kinase 2 (LRRK2) rs10878441 CC genotype is associated with poor prognosis of breast cancer in a Chinese population and may be used as a potential prognostic biomarker for breast cancer. • The LRRK2 rs10878441 CC genotype is associated with poor prognosis of breast cancer in a Chinese population. • Stratified analyses demonstrated that rs10878441 was related to breast cancer prognosis in grade II patients and lymph node-negative patients.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Lu Han
- Department of Infection Control, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Ziwei Feng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Sichuan 610041, People's Republic of China
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China.,Department of Cancer Biobank, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Junxian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Peishan Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| |
Collapse
|
23
|
Kang N, Ou Y, Wang G, Chen J, Li D, Zhan Q. miR-875-5p exerts tumor-promoting function via down-regulation of CAPZA1 in esophageal squamous cell carcinoma. PeerJ 2021; 9:e10020. [PMID: 33505778 PMCID: PMC7792515 DOI: 10.7717/peerj.10020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer deaths worldwide. Currently, efficient genetic markers for diagnosis and treatment of ESCC are lacking. MicroRNAs (miRNAs) are global genetic regulators that control cancer gene expression by binding to the 3'untranslated regions (3'UTRs) of targeting mRNAs. In addition, miRNAs function as oncogenes or tumor suppressors in the progression of tumors. In the current study, we found that hsa-miR-875-5p (miR-875-5p) exhibited amplification in ESCC according to the TCGA database. Then, xCELLigence Real-Time Cell Analyzer (RTCA)-MP system and colony formation assays were employed to detect cell proliferationand colony formationability. The results showed that miR-875-5p promoted the proliferation ESCC cells. Subsequently, transwell results indicated that miR-875-5p promoted the invasion and migration of ESCC cells. Furthermore, we showed that miR-875-5p was able to bind to CAPZA13'UTR, which contains the single nucleotide polymorphism (SNP), rs373245753, as reported in our previous study involving WGS and WES on ESCC. Subsequently, mRNA affinity pull-down assays verifiedthat the SNP disrupts miR-875-5p binding to CAPZA1. The current study is the first demonstration that miR-875-5p may function as an oncogene via down-regulation of CAPZA1 expression in ESCC.
Collapse
Affiliation(s)
- Nan Kang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yunwei Ou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
24
|
Garcia Mesa K, Bermejo JL, Torres D, Gilbert M, Plass C, Hamann U. Genetic Variability in the microRNA Binding Sites of BMPR1B, TGFBR1, IQGAP1, KRAS, SETD8 and RYR3 and Risk of Breast Cancer in Colombian Women. Onco Targets Ther 2020; 13:12281-12287. [PMID: 33311986 PMCID: PMC7727273 DOI: 10.2147/ott.s274431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Genetic variants in microRNA (miR) binding sites affect the regulation of miR-dependent gene expression and have been linked to the risk of a variety of cancers including breast cancer (BC). Most BC risk variants had been identified in women of European and Asian ancestry, but genetic data for Hispanic women are scarce. Here, we investigate the association between six variants in miR binding sites and BC risk in Colombian women. Methods We genotyped miR binding site variants in the BMPR1B, TGFBR1, IQGAP1, KRAS, SETD8 and RYR3 genes in 1022 BC cases and 1023 controls from the Colombian breast cancer case–control (Col-BCCC) study using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Multiple logistic regression and permutation techniques were applied to assess the association between genetic variants and BC risk. Results We found no evidence of association between any of the six miR binding site variants and overall or estrogen receptor subtype-specific BC risk in Colombian women. Conclusion Our findings may point to ethnic differences in the association between genetic variability in miR binding sites and breast cancer risk.
Collapse
Affiliation(s)
- Karen Garcia Mesa
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Michael Gilbert
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
26
|
Bahreini F, Rayzan E, Rezaei N. microRNA-related single-nucleotide polymorphisms and breast cancer. J Cell Physiol 2020; 236:1593-1605. [PMID: 32716070 DOI: 10.1002/jcp.29966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer, as the most common cancer in women which affects patients both mentally and physically, requires great attention in many areas and many levels as this cancer is known to be multifactorial. Single-stranded molecules called microRNAs with near 22 nucleotides are seen to act in central dogma of molecular biology by inhibiting the translation process; it is demonstrated that any alteration in their sequence especially single-nucleotide polymorphisms (SNPs) may lead into increasing the breast cancer risk. miR-SNPs are considered to be the potential biomarkers for early detection of breast cancer. As a result, this review documents the well-known miR-SNPs that are known to be associated with breast cancer. In this regard, two principals were discussed: (a) SNPs in the target genes of microRNAs and the alteration in gene expression due to this phenomenon; (b) changes based on the SNPs in the microRNA coding region and the impact on their interaction with target messenger RNA.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts, Universal Scientific Education and Research Network, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| |
Collapse
|
27
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
28
|
Wei Y, Wang X, Zhang Z, Zhao C, Chang Y, Bian Z, Zhao X. Impact of NR5A2 and RYR2 3'UTR polymorphisms on the risk of breast cancer in a Chinese Han population. Breast Cancer Res Treat 2020; 183:1-8. [PMID: 32572717 DOI: 10.1007/s10549-020-05736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The NR5A2 and RYR2 genes are important players in steroid metabolism and play an important role in cancer research. In this research, we want to evaluate the effect of NR5A2 and RYR2 polymorphisms on breast cancer (BC). METHODS Four single nucleotide polymorphisms on NR5A2 and RYR2 were selected to genotype by Agena MassARRAY in 379 BC patients and 407 healthy controls. Using the PLINK software to calculate the Odds ratio (OR) and 95% confidence intervals (CIs) via the logistic regression analysis to evaluate the risk for BC. RESULTS We found that NR5A2 rs2246209 significantly decreased the risk of BC with the AA genotype (OR 0.58, 95%CI 0.34-0.99, p = 0.049), and recessive model (OR 0.59, 95%CI 0.35-0.99, p = 0.046); rs12594 in the RYR2 gene significantly decreased the risk of BC in the GG genotype (OR 0.44, 95%CI 0.22-0.88, p = 0.020), and recessive model (OR 0.43, 95%CI 0.21-0.85, p = 0.016). Further stratification analysis showed that NR5A2 rs2246209 was related to a lower incidence of BC affected by age, lymph nodes metastasis, and tumor stage; RYR2 rs12594 was related to a decreased BC risk restricted by age, estrogen receptor (ER), progesterone receptor (PR), menopausal status, tumor size, and tumor stage. Rs12594 in the RyR2 gene remained significant on the genetic susceptibility of PR-positive BC after Bonferroni correction (p < 0.0125). CONCLUSIONS This study provides an evidence that NR5A2 rs2246209 and RYR2 rs12594 decreased the risk of breast cancer.
Collapse
Affiliation(s)
- Ying Wei
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, 710061, Shaanxi, China.,Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Xiaolin Wang
- Department of General Surgery, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Zhe Zhang
- Department of General Surgery, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Changtao Zhao
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Yuwei Chang
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Zhiqing Bian
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Xinhan Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
30
|
Si J, Quan M, Xiao L, Xie J, Du Q, Zhang D. Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Mol Genet Genomics 2020; 295:855-870. [PMID: 32361785 DOI: 10.1007/s00438-020-01667-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in all aspects of plant growth and development, but the genetic interactions of miRNAs and their target genes in woody plants are largely unknown. Here, we integrated association genetics and expression profiling to decipher the allelic variations and interactions of the Pto-MIR319 family of miRNAs and 12 putative Pto-miR319 target genes related to wood formation in 435 unrelated individuals of Populus tomentosa Carrière (Chinese white poplar). Expression pattern analysis showed that among all pairings between expressions of pre-miRNA of Pto-MIR319 members and targets, 70.0% showed negative correlation of expression levels (r = - 0.944 to 0.674, P < 0.01) in eight tissues and organs of poplar, suggesting that Pto-miR319 may participate in the regulatory network of wood formation. Single SNP-based association studies identified 137 significant associations (P < 0.01, Q < 0.1), representing 126 unique SNPs from Pto-MIR319 members and their targets, with 10 tree growth traits, revealing that these genetic factors have common roles related to wood formation. Epistasis analysis uncovered 105 significant SNP-SNP associations (P < 0.01) influencing the 10 traits, demonstrating the close genetic interactions between Pto-MIR319 family members and the 12 Pto-miR319 target genes. Notably, one common SNP, in the precursor region of Pto-MIR319e, affected the stability of Pto-MIR319e's secondary structure by altering the stem-loop structure and minimum free energy, contributing to variations in the expression of Pto-MIR319e and Pto-miR319e target genes. This study enriches the understanding of the functions of miR319 family miRNAs in poplar and exemplifies a feasible approach to exploring the genetic effects underlying miRNA-mRNA interactions related to complex traits in trees.
Collapse
Affiliation(s)
- Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
31
|
Ahmad M, Shah AA. Predictive role of single nucleotide polymorphism (rs11614913) in the development of breast cancer in Pakistani population. Per Med 2020; 17:213-227. [PMID: 32320336 DOI: 10.2217/pme-2019-0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: miRNAs play an important role in breast cancer (BC). Variations in miRNAs influence their maturation, expression and consequently regulation of their target genes. Materials & methods: In this study, single nucleotide polymorphism rs11614913 was genotyped in BC patients (n = 300) and 230 controls by employing tetra primer amplification refractory mutation system PCR and Sanger sequencing (Macrogen Korea). Results: A significant difference was observed in the genotypes through co-dominant (χ2.#x00A0;= 42.03; p < 0.0001), additive (odds ratio [OR] = 0.6441 [0.4887-0.8490, 95% confidence interval]; p < 0.0019), dominant (OR = 0.3996 [0.2809-0.5686], p < 0.0001) and recessive (OR = 0.2993 [0.1220-0.7347], p < 0.009) statistical models showed decreased risk association of C allele with BC. Conclusion: Females having CT genotype are at higher risk of BC as compared with those having CC genotype.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Aftab Ali Shah
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
32
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
33
|
Camara AB, Brandao IA. The Role of Vitamin D and Sunlight Incidence in Cancer. Anticancer Agents Med Chem 2020; 19:1418-1436. [PMID: 30864510 DOI: 10.2174/1389557519666190312123212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vitamin D (VD) deficiency affects individuals of different ages in many countries. VD deficiency may be related to several diseases, including cancer. OBJECTIVE This study aimed to review the relationship between VD deficiency and cancer. METHODS We describe the proteins involved in cancer pathogenesis and how those proteins can be influenced by VD deficiency. We also investigated a relationship between cancer death rate and solar radiation. RESULTS We found an increased bladder cancer, breast cancer, colon-rectum cancer, lung cancer, oesophagus cancer, oral cancer, ovary cancer, pancreas cancer, skin cancer and stomach cancer death rate in countries with low sunlight. It was also observed that amyloid precursor protein, ryanodine receptor, mammalian target of rapamycin complex 1, and receptor for advanced glycation end products are associated with a worse prognosis in cancer. While the Klotho protein and VD receptor are associated with a better prognosis in the disease. Nfr2 is associated with both worse and better prognosis in cancer. CONCLUSION The literature suggests that VD deficiency might be involved in cancer progression. According to sunlight data, we can conclude that countries with low average sunlight have high cancers death rate. New studies involving transcriptional and genomic data in combination with VD measurement in long-term experiments are required to establish new relationships between VD and cancer.
Collapse
Affiliation(s)
- Alice B Camara
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil
| | - Igor A Brandao
- Metrópole Digital Institute, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
| |
Collapse
|
34
|
Pan Y, Zhang JH, Zhao L, Guo JC, Wang S, Zhao Y, Tao S, Wang H, Zhu YB. A robust two-gene signature for glioblastoma survival prediction. J Cell Biochem 2020; 121:3593-3605. [PMID: 31960992 DOI: 10.1002/jcb.29653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan-Meier analysis, t-distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two-gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2-RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64-0.98, vs median: 0.98, 95% CI: 0.65-1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70-1.18, vs median: 1.21, 95% CI: 0.95-2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86-1.24, vs median: 1.23, 95% CI: 1.04-1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two-gene signature was a robust prognostic model to predict GBM survival.
Collapse
Affiliation(s)
- Yuhualei Pan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Jian-Hua Zhang
- Department of Blood Transfusion, Peking University People's Hospital, Peking university, Beijing, China
| | - Lianhe Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Cheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Song Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Yushang Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Shaoxin Tao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Yan-Bing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
O'Grady S, Morgan MP. Calcium transport and signalling in breast cancer: Functional and prognostic significance. Semin Cancer Biol 2019; 72:19-26. [PMID: 31866475 DOI: 10.1016/j.semcancer.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Comprised of a complex network of numerous intertwining pathways, the Ca2+ signalling nexus is an essential mediator of many normal cellular activities. Like many other such functions, the normal physiological activity of Ca2+ signalling is frequently co-opted and reshaped in cases of breast cancer, creating a potent oncogenic drive within the affected cell population. Such modifications can occur within pathways mediating either Ca2+ import (e.g. TRP channels, ORAI-STIM1) or Ca2+ export (e.g. PMCA), indicating that both increases and decreases within cellular Ca2+ levels have the potential to increase the malignant potential of a cell. Increased understanding of these pathways may offer clinical benefit in terms of both prognosis and treatment; patient survival has been linked to expression levels of certain Ca2+ transport proteins, whilst selective targeting of these factors with novel anti-cancer agents has demonstrated a variety of anti-tumour effects in in vitro studies. In addition, the activity of several Ca2+ signalling pathways has been shown to influence chemotherapy response, suggesting that a synergistic approach coupling traditional chemotherapy with Ca2+ targeting agents may also improve patient outcome. As such, targeted modulation of these pathways represents a novel approach in precision medicine and breast cancer therapy.
Collapse
Affiliation(s)
- Shane O'Grady
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Maria P Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
36
|
Gholami M, Larijani B, Sharifi F, Hasani‐Ranjbar S, Taslimi R, Bastami M, Atlasi R, Amoli MM. MicroRNA-binding site polymorphisms and risk of colorectal cancer: A systematic review and meta-analysis. Cancer Med 2019; 8:7477-7499. [PMID: 31637880 PMCID: PMC6885874 DOI: 10.1002/cam4.2600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in miRNAs binding site might participate in cancer risk. This study aimed to systematically review the association between miRNA-binding site polymorphisms and colorectal cancer (CRC). Electronic literature search was carried out on PubMed, Web of Science (WOS), Scopus, and Embase. All types of observational studies till 30 November 2018 were included. Overall 85 studies (21 SNPs) from two systematic searches were included analysis. The results showed that in the Middle East population, the minor allele of rs731236 was associated with decreased risk of CRC (heterozygote model: 0.76 [0.61-0.95]). The minor allele of rs3025039 was related to increased risk of CRC in East Asian population (allelic model: 1.25 [1.01-1.54]). Results for rs3212986 were significant in overall and subgroup analysis (P < .05). For rs1801157 in subgroup analysis the association was significant in Asian populations (including allelic model: 2.28 [1.11-4.69]). For rs712, subgroup analysis revealed a significant (allelic model: 1.41 [1.23-1.61]) and borderline (allelic model: 0.92 [0.84-1.00]) association in Chinese and Czech populations, respectively. The minor allele of rs17281995 increased risk of CRC in different genetic models (P < .05). Finally, rs5275, rs4648298, and rs61764370 did not show significant associations. In conclusion, minor allele of rs3025039, rs3212986, and rs712 polymorphisms increases the risk of CRC in the East Asian population, and heterozygote model of rs731236 polymorphism shows protective effect in the Middle East population. In Europeans, the minor allele of rs17281995 may increase the risk of CRC, while rs712 may have a protective effect. Further analysis based on population stratifications should be considered in future studies.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Farshad Sharifi
- Elderly Health Research CenterEndocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of GastroenterologyImam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical GeneticsFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Rasha Atlasi
- Evidence Based Practice Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
37
|
Piperigkou Z, Karamanos NK. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem Sci 2019; 44:1076-1088. [DOI: 10.1016/j.tibs.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
38
|
Wu Q, Zhong H, Jiao L, Wen Y, Zhou Y, Zhou J, Lu X, Song X, Ying B. MiR-124-3p inhibits the migration and invasion of Gastric cancer by targeting ITGB3. Pathol Res Pract 2019; 216:152762. [PMID: 31836324 DOI: 10.1016/j.prp.2019.152762] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gastric cancer is one of the major malignant tumors in the world. Integrins expressed in cancer cells can promote tumor progression and migration. MiRNAs can inhibit the expression of target genes by directly binding to their mRNAs and can affect various important biological processes. The aim of this study was to investigate the role of miR-124- 3p and ITGB3 in gastric cancer. METHODS RT-PCR and western blot are used to detect the expression of miR-124-3p, ITGB3 and integrin β3 in gastric cancer tissues and cells. The wound healing, CCK-8 assay, transwell migration and invasion assay were performed to determine the cell proliferation, migration and invasion. What's more, bioinformatics prediction and luciferase assay was conducted to demonstrated the binding efficiency between miR-124-3p and ITGB3. RESULTS We verified that ITGB3 and miR-124-3p changes the migration and invasion of gastric cancer cells in vitro. The overexpression or silencing of miR-124-3p inhibited or promoted the proliferation, migration and invasion of both selected gastric cancer cells, and ITGB3 is just the reverse. Meanwhile, we validated that ITGB3 is the target of miR-124-3p by bioinformatics prediction and luciferase assay. Lastly, the expression of ITGB3 in 40 pairs of gastric cancer tissues were significantly higher than that in the adjacent normal tissues, while the expression level of miR-124-3p was significantly decreased in cancer tissues. CONCLUSIONS miR-124-3p inhibits the migration and invasion of Gastric cancer by targeting ITGB3 in gastric cancer cells. Our results suggested that miR-124-3p and ITGB3 may reasonably serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiyu Zhong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
39
|
Rezaeian AH, Khanbabaei H, Calin GA. Therapeutic Potential of the miRNA-ATM Axis in the Management of Tumor Radioresistance. Cancer Res 2019; 80:139-150. [PMID: 31767626 DOI: 10.1158/0008-5472.can-19-1807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is widely known for its function as a chief mobilizer of the DNA damage response (DDR) upon DNA double-strand breaks. ATM orchestrates the DDR by modulating the expression of various miRNAs through several mechanisms. On the other hand, a set of miRNAs contribute to tight regulation of ATM by directly targeting the 3'-untranslated region of ATM mRNA. This review addresses the therapeutic application and molecular mechanisms that underlie the intricate interactions between miRNAs and ATM. It also describes therapeutic delivery of miRNAs in different environments such as hypoxic tumor microenvironments.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia and the Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Zhou L, Dong S, Deng Y, Yang P, Zheng Y, Yao L, Zhang M, Yang S, Wu Y, Zhai Z, Li N, Kang H, Dai Z. GOLGA7 rs11337, a Polymorphism at the MicroRNA Binding Site, Is Associated with Glioma Prognosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:56-65. [PMID: 31525662 PMCID: PMC6745486 DOI: 10.1016/j.omtn.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs bind to the 3' untranslated regions of mRNAs, affecting translation, tumorigenesis, and apoptosis. This study evaluated the role of TYMS (rs1059394, C > T, and rs2847153, G > A), RYR3 (rs1044129, G > A), KIAA0423 (rs1053667, T > C), and GOLGA7 (rs11337, G > T) polymorphisms for assessment of glioma risk and prognosis among the Chinese Han population. Five single-nucleotide polymorphisms were assessed in 605 glioma patients and 1,300 controls. We found a significant correlation between rs1059394 and glioma susceptibility in the homozygote and dominant genetic models (TT versus CC, odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.52-0.97, p = 0.03; CT+TT versus CC, OR = 0.74, 95% CI = 0.55-0.99, p = 0.04). The results of the Kaplan-Meier and log rank tests revealed that the rs11337 GG genotype correlated with better overall survival of glioma patients (p = 0.017) than the GT genotype. Multivariate Cox regression analysis results also showed that the rs11337 GT genotype correlated with worse overall survival (p = 0.017, hazard ratio [HR] = 1.25, 95% CI = 1.04-1.5) than the GG genotype. These results suggest that GOLGA7 (rs11337) polymorphism may play a role in the prognosis of glioma patients and that TYMS (rs1059394) is associated with glioma risk.
Collapse
Affiliation(s)
- Linghui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
41
|
Yang J, Gong Y, Cai J, Liu Q, Zhang Z. lnc-3215 Suppression Leads to Calcium Overload in Selenium Deficiency-Induced Chicken Heart Lesion via the lnc-3215-miR-1594-TNN2 Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:1-15. [PMID: 31479920 PMCID: PMC6726916 DOI: 10.1016/j.omtn.2019.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023]
Abstract
Selenium deficiency has been proven to induce calcium disorders in the chicken heart. However, detailed regulatory mechanisms, e.g., the long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axis, have not yet been described. Here, we point out lnc-2315, miR-1594, and Troponin T (TNNT2) based on the results of lncRNA and miRNA comparative genomics group analysis of Se-deficient chicken hearts compared with control hearts. We employed lnc-3215 and TNNT2 knockdown, miR-1594 knockdown, and overexpression models in the chicken embryos in vivo, and lnc-3215, miR-1594, and TNNT2 knockdown and overexpression models in cardiomyocytes in vitro. The dual-luciferase reporter assay and quantitative real-time PCR were used to confirm the relationships between miR-1594 and TNNT2, lnc-3215, and miR-1594 in cardiomyocytes. Our results revealed that TNNT2 suppression induced cardiac calcium overload in vivo and in vitro. miR-1594 activates cardiac calcium overload by targeting TNNT2. Moreover, we found that lnc-3215 regulates miR-1594, and thus influences the TNNT2 expression in vivo and in vitro; these conclusions were verified by gene knockdown in chicken embryos. Our present study revealed a novel regulatory model of a calcium program, which comprises lnc-3215, miR-1594, and TNNT2 in the chicken heart. Our conclusions may provide a feasible diagnostic tool for Se-deficient cardiomyocytes injury.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
42
|
Nielsen BS, Holmstrøm K. Combined MicroRNA In Situ Hybridization and Immunohistochemical Detection of Protein Markers. Methods Mol Biol 2019; 1953:271-286. [PMID: 30912028 DOI: 10.1007/978-1-4939-9145-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are short (18-23 nucleotides) noncoding RNAs involved in posttranscriptional regulation of gene expression through their specific binding to the 3'UTR of mRNAs. MicroRNAs can be detected in tissues using specific locked nucleic acid (LNA)-enhanced probes. The characterization of microRNA expression in tissues by in situ detection is often crucial following a microRNA biomarker discovery phase in order to validate the candidate microRNA biomarker and allow better interpretation of its molecular functions and derived cellular interactions. The in situ hybridization data provides information about contextual distribution and cellular origin of the microRNA. By combining microRNA in situ hybridization with immunohistochemical staining of protein markers, it is possible to precisely characterize the microRNA-expressing cells and to identify the potential microRNA targets. This combined technology can also help to monitor changes in the level of potential microRNA targets in a therapeutic setting. In this chapter, we present a fluorescence-based detection method that allows the combination of microRNA in situ hybridization with immunohistochemical staining of one and, in this updated version of the paper, two protein markers detected with primary antibodies raised in the same host species.
Collapse
|
43
|
Zhang R, Pan B, Li Y, Li X. SNP rs4937333 in the miRNA-5003-Binding Site of the ETS1 3'-UTR Decreases ETS1 Expression. Front Genet 2019; 10:581. [PMID: 31275358 PMCID: PMC6593064 DOI: 10.3389/fgene.2019.00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in and reduced expression of the ETS1 gene may be associated with systemic lupus erythematosus (SLE). Here, we report a replication study to investigate associations of eight ETS1 single-nucleotide polymorphisms in the 3′-untranslated region (3′-UTR) with SLE and their regulation of ETS1 expression in a study population. We found that the rs4937333 T allele was associated with a significantly increased risk of SLE (odds ratio: 1.800, 95% confidence interval: 1.02–3.157, P = 0.040) and with dramatically reduced levels of ETS1 in B cells from SLE subjects. Functionally, the rs4937333 T allele alters the binding affinity between miR-5003 and its ETS1 3′-UTR target, thus enhancing suppression of ETS1 expression. Furthermore, immunoglobulin M-secreting plasmacytes were significantly reduced among B cells with the rs4937333 C allele versus the T allele according to FACS and ELISA. Additionally, miR-5003 expression was higher in B cells than in T cells from SLE patients, and a negative correlation between miR-5003 and ETS1 was found, especially in B cells with the T allele. These findings suggest that the rs4937333 T allele is a risk factor for susceptibility to SLE in the studied population. The rs4937333 T allele may enhance the binding of miR-5003 to ETS1, which probably promotes the involvement of ETS1 in the differentiation of B cells into plasmacytes.
Collapse
Affiliation(s)
- Ruixian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Bangpin Pan
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Li
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
44
|
Jo M, Trujillo AN, Yang Y, Breslin JW. Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels. Am J Physiol Heart Circ Physiol 2019; 317:H561-H574. [PMID: 31274355 DOI: 10.1152/ajpheart.00564.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics.NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.
Collapse
Affiliation(s)
- Michiko Jo
- Department of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Andrea N Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
45
|
Wang X, Liu H, Xu Y, Xie J, Zhu D, Amos CI, Fang S, Lee JE, Li X, Nan H, Song Y, Wei Q. Genetic variants in the calcium signaling pathway genes are associated with cutaneous melanoma-specific survival. Carcinogenesis 2019; 40:279-288. [PMID: 30596980 PMCID: PMC6487681 DOI: 10.1093/carcin/bgy188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Remodeling or deregulation of the calcium signaling pathway is a relevant hallmark of cancer including cutaneous melanoma (CM). In this study, using data from a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center, we assessed the role of 41,377 common single-nucleotide polymorphisms (SNPs) of 167 calcium signaling pathway genes in CM survival. We used another GWAS from Harvard University as the validation dataset. In the single-locus analysis, 1830 SNPs were found to be significantly associated with CM-specific survival (CMSS; P ≤ 0.050 and false-positive report probability ≤ 0.2), of which 9 SNPs were validated in the Harvard study (P ≤ 0.050). Among these, three independent SNPs (i.e. PDE1A rs6750552 T>C, ITPR1 rs6785564 A>G and RYR3 rs2596191 C>A) had a predictive role in CMSS, with a meta-analysis-derived hazards ratio of 1.52 (95% confidence interval = 1.19-1.94, P = 7.21 × 10-4), 0.49 (0.33-0.73, 3.94 × 10-4) and 0.67 (0.53-0.86, 0.0017), respectively. Patients with an increasing number of protective genotypes had remarkably improved CMSS. Additional expression quantitative trait loci analysis showed that these genotypes were also significantly associated with mRNA expression levels of the genes. Taken together, these results may help us to identify prospective biomarkers in the calcium signaling pathway for CM prognosis.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jichun Xie
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Dakai Zhu
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
46
|
Ahmad M, Ahmad S, Rahman B, Haq TU, Jalil F, Shah AA. Association of MIR146A rs2910164 variation with a predisposition to sporadic breast cancer in a Pakistani cohort. Ann Hum Genet 2019; 83:325-330. [PMID: 30963551 DOI: 10.1111/ahg.12316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in genes coding for microRNAs (miRNAs) play a pivotal role in the progression of breast cancer (BC). We investigated the association of miR-146a rs2910164 GC polymorphism with the risk of BC in the Pakistani population. The miR-146a rs2910164 polymorphism was genotyped in 300 BC cases and 300 age- and gender-matched healthy controls using T-ARMS-PCR. Genotype and allele frequencies were calculated and the association between genotypes and the risk of BC was calculated by odds ratio (OR) and confidence interval (95%). A significant difference in genotypic frequencies (χ2 = 63.10; P = <0.0001) and allelic frequencies (OR = 0.3955 (0.3132-0.4993); P = < 0.0001) was observed between cases and controls. Furthermore, we also found that miR-146 rs2910164 CC homozygote increased the risk of BC in the dominant (OR = 0.2397 (0.1629-0.3526); P = 0.0001; GG vs. GC + CC) and recessive (OR = 2.803 (1.865-4.213); P = <0.0001; CC vs. GC + GG) inheritance models. In summary, miR-146a rs2910164 GC is significantly associated with BC in the Pakistani population. To our knowledge, this is the first study that assessed MIR146a rs2910164 G > C SNP in Pakistani population. By analyzing the secondary structure of MIR146A variant, a significant structural modification was noted. Study with a larger sample size is needed to further confirm of these findings.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Sadia Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Bashir Rahman
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Taqweem Ul Haq
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
47
|
Mei J, Yan T, Huang Y, Xia T, Chang F, Shen S, Hao L, Chen Y, Wang Z, Jiang X, Xu B, Zhu Y. A DAAM1 3'-UTR SNP mutation regulates breast cancer metastasis through affecting miR-208a-5p-DAAM1-RhoA axis. Cancer Cell Int 2019; 19:55. [PMID: 30911286 PMCID: PMC6417246 DOI: 10.1186/s12935-019-0747-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a member of microfilament-related formins and mediates cell motility in breast cancer (BrCa). However, the genetic mutation status of DAAM1 mRNA and its correlation with pathological characteristics are still unclearly. Methods: A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3′-UTR and underlying mechanism in BrCa metastasis. Methods A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3′-UTR and underlying mechanism in BrCa metastasis. Results The expression and activation of DAAM1 increased markedly in lymphnode metastatic tissues. A genetic variant (rs79036859 A/G) was validated in the miR-208a-5p binding site of DAAM1 3′-UTR. The G genotype (AG/GG) was a risk genotype for the metastasis of BrCa by reducing binding affinity of miR-208a-5p for the DAAM1 3′-UTR. Furthermore, the miR-208a-5p expression level was significantly suppressed in lymphnode metastatic tissues compared with that in non-lymphnode metastatic tissues. Overexpression of miR-208a-5p inhibited DAAM1/RhoA signaling pathway, thereby leading to the decrease of the migratory ability. Conclusion Overall, the rs79036859 G variant of DAAM1 3′-UTR was identified as a relevant role in BrCa metastasis via the diversity of miR-208a-5p binding affinity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0747-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Mei
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Ting Yan
- 2Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 China
| | - Yifu Huang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China.,3Department of Prevention and Healthcare, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400 China
| | - Tiansong Xia
- 4Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036 China
| | - Fei Chang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Shuning Shen
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Leiyu Hao
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Yin Chen
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Zhongyuan Wang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Xiaozheng Jiang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Bujie Xu
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Yichao Zhu
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China.,5State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
48
|
Zhang L, Huang Y, Feng Z, Wang X, Li H, Song F, Liu L, Li J, Zheng H, Wang P, Song F, Chen K. Comparison of breast cancer risk factors among molecular subtypes: A case-only study. Cancer Med 2019; 8:1882-1892. [PMID: 30761775 PMCID: PMC6488156 DOI: 10.1002/cam4.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies have a clear definition of the risk factors for breast cancer. However, it is unknown whether the distribution of these factors differs among breast cancer subtypes. We conducted a hospital‐based case‐only study consisting of 8067 breast cancer patients basing on the Tianjin Cohort of Breast Cancer Cases. Major breast cancer subtypes including luminal A, luminal B, human epidermal growth factor receptor 2 (HER2)‐enriched and basal‐like were defined by estrogen receptor, progesterone receptor, HER2, and Ki‐67 status. Variables including demographic characteristics, reproductive factors, lifestyle habits, imaging examination, and clinicopathologic data were collected for patients. Chi‐square test and one‐way analysis of variance were used to compare the distributions of variables among the four breast cancer subtypes. Multivariate logistic regression was used to estimate the odds ratios and associated 95% confidence intervals where luminal A patients served as the reference group. Overall, more commonality rather than heterogeneity on the distributions of factors was found between the four molecular subtypes of breast cancer. The proportion of overweight and obesity were lower in HER2‐enriched subtype. Women with age at menarche ≤13 years were more likely to be found in basal‐like subtype. Postmenopausal women were more frequent in HER2‐enriched and basal‐like subtypes. Women with benign breast disease and higher breast density were more common in HER2‐enriched subtype. Risk factor scoring showed that total risk scores were similar among the four subtypes. HER2‐enriched and basal‐like subtypes were more frequently diagnosed with large tumors. Calcification was more likely to be found in luminal B and HER2‐enriched subtypes, whereas less distributed in basal‐like subtype. Most of the breast cancer risk factors were similarly distributed among the four major breast cancer subtypes; commonality is predominant.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yubei Huang
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Ziwei Feng
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xin Wang
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Haixin Li
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Department of Cancer Biobank, National Clinical Research Centre of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Fangfang Song
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Luyang Liu
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Junxian Li
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hong Zheng
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Peishan Wang
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Fengju Song
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Kexin Chen
- Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
49
|
Sun Z, Xu H. Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 2018; 19:22-33. [DOI: 10.2174/1389557518666180330112908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) are calcium channels located on the endo(sarco)plasmic reticulum
of muscle cells and neurons. They regulate the release of stored intracellular calcium and play a
critical role in muscle contraction. The N-terminal part of these receptors accounts for roughly 80%
and contains the binding sites for diverse RyRs modulators. The C-terminal domain contains the
transmembrane region. This review summarizes the current knowledge about the molecular biology of
insect RyRs, chemicals targeting mammal or insect RyRs, and the reasons for mammal RyR-related
diseases and diamides resistances. It may lay the foundation for effective management of mammal
RyR-related diseases and diamides resistances.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
50
|
Khabou B, Tabebi M, Siala-Sahnoun O, Mkaouar-Rebai E, Rebai A, Fakhfakh F. Potential dysfunctional effects of synonymous variants: Insights from an exhaustive in silico analysis of the ABCB4 gene. Ann Hum Genet 2018; 82:457-468. [PMID: 30079523 DOI: 10.1111/ahg.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/30/2022]
Abstract
The multiple drug resistance 3 (MDR3) protein is a canalicular phospholipid translocator involved in the bile secretion and encoded by the ABCB4 gene. Its deficiency is related to a large spectrum of liver diseases. Taking into account the increased evidence about the involvement of synonymous variants in inherited diseases, this study aims to explore the putative effects of silent genetic variants on the ABCB4 expression. We performed an exhaustive computational approach using ESE finder, RegRNA 2.0, MFOLD, SNPfold, and %MinMax software added to the measurement of the Relative Synonymous Codon Usage. This analysis included 216 synonymous variants distributed throughout the ABCB4 gene. Results have shown that 11 synonymous coding SNPs decrease the ESE activity, while 8 of them change the codon frequency. Besides, the c.24C>T variation, located 21 nucleotides downstream the start A (Adenine) U (Uracil) G (Glutamine) AUG causes an increase in the local stability. Moreover, the computational analysis of the 3'UTR region showed that six of the eight variants located in this region affected the Wild Type (WT) pattern of the miRNA targets sites and/or their proper display. The 26 sSNPs retained as putatively functional possessed a very low allele frequency, supporting their pathogenicity. In conclusion, the obtained results suggest that some synonymous SNPs in the ABCB4 gene, considered up to now as neutral, may be involved in the MDR3 deficiency.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Mouna Tabebi
- Department of clinical and experimental medicine, Faculty of health sciences, Linköping University, Sweden
| | - Olfa Siala-Sahnoun
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| | - Ahmed Rebai
- Molecular and Cellular Screening Process Laboratory, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Tunisia
| |
Collapse
|