1
|
Bearson BL, Douglass CH, Duke SO, Moorman TB, Tranel PJ. Effects of glyphosate on antibiotic resistance in soil bacteria and its potential significance: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:160-180. [PMID: 39587768 PMCID: PMC11718153 DOI: 10.1002/jeq2.20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The evolution and spread of antibiotic resistance are problems with important consequences for bacterial disease treatment. Antibiotic use in animal production and the subsequent export of antibiotic resistance elements in animal manure to soil is a concern. Recent reports suggest that exposure of pathogenic bacteria to glyphosate increases antibiotic resistance. We review these reports and identify soil processes likely to affect the persistence of glyphosate, antibiotic resistance elements, and their interactions. The herbicide molecular target of glyphosate is not shared by antibiotics, indicating that target-site cross-resistance cannot account for increased antibiotic resistance. The mechanisms of bacterial resistance to glyphosate and antibiotics differ, and bacterial tolerance or resistance to glyphosate does not coincide with increased resistance to antibiotics. Glyphosate in the presence of antibiotics can increase the activity of efflux pumps, which confer tolerance to glyphosate, allowing for an increased frequency of mutation for antibiotic resistance. Such effects are not unique to glyphosate, as other herbicides and chemical pollutants can have the same effect, although glyphosate is used in much larger quantities on agricultural soils than most other chemicals. Most evidence indicates that glyphosate is not mutagenic in bacteria. Some studies suggest that glyphosate enhances genetic exchange of antibiotic-resistance elements through effects on membrane permeability. Glyphosate and antibiotics are often present together in manure-treated soil for at least part of the crop-growing season, and initial studies indicate that glyphosate may increase abundance of antibiotic resistance genes in soil, but longer term investigations under realistic field conditions are needed. Although there are demonstratable interactions among glyphosate, bacteria, and antibiotic resistance, there is limited evidence that normal use of glyphosate poses a substantial risk for increased occurrence of antibiotic-resistant, bacterial pathogens. Longer term field studies using environmentally relevant concentrations of glyphosate and antibiotics are needed.
Collapse
Affiliation(s)
- Bradley L. Bearson
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | - Cameron H. Douglass
- USDA, Office of the Chief Economist, Office of Pest Management PolicyWashingtonDistrict of ColumbiaUSA
| | - Stephen O. Duke
- National Center of Natural Products Research, School of PharmacyUniversity of MississippiUniversityMississippiUSA
| | - Thomas B. Moorman
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | | |
Collapse
|
2
|
Masotti F, Krink N, Lencina N, Gottig N, Ottado J, Nikel PI. Disentangling the Regulatory Response of Agrobacterium tumefaciens CHLDO to Glyphosate for Engineering Whole-Cell Phosphonate Biosensors. ACS Synth Biol 2024; 13:3430-3445. [PMID: 39344999 PMCID: PMC11494704 DOI: 10.1021/acssynbio.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as a host and the source of genetic parts for constructing PHT biosensors. In this bacterial species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise genetic optimization of the transcriptional cascade, we created a whole-cell biosensor capable of detecting GP in the 0.25-50 μM range in various samples, including soil and water.
Collapse
Affiliation(s)
- Fiorella Masotti
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Nicolas Krink
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | - Nicolas Lencina
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Natalia Gottig
- Instituto
de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ-CONICET-UNR), Rosario, Santa Fe S2000RLK, Argentina
| | - Jorgelina Ottado
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Pablo I. Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| |
Collapse
|
3
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
4
|
Mincer TJ, Bos RP, Zettler ER, Zhao S, Asbun AA, Orsi WD, Guzzetta VS, Amaral-Zettler LA. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. WATER RESEARCH 2023; 242:120033. [PMID: 37244770 DOI: 10.1016/j.watres.2023.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.
Collapse
Affiliation(s)
- Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA; Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA.
| | - Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - Shiye Zhao
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka 237-0061, Japan
| | - Alejandro A Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology,Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
5
|
D’Aquila P, De Rango F, Paparazzo E, Passarino G, Bellizzi D. Epigenetic-Based Regulation of Transcriptome in Escherichia coli Adaptive Antibiotic Resistance. Microbiol Spectr 2023; 11:e0458322. [PMID: 37184386 PMCID: PMC10269836 DOI: 10.1128/spectrum.04583-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
6
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Li J, Liu H, Liu Z, Zhang X, Blake RE, Huang Z, Cai M, Wang F, Yu C. Transformation mechanism of methylphosphonate to methane by Burkholderia sp: Insight from multi-labeled water isotope probing and transcriptomic. ENVIRONMENTAL RESEARCH 2023; 218:114970. [PMID: 36470350 DOI: 10.1016/j.envres.2022.114970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Methylphosphonate (MPn), has been identified as a likely source of methane in aerobic ocean and may be responsible for the "ocean methane paradox", that is oversaturation of dissolved methane in oxic sea waters. However, the mechanism underlying the cleavage of C-P bonds during microbial degradation is not well understood. Using multi-labeled water isotope probing (MLWIP) and transcriptome analysis, we investigated the phosphate oxygen isotope systematics and mechanisms of microbial-mediated degradation of MPn in this study. In the aerobic culture containing MPn as the only phosphorus source, there was a significant release of inorganic phosphate (149.4 μmol/L) and free methane (268.3 mg/L). The oxygen isotopic composition of inorganic phosphorus (δ18OP) of accumulated released phosphate was 4.50‰, 23.96‰, and 40.88‰, respectively, in the corresponding 18O-labeled waters of -10.3‰, 9.9‰, and 30.6‰, and the slope obtained in plots of δ18OP versus the oxygen isotopic composition of water (δ18OW) was 0.89. Consequently, 89% of the oxygen atoms (Os) in phosphate (PO4) were exchanged with 18O-labeled waters in the medium, while the rest were exchanged with intracellular metabolic water. It has been confirmed that the C-P bond cleavage of MPn occurs in the cell with both ambient and metabolic water participation. Moreover, phn gene clusters play significant roles to cleave the C-P bond of MPn for Burkholderia sp. HQL1813, in which phnJ, phnM and phnI genes are significantly up-regulated during MPn decomposition to methane. In conclusion, the aerobic biotransformation of MPn to free methane by Burkholderia sp. HQL1813 has been elucidated, providing new insights into the mechanism that bio-cleaves C-P bonds to produce methane aerobically in aqueous environments for representative phosphonates.
Collapse
Affiliation(s)
- Junhong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Houquan Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Zeqin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Ruth Elaine Blake
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06520-8109, USA
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 300308, Tianjin, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Centre of Microbial Pesticides, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai, Haidian District, 100875, Beijing, China.
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
8
|
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol 2022; 38:98. [PMID: 35478266 DOI: 10.1007/s11274-022-03281-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Collapse
Affiliation(s)
- María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Keren Hernandez Guijarro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Unidad Integrada Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
| | - Héctor Morrás
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
- Facultad de Ciencias Agrarias y Veterinaria, Universidad del Salvador, Pilar, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Xu S, Zhao Y, Peng Y, Shi Y, Xie X, Chai A, Li B, Li L. Comparative Genomics Assisted Functional Characterization of Rahnella aceris ZF458 as a Novel Plant Growth Promoting Rhizobacterium. Front Microbiol 2022; 13:850084. [PMID: 35444623 PMCID: PMC9015054 DOI: 10.3389/fmicb.2022.850084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Many Rahnella strains have been widely described as plant growth-promoting rhizobacteria with the potential to benefit plant growth and protect plants from pathogens. R. aceris ZF458 is a beneficial plant bacterium isolated from swamp soil with the potential for biocontrol. Strain ZF458 has shown broad-spectrum antagonistic activities against a variety of plant pathogens and exhibited a dramatic effect on controlling Agrobacterium tumefaciens in sunflowers. The R. aceris ZF458 genome sequence contained a 4,861,340-bp circular chromosome and two plasmids, with an average G + C content of 52.20%. Phylogenetic analysis demonstrated that R. aceris ZF458 was closely related to R. aceris SAP-19. Genome annotation and comparative genomics identified the conservation and specificity of large numbers of genes associated with nitrogen fixation, plant growth hormone production, organic acid biosynthesis and pyrroloquinoline quinone production that specific to benefiting plants in strain ZF458. In addition, numerous conserved genes associated with environmental adaption, including the bacterial secretion system, selenium metabolism, two-component system, flagella biosynthesis, chemotaxis, and acid resistance, were also identified in the ZF458 genome. Overall, this was the first study to systematically analyze the genes linked with plant growth promotion and environmental adaption in R. aceris. The aim of this study was to derive genomic information that would provide an in-depth insight of the mechanisms of plant growth-promoting rhizobacteria, and could be further exploited to improve the application of R. aceris ZF458 in the agriculture field.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Hensbergen PJ, de Ru AH, Friggen AH, Corver J, Smits WK, van Veelen PA. New insights into the Type A glycan modification of Clostridioides difficile flagellar protein flagellin C by phosphoproteomics analysis. J Biol Chem 2022; 298:101622. [PMID: 35065968 PMCID: PMC8861647 DOI: 10.1016/j.jbc.2022.101622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
The type A glycan modification found in human pathogen Clostridioides difficile consists of a monosaccharide (GlcNAc) that is linked to an N-methylated threonine through a phosphodiester bond. This structure has previously been described on the flagellar protein flagellin C of several C. difficile strains and is important for bacterial motility. The study of post-translational modifications often relies on some type of enrichment strategy; however, a procedure for enrichment of this modification has not yet been demonstrated. In this study, we show that an approach that is commonly used in phosphoproteomics, Fe3+-immobilized metal affinity chromatography, also enriches for peptides with this unique post-translational modification. Using LC–MS/MS analyses of immobilized metal affinity chromatography–captured tryptic peptides, we observed not only type A-modified C. difficile flagellin peptides but also a variety of truncated/modified type A structures on these peptides. Using an elaborate set of mass spectrometry analyses, we demonstrate that one of these modifications consists of a type A structure containing a phosphonate (2-aminoethylphosphonate), a modification that is rarely observed and has hitherto not been described in C. difficile. In conclusion, we show that a common enrichment strategy results in reliable identification of peptides carrying a type A glycan modification, and that the results obtained can be used to advance models about its biosynthesis.
Collapse
Affiliation(s)
- Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Sun H, Gao H, Zuo X, Kai G. Transcriptome response of cold-pretreated Pantoea agglomerans KSC03 to exogenous green leaf volatile E-2-hexenal. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-021-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Jacob C, Velásquez AC, Josh NA, Settles M, He SY, Melotto M. Dual transcriptomic analysis reveals metabolic changes associated with differential persistence of human pathogenic bacteria in leaves of Arabidopsis and lettuce. G3 (BETHESDA, MD.) 2021; 11:jkab331. [PMID: 34550367 PMCID: PMC8664426 DOI: 10.1093/g3journal/jkab331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022]
Abstract
Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium 14028s (STm 14028s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157:H7 and STm 14028s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 h post inoculation with STm 14028s compared to that with O157:H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 h compared to the subsequent 20 h after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.
Collapse
Affiliation(s)
- Cristián Jacob
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, Horticulture and Agronomy Graduate Group, University of California, Davis, Davis, CA 95616, USA
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - André C Velásquez
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Nikhil A Josh
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Sheng Yang He
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Oshkin IY, Danilova OV, But SY, Miroshnikov KK, Suleimanov RZ, Belova SE, Tikhonova EN, Kuznetsov NN, Khmelenina VN, Pimenov NV, Dedysh SN. Expanding Characterized Diversity and the Pool of Complete Genome Sequences of Methylococcus Species, the Bacteria of High Environmental and Biotechnological Relevance. Front Microbiol 2021; 12:756830. [PMID: 34691008 PMCID: PMC8527097 DOI: 10.3389/fmicb.2021.756830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
The bacterial genus Methylococcus, which comprises aerobic thermotolerant methanotrophic cocci, was described half-a-century ago. Over the years, a member of this genus, Methylococcus capsulatus Bath, has become a major model organism to study genomic and metabolic basis of obligate methanotrophy. High biotechnological potential of fast-growing Methylococcus species, mainly as a promising source of feed protein, has also been recognized. Despite this big research attention, the currently cultured Methylococcus diversity is represented by members of the two species, M. capsulatus and M. geothermalis, while finished genome sequences are available only for two strains of these methanotrophs. This study extends the pool of phenotypically characterized Methylococcus strains with good-quality genome sequences by contributing four novel isolates of these bacteria from activated sludge, landfill cover soil, and freshwater sediments. The determined genome sizes of novel isolates varied between 3.2 and 4.0Mb. As revealed by the phylogenomic analysis, strains IO1, BH, and KN2 affiliate with M. capsulatus, while strain Mc7 may potentially represent a novel species. Highest temperature optima (45-50°C) and highest growth rates in bioreactor cultures (up to 0.3h-1) were recorded for strains obtained from activated sludge. The comparative analysis of all complete genomes of Methylococcus species revealed 4,485 gene clusters. Of these, pan-genome core comprised 2,331 genes (on average 51.9% of each genome), with the accessory genome containing 846 and 1,308 genes in the shell and the cloud, respectively. Independently of the isolation source, all strains of M. capsulatus displayed surprisingly high genome synteny and a striking similarity in gene content. Strain Mc7 from a landfill cover soil differed from other isolates by the high content of mobile genetic elements in the genome and a number of genome-encoded features missing in M. capsulatus, such as sucrose biosynthesis and the ability to scavenge phosphorus and sulfur from the environment.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Y. But
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana E. Belova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai N. Kuznetsov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valentina N. Khmelenina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Genome Mining and Comparative Genome Analysis Revealed Niche-Specific Genome Expansion in Antibacterial Bacillus pumilus Strain SF-4. Genes (Basel) 2021; 12:genes12071060. [PMID: 34356076 PMCID: PMC8303946 DOI: 10.3390/genes12071060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023] Open
Abstract
The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future.
Collapse
|
15
|
Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S. Binding interaction of glyphosate with glyphosate oxidoreductase and C-P lyase: Molecular docking and molecular dynamics simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124927. [PMID: 33450511 DOI: 10.1016/j.jhazmat.2020.124927] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/12/2023]
Abstract
Widespread application of glyphosate poses a threat to living organisms. Microbial strains are able to degrade glyphosate via contrasting metabolic pathways with the help of enzymes. Glyphosate oxidoreductase (GOX) and C-P lyase are the key enzymes for the biodegradation of glyphosate and its intermediate metabolite aminomethylphosphonic acid (AMPA) in microbes. The microbial degradation of glyphosate has been reported, but the underlying molecular mechanism is still unclear. Therefore, in this study, the interaction mechanism of GOX and C-P lyase with glyphosate and AMPA were investigated by using molecular docking and molecular dynamics (MD) simulations. The results indicate that glyphosate contacts with the active site of GOX and C-P lyase by hydrogen bonds as well as hydrophobic and van der Waals interactions in aqueous solution to maintain its stability. The presence of glyphosate and AMPA in the active site significantly changes the conformation of GOX and C-P lyase. The results of the MD simulations confirm that GOX and C-P lyase complexes are stable during the catalytic reaction. This study offers a molecular level of understanding of the expression and function of GOX and C-P lyase for the bioremediation of glyphosate.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand 263136, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
16
|
Stosiek N, Talma M, Klimek-Ochab M. Carbon-Phosphorus Lyase-the State of the Art. Appl Biochem Biotechnol 2020; 190:1525-1552. [PMID: 31792787 DOI: 10.1007/s12010-019-03161-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Abstract
Organophosphonates are molecules that contain a very chemically stable carbon-phosphorus (C-P) bond. Microorganisms can utilize phosphonates as potential source of crucial elements for their growth, as developed several pathways to metabolize these compounds. One among these pathways is catalyzed by C-P lyase complex, which has a broad substrate specifity; therefore, it has a wide application in degradation of herbicides deposited in the environment, such as glyphosate. This multi-enzyme system accurately recognized in Escherichia coli and genetic studies have demonstrated that it is encoded by phn operon containing 14 genes (phnC-phnP). The phn operon is a member of the Pho regulon induced by phosphate starvation. Ability to degradation of phosphonates is also found in other microorganisms, especially soil and marine bacteria, that have homologous genes to those in E. coli. Despite the existence of differences in structure and composition of phn gene cluster, each of these strains contains phnGHIJKLM genes necessary in the C-P bond cleavage mechanism. The review provides a detailed description and summary of achievements on the C-P lyase enzymatic pathway over the last 50 years.
Collapse
Affiliation(s)
- Natalia Stosiek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
17
|
Morales ME, Allegrini M, Basualdo J, Villamil MB, Zabaloy MC. Primer design to assess bacterial degradation of glyphosate and other phosphonates. J Microbiol Methods 2020; 169:105814. [PMID: 31866379 DOI: 10.1016/j.mimet.2019.105814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023]
Abstract
Phosphonates are organic phosphorous (P) compounds frequently detected in the environment due to a very stable CP bond that render them relatively recalcitrant. Glyphosate [N-phosphonomethyl glycine] is the most widely used and best-known synthetic phosphonate, and one of the most concerning herbicides in the world today. Microbial degradation of glyphosate and organophosphonates in general, is the main dissipation mechanism operating in most environments. One microbial metabolic pathway in this process is the CP lyase pathway, entailing an enzymatic complex encoded by about 14 genes (the Phn operon). Our goal was to develop a quantitative polymerase chain reaction (qPCR) assay for a key enzyme, the CP lyase that breaks down the CP bond, via quantification of the codifying phnJ gene. The primers designed in this study fulfill the requirements for a successful qPCR assay, with high efficiency and sensitivity, as well as specific detection of the target sequence in a wide range of taxonomic groups. This is, to our knowledge, the first report of primers designed to target phnJ in both pure cultures and metagenomic DNA from different environmental sources. Direct quantification of phnJ may be a cost-effective proxy to determine glyphosate degradation potential in different matrixes.
Collapse
Affiliation(s)
- M E Morales
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, San Andrés 800, (8000) Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, (8000) Bahía Blanca, Argentina
| | - M Allegrini
- Laboratorio de Biodiversidad Vegetal y Microbiana, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET, Universidad Nacional de Rosario (UNR), Campo Experimental J. Villarino, (2123) Zavalla, Argentina
| | - J Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, (8000) Bahía Blanca, Argentina
| | - M B Villamil
- University of Illinois, Department of Crop Sciences, Turner Hall, 1102 S. Goodwin Ave, Urbana, IL 61801, USA
| | - M C Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, San Andrés 800, (8000) Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, (8000) Bahía Blanca, Argentina.
| |
Collapse
|
18
|
Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiol Res 2019; 227:126309. [PMID: 31421713 DOI: 10.1016/j.micres.2019.126309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.
Collapse
|
19
|
Abstract
By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations. We examined the genomic adaptations of prevalent bacterial taxa in a highly nutrient- and ion-depleted freshwater environment located in the secondary cooling water system of a nuclear research reactor. Using genome-centric metagenomics, we found that none of the prevalent bacterial taxa were related to typical freshwater bacterial lineages. We also did not identify strong signatures of genome streamlining, which has been shown to be one of the ecoevolutionary forces shaping the genome characteristics of bacterial taxa in nutrient-depleted environments. Instead, focusing on the dominant taxon, a novel Ramlibacter sp. which we propose to name Ramlibacter aquaticus, we detected extensive positive selection on genes involved in phosphorus and carbon scavenging pathways. These genes were involved in the high-affinity phosphate uptake and storage into polyphosphate granules, metabolism of nitrogen-rich organic matter, and carbon/energy storage into polyhydroxyalkanoate. In parallel, comparative genomics revealed a high number of paralogs and an accessory genome significantly enriched in environmental sensing pathways (i.e., chemotaxis and motility), suggesting extensive gene expansions in R. aquaticus. The type strain of R. aquaticus (LMG 30558T) displayed optimal growth kinetics and productivity at low nutrient concentrations, as well as substantial cell size plasticity. Our findings with R. aquaticus LMG 30558T demonstrate that positive selection and gene expansions may represent successful adaptive strategies to oligotrophic environments that preserve high growth rates and cellular productivity. IMPORTANCE By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations.
Collapse
|
20
|
Manav MC, Sofos N, Hove-Jensen B, Brodersen DE. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival. Bioessays 2018; 40:e1800091. [DOI: 10.1002/bies.201800091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Indexed: 12/11/2022]
Affiliation(s)
- M. Cemre Manav
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Nicholas Sofos
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Bjarne Hove-Jensen
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| |
Collapse
|
21
|
Wu H, Zhao Y, Du Y, Miao S, Liu J, Li Y, Caiyin Q, Qiao J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J Dairy Sci 2018; 101:6872-6884. [DOI: 10.3168/jds.2018-14594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
|
22
|
Ulrich EC, Kamat SS, Hove-Jensen B, Zechel DL. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria. Methods Enzymol 2018; 605:351-426. [DOI: 10.1016/bs.mie.2018.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Hassan MI, McSorley FR, Hotta K, Boddy CN. Inducible T7 RNA Polymerase-mediated Multigene Expression System, pMGX. J Vis Exp 2017. [PMID: 28715370 DOI: 10.3791/55187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Co-expression of multiple proteins is increasingly essential for synthetic biology, studying protein-protein complexes, and characterizing and harnessing biosynthetic pathways. In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase is described. This system allows many genes to be expressed simultaneously from one plasmid. Here, a set of four related vectors, pMGX-A, pMGX-hisA, pMGX-K, and pMGX-hisK, with either the ampicillin or kanamycin resistance selectable marker (A and K) and either possessing or lacking an N-terminal hexahistidine tag (his) are disclosed. Detailed protocols for the construction of synthetic operons using this vector system are provided along with the corresponding data, showing that a pMGX-based system containing five genes can be readily constructed and used to produce all five encoded proteins in Escherichia coli. This system and protocol enables researchers to routinely express complex multi-component modules and pathways in E. coli.
Collapse
Affiliation(s)
- Mohamed I Hassan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa
| | - Fern R McSorley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa
| | - Kinya Hotta
- School of Biosciences, The University of Nottingham Malaysia Campus;
| | | |
Collapse
|
24
|
Abstract
Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that HGT is prevalent in cheese rind microbiomes, and that identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities. DOI:http://dx.doi.org/10.7554/eLife.22144.001 From the depths of the ocean to the lining of the human gut, almost every environment on Earth is home to a unique community of microorganisms referred to as a microbiome. Within these communities, unrelated microorganisms can exchange genetic information through a process known as horizontal gene transfer. For example, genes linked to antibiotic resistance are often transferred between different microorganisms, which can create increasingly drug resistant microbes and has important implications for human health. Horizontal gene transfer has been studied for almost 100 years, but examining it directly is challenging because, almost by definition, it requires studying a community of microbes rather than one microbe in isolation. As such, researchers are looking for simple models of microbial communities that can be easily manipulated in experiments. Bonham et al. have now turned to the outer surface of cheese, also known as cheese rind, to better understand horizontal gene transfer. As a model system, the cheese rind microbiome is relatively simple to work with because cheese rind is easy to replicate in the laboratory, and the microbes growing on cheese can be grown on their own or in combinations with other microbes. By comparing the genetic material of 165 cheese-associated bacteria to one another, Bonham et al. identified over 4,000 genes that were shared between the bacteria, including several large clusters of genes that were shared by many species. Many of the identified genes (about 23% to be precise) appear to help the microorganisms acquire nutrients that are known to be in short supply on the surface of cheese surface, including iron. Bacteria typically use specialized molecules called siderophores to scavenge for iron and uptake systems to carry the iron-bound siderophore back into the cell. Notably, only the genes associated with the uptake systems were found in some of the shared gene clusters. This finding suggests that horizontal gene transfer has allowed some microbes to “cheat” and take up iron-bound siderophores without expending energy to produce the siderophores themselves. Using the cheese rind microbiome as a model system, it becomes possible to explore how horizontal gene transfer works in more detail than before. A better understanding of this process can then be applied to other important microbiomes, including those where genes conferring antibiotic resistance are commonly exchanged. DOI:http://dx.doi.org/10.7554/eLife.22144.002
Collapse
Affiliation(s)
- Kevin S Bonham
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | | | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, San Diego, United States.,Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, San Diego, United States
| |
Collapse
|
25
|
Brown ME, Mukhopadhyay A, Keasling JD. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol. ACS Synth Biol 2016; 5:1485-1496. [PMID: 27403844 DOI: 10.1021/acssynbio.6b00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.
Collapse
Affiliation(s)
- Margaret E. Brown
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Aindrila Mukhopadhyay
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle, DK2970-Hørsholm, Denmark
| |
Collapse
|
26
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
27
|
Abstract
Despite the fact that carbon-phosphorus lyase activity was first documented more than 50 years ago, we are yet to completely understand the details of how this enzyme system functions or what it looks like. In this issue of Structure, Yang et al. (2016) now provide a step forward with a view of how PhnK fits into the bigger picture of carbon-phosphorus lyase.
Collapse
Affiliation(s)
- David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
28
|
Yang K, Ren Z, Raushel FM, Zhang J. Structures of the Carbon-Phosphorus Lyase Complex Reveal the Binding Mode of the NBD-like PhnK. Structure 2015; 24:37-42. [PMID: 26724995 DOI: 10.1016/j.str.2015.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022]
Abstract
The carbon-phosphorus (C-P) lyase complex is essential for the metabolism of unactivated phosphonates to phosphate in bacteria. Using single-particle cryo-electron microscopy, we determined two structures of the C-P lyase core complex PhnG2H2I2J2, with or without PhnK. PhnG2H2I2J2 is a two-fold symmetric hetero-octamer. Its two PhnJ subunits provide two identical binding sites for PhnK. Only one PhnK binds to PhnG2H2I2J2 due to steric hindrance. PhnK is homologous to the nucleotide-binding domain (NBD) of ATP-binding cassette transporters. The α helices 3 and 4 of PhnK bind to α helix 6 and a loop (residues 227-230) of PhnJ, in a different mode from the binding of NBDs to their transmembrane partners. Moreover, binding of PhnK exposes the active site residue, Gly32 of PhnJ, located near the interface between PhnJ and PhnH. This structural information provides a basis for further deciphering of the reaction mechanism of the C-P lyase.
Collapse
Affiliation(s)
- Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zhongjie Ren
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Frank M Raushel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
29
|
Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature 2015; 525:68-72. [PMID: 26280334 PMCID: PMC4617613 DOI: 10.1038/nature14683] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022]
Abstract
Phosphorous is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use organic phosphonate compounds, which require specialised enzymatic machinery for breaking the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolises phosphonate remain unknown. Here we determine the crystal structure of the 240 kDa Escherichia coli C-P lyase core complex (PhnGHIJ) and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that likely couple organic phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy and show that it binds to PhnJ via a conserved insertion domain. Our results provide a structural basis for understanding microbial phosphonate breakdown.
Collapse
|
30
|
Ren Z, Ranganathan S, Zinnel NF, Russell WK, Russell DH, Raushel FM. Subunit Interactions within the Carbon-Phosphorus Lyase Complex from Escherichia coli. Biochemistry 2015; 54:3400-11. [PMID: 25954983 DOI: 10.1021/acs.biochem.5b00194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphonates are a large class of organophosphorus compounds with a characteristic carbon-phosphorus bond. The genes responsible for phosphonate utilization in Gram-negative bacteria are arranged in an operon of 14 genes. The carbon-phosphorus lyase complex, encoded by the genes phnGHIJKLM, catalyzes the cleavage of the stable carbon-phosphorus bond of organophosphonates to the corresponding hydrocarbon and inorganic phosphate. Recently, complexes of this enzyme containing five subunits (PhnG-H-I-J-K), four subunits (PhnG-H-I-J), and two subunits (PhnG-I) were purified after expression in Escherichia coli ( Proc. Natl. Acad. Sci., U. S. A. 2011 , 108 , 11393 ). Here we demonstrated using mass spectrometry, ultracentrifugation, and chemical cross-linking experiments that these complexes are formed from a PhnG2I2 core that is further elaborated by the addition of two copies each of PhnH and PhnJ to generate PhnG2H2I2J2. This complex adds an additional subunit of PhnK to form PhnG2H2I2J2K. Chemical cross-linking of the five-component complex demonstrated that PhnJ physically interacts with both PhnG and PhnI. We were unable to demonstrate the interaction of PhnH or PhnK with any other subunits by chemical cross-linking. Hydrogen-deuterium exchange was utilized to probe for alterations in the dynamic properties of individual subunits within the various complexes. Significant regions of PhnG become less accessible to hydrogen/deuterium exchange from solvent within the PhnG2I2 complex compared with PhnG alone. Specific regions of PhnI exhibited significant differences in the H/D exchange rates in PhnG2I2 and PhnG2H2I2J2K.
Collapse
|
31
|
Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2015; 59:3433-40. [PMID: 25824217 DOI: 10.1128/aac.05152-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/21/2015] [Indexed: 01/13/2023] Open
Abstract
A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms.
Collapse
|
32
|
Fox A, Kwapinski W, Griffiths BS, Schmalenberger A. The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion ofLolium perenne. FEMS Microbiol Ecol 2014; 90:78-91. [DOI: 10.1111/1574-6941.12374] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Aaron Fox
- Department of Life Sciences; University of Limerick; Limerick Ireland
| | - Witold Kwapinski
- Department of Chemical and Environmental Sciences; University of Limerick; Limerick Ireland
| | | | | |
Collapse
|
33
|
Abstract
Biofilm formation on central lines or peripheral catheters is a serious threat to patient well-being. Contaminated vascular devices can act as a nidus for bloodstream infection and systemic pathogen dissemination. Staphylococcal biofilms are the most common cause of central-line-associated bloodstream infections, and antibiotic resistance makes them difficult to treat. As an alternative to antibiotic intervention, we sought to identify anti-staphylococcal biofilm targets for the development of a vaccine or antibody prophylactic. A screening strategy was devised using a microfluidic system to test antibody-mediated biofilm inhibition under biologically relevant conditions of shear flow. Affinity-purified polyclonal antibodies to target antigen PhnD inhibited both Staphylococcus epidermidis and S. aureus biofilms. PhnD-specific antibodies blocked biofilm development at the initial attachment and aggregation stages, and deletion of phnD inhibited normal biofilm formation. We further adapted our microfluidic biofilm system to monitor the interaction of human neutrophils with staphylococcal biofilms and demonstrated that PhnD-specific antibodies also serve as opsonins to enhance neutrophil binding, motility, and biofilm engulfment. These data support the identification of PhnD as a lead target for biofilm intervention strategies performed either by vaccination or through passive administration of antibodies.
Collapse
|
34
|
Sahoo D, Suriyanarayanan R, Metre RK, Chandrasekhar V. Molecular and polymeric zinc(II) phosphonates: isolation of an octanuclear ellipsoidal ensemble. Dalton Trans 2014; 43:7304-13. [PMID: 24691486 DOI: 10.1039/c3dt53614a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of zinc(II) perchlorate with trichloromethyl phosphonic acid at room temperature afforded, upon crystallization, a two-dimensional layered coordination polymer possessing a dinuclear repeat unit, [{Zn2(Cl3CPO3)2(H2O)3}·1.5H2O]n (1). Modification of the above reaction by involving a co-ligand afforded the tetranuclear complex, [{Zn4(η(1)-DMPzH)6(Cl3C-PO3)2}(μ-OH)2(ClO4)2] (2). The molecular structure of 2 reveals that the tetranuclear core is non-planar and consists of three contiguous inorganic rings which include one 8-membered Zn2P2O4 ring and two six-membered Zn2PO3 rings. Replacement of Zn(ClO4)2·6H2O with ZnCl2 under the same reaction conditions that afforded 2 allowed the formation of the dinuclear complex [{(ZnCl)2(η(2)-Pz)2(Cl3CPO3)}(Et3NH)2] (3). 3 possesses a bicyclic core containing a seven-membered Zn2N2O2P ring. In 3, the phosphoryl oxygen atom (P=O) is involved in a bifurcated hydrogen bonding interaction with the triethylammonium cation. The reaction of ZnCl2 and 2,3,5,6-(Me)4C6HCH2PO3H2 afforded the octanuclear complex [Zn8(Cl)6{2,3,5,6-(Me)4C6HCH2PO3}6(Et3N)2](Et3NH)2]·2n-hexane·3H2O (4). The core of 4 is ellipsoid-shaped with the end-end polar distance (C-C) being ~20 Å.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | |
Collapse
|
35
|
van Staalduinen LM, McSorley FR, Schiessl K, Séguin J, Wyatt PB, Hammerschmidt F, Zechel DL, Jia Z. Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates. Proc Natl Acad Sci U S A 2014; 111:5171-6. [PMID: 24706911 PMCID: PMC3986159 DOI: 10.1073/pnas.1320039111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen, despite belonging to a large family of hydrolytic enzymes, the HD-phosphohydrolase superfamily. We have determined high-resolution structures of PhnZ bound to its substrate, (R)-2-amino-1-hydroxyethylphosphonate (2.1 Å), and a buffer additive, l-tartrate (1.7 Å). The structures reveal PhnZ to have an active site containing two Fe ions coordinated by four histidines and two aspartates that is strikingly similar to the carbon-carbon bond cleaving enzyme, myo-inositol-oxygenase. The exception is Y24, which forms a transient ligand interaction at the dioxygen binding site of Fe2. Site-directed mutagenesis and kinetic analysis with substrate analogs revealed the roles of key active site residues. A fifth histidine that is conserved in the PhnZ subclade, H62, specifically interacts with the substrate 1-hydroxyl. The structures also revealed that Y24 and E27 mediate a unique induced-fit mechanism whereby E27 specifically recognizes the 2-amino group of the bound substrate and toggles the release of Y24 from the active site, thereby creating space for molecular oxygen to bind to Fe2. Structural comparisons of PhnZ reveal an evolutionary connection between Fe(II)-dependent hydrolysis of phosphate esters and oxidative carbon-phosphorus or carbon-carbon bond cleavage, thus uniting the diverse chemistries that are found in the HD superfamily.
Collapse
Affiliation(s)
- Laura M. van Staalduinen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Fern R. McSorley
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Katharina Schiessl
- Institute of Organic Chemistry, University of Vienna, A-1090 Vienna, Austria; and
| | - Jacqueline Séguin
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Peter B. Wyatt
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | - David L. Zechel
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
36
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
37
|
Klimek-Ochab M. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15. Folia Microbiol (Praha) 2014; 59:375-80. [PMID: 24570323 PMCID: PMC4133637 DOI: 10.1007/s12223-014-0309-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
A psychrophilic fungal strain of Geomyces pannorum P15 was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen, or carbon. Only phosphonoacetic acid served as a phosphorus source for microbial growth in phosphate-independent manner. Substrate metabolism did not lead to extracellular release of inorganic phosphate. No phosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from Geomyces biomass pregrown on 2 mmol/L phosphonoacetic acid.
Collapse
Affiliation(s)
- Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland,
| |
Collapse
|
38
|
Li H, Li M, Huang Y, Rensing C, Wang G. In silico analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate. Front Microbiol 2013; 4:347. [PMID: 24312089 PMCID: PMC3834237 DOI: 10.3389/fmicb.2013.00347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
In order to construct a more universal model for understanding the genetic requirements for bacterial AsIII oxidation, an in silico examination of the available sequences in the GenBank was assessed and revealed 21 conserved 5–71 kb arsenic islands within phylogenetically diverse bacterial genomes. The arsenic islands included the AsIII oxidase structural genes aioBA, ars operons (e.g., arsRCB) which code for arsenic resistance, and pho, pst, and phn genes known to be part of the classical phosphate stress response and that encode functions associated with regulating and acquiring organic and inorganic phosphorus. The regulatory genes aioXSR were also an island component, but only in Proteobacteria and orientated differently depending on whether they were in α-Proteobacteria or β-/γ-Proteobacteria. Curiously though, while these regulatory genes have been shown to be essential to AsIII oxidation in the Proteobacteria, they are absent in most other organisms examined, inferring different regulatory mechanism(s) yet to be discovered. Phylogenetic analysis of the aio, ars, pst, and phn genes revealed evidence of both vertical inheritance and horizontal gene transfer (HGT). It is therefore likely the arsenic islands did not evolve as a whole unit but formed independently by acquisition of functionally related genes and operons in respective strains. Considering gene synteny and structural analogies between arsenate and phosphate, we presumed that these genes function together in helping these microbes to be able to use even low concentrations of phosphorus needed for vital functions under high concentrations of arsenic, and defined these sequences as the arsenic islands.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University Wuhan, P. R. of China
| | | | | | | | | |
Collapse
|
39
|
Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 2013; 341:752-8. [PMID: 23950532 DOI: 10.1126/science.1236281] [Citation(s) in RCA: 624] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The benefits of global pesticide use come at the cost of their widespread occurrence in the environment. An array of abiotic and biotic transformations effectively removes pesticides from the environment, but may give rise to potentially hazardous transformation products. Despite a large body of pesticide degradation data from regulatory testing and decades of pesticide research, it remains difficult to anticipate the extent and pathways of pesticide degradation under specific field conditions. Here, we review the major scientific challenges in doing so and discuss emerging opportunities to identify pesticide degradation processes in the field.
Collapse
Affiliation(s)
- Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland.
| | | | | | | |
Collapse
|
40
|
Kamat SS, Raushel FM. The enzymatic conversion of phosphonates to phosphate by bacteria. Curr Opin Chem Biol 2013; 17:589-96. [DOI: 10.1016/j.cbpa.2013.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/24/2022]
|
41
|
Li S, Dong X, Su Z. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling. BMC Genomics 2013; 14:520. [PMID: 23899370 PMCID: PMC3734233 DOI: 10.1186/1471-2164-14-520] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. RESULTS To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. CONCLUSIONS As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.
Collapse
Affiliation(s)
- Shan Li
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
42
|
Peck SC, van der Donk WA. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology. Curr Opin Chem Biol 2013; 17:580-8. [PMID: 23870698 DOI: 10.1016/j.cbpa.2013.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry.
Collapse
Affiliation(s)
- Spencer C Peck
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
43
|
Forlani G, Bertazzini M, Giberti S, Wieczorek D, Kafarski P, Lipok J. Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3263-3270. [PMID: 23089958 DOI: 10.1007/s11356-012-1253-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
As a consequence of increasing industrial applications, thousand tons of polyphosphonates are introduced every year into the environment. The inherent stability of the C-P bond results in a prolonged half-life. Moreover, low uptake rates limit further their microbial metabolization. To assess whether low detergent concentrations were able to increase polyphosphonate utilization by the cyanobacterium Spirulina platensis, tolerance limits to the exposure to various detergents were determined by measuring the growth rate in the presence of graded levels below the critical micellar concentration. Then, the amount of hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid) that is metabolized in the absence or in the presence of sublethal detergent concentrations was quantified by (31)P NMR analysis on either P-starved or P-fed cyanobacterial cultures. The strain tolerated the presence of detergents in the order: nonionic > anionic > cationic. When added to the culture medium at the highest concentrations showing no detrimental effects upon cell viability, detergents either improved or decreased polyphosphonate utilization, the anionic sodium dodecyl sulfate being the most beneficial. Metabolization was not lower in P-fed cells--a result that strengthens the possibility of using, in the future, this strain for bioremediation purposes.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science & Biotechnology, University of Ferrara, via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
McGrath JW, Chin JP, Quinn JP. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 2013; 11:412-9. [PMID: 23624813 DOI: 10.1038/nrmicro3011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Organophosphonates are ancient molecules that contain the chemically stable C-P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C-P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.
Collapse
Affiliation(s)
- John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | | | | |
Collapse
|
45
|
Hove-Jensen B, McSorley FR, Zechel DL. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product. PLoS One 2012; 7:e46416. [PMID: 23056305 PMCID: PMC3463581 DOI: 10.1371/journal.pone.0046416] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn+ strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn+ nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5′-phospho-α-d-ribosyl 1′-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety.
Collapse
Affiliation(s)
- Bjarne Hove-Jensen
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
- * E-mail: (BHJ); (DLZ)
| | - Fern R. McSorley
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - David L. Zechel
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
- * E-mail: (BHJ); (DLZ)
| |
Collapse
|
46
|
Moraes TF, Reithmeier RAF. Membrane transport metabolons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2687-706. [PMID: 22705263 DOI: 10.1016/j.bbamem.2012.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
In this review evidence from a wide variety of biological systems is presented for the genetic, functional, and likely physical association of membrane transporters and the enzymes that metabolize the transported substrates. This evidence supports the hypothesis that the dynamic association of transporters and enzymes creates functional membrane transport metabolons that channel substrates typically obtained from the extracellular compartment directly into their cellular metabolism. The immediate modification of substrates on the inner surface of the membrane prevents back-flux through facilitated transporters, increasing the efficiency of transport. In some cases products of the enzymes are themselves substrates for the transporters that efflux the products in an exchange or antiport mechanism. Regulation of the binding of enzymes to transporters and their mutual activities may play a role in modulating flux through transporters and entry of substrates into metabolic pathways. Examples showing the physical association of transporters and enzymes are provided, but available structural data is sparse. Genetic and functional linkages between membrane transporters and enzymes were revealed by an analysis of Escherichia coli operons encoding polycistronic mRNAs and provide a list of predicted interactions ripe for further structural studies. This article supports the view that membrane transport metabolons are important throughout Nature in organisms ranging from bacteria to humans.
Collapse
Affiliation(s)
- Trevor F Moraes
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
McSorley FR, Wyatt PB, Martinez A, DeLong EF, Hove-Jensen B, Zechel DL. PhnY and PhnZ Comprise a New Oxidative Pathway for Enzymatic Cleavage of a Carbon–Phosphorus Bond. J Am Chem Soc 2012; 134:8364-7. [DOI: 10.1021/ja302072f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fern R. McSorley
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| | - Peter B. Wyatt
- School
of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Asuncion Martinez
- Division of Biological Engineering,
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, United States
| | - Edward F. DeLong
- Division of Biological Engineering,
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, United States
| | - Bjarne Hove-Jensen
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| | - David L. Zechel
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| |
Collapse
|
48
|
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Wilfred A. van der Donk
- Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| |
Collapse
|
49
|
Villarreal-Chiu JF, Quinn JP, McGrath JW. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 2012; 3:19. [PMID: 22303297 PMCID: PMC3266647 DOI: 10.3389/fmicb.2012.00019] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
Phosphonates are compounds that contain the chemically stable carbon–phosphorus (C–P) bond. They are widely distributed amongst more primitive life forms including many marine invertebrates and constitute a significant component of the dissolved organic phosphorus reservoir in the oceans. Virtually all biogenic C–P compounds are synthesized by a pathway in which the key step is the intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate. However C–P bond cleavage by degradative microorganisms is catalyzed by a number of enzymes – C–P lyases, C–P hydrolases, and others of as-yet-uncharacterized mechanism. Expression of some of the pathways of phosphonate catabolism is controlled by ambient levels of inorganic P (Pi) but for others it is Pi-independent. In this report we review the enzymology of C–P bond metabolism in bacteria, and also present the results of an in silico investigation of the distribution of the genes that encode the pathways responsible, in both bacterial genomes and in marine metagenomic libraries, and their likely modes of regulation. Interrogation of currently available whole-genome bacterial sequences indicates that some 10% contain genes encoding putative pathways of phosphonate biosynthesis while ∼40% encode one or more pathways of phosphonate catabolism. Analysis of metagenomic data from the global ocean survey suggests that some 10 and 30%, respectively, of bacterial genomes across the sites sampled encode these pathways. Catabolic routes involving phosphonoacetate hydrolase, C–P lyase(s), and an uncharacterized 2-aminoethylphosphonate degradative sequence were predominant, and it is likely that both substrate-inducible and Pi-repressible mechanisms are involved in their regulation. The data we present indicate the likely importance of phosphonate-P in global biogeochemical P cycling, and by extension its role in marine productivity and in carbon and nitrogen dynamics in the oceans.
Collapse
|
50
|
Guillemet ML, Moreau PL. Activation of the cryptic PhnE permease promotes rapid adaptive evolution in a population of Escherichia coli K-12 starved for phosphate. J Bacteriol 2012; 194:253-60. [PMID: 22056928 PMCID: PMC3256660 DOI: 10.1128/jb.06094-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/25/2011] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.
Collapse
Affiliation(s)
- Mélanie L Guillemet
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | | |
Collapse
|