1
|
Jalali P, Nowroozi A, Moradi S, Shahlaei M. Exploration of lipid bilayer mechanical properties using molecular dynamics simulation. Arch Biochem Biophys 2024; 761:110151. [PMID: 39265694 DOI: 10.1016/j.abb.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Important biological structures known for their exceptional mechanical qualities, lipid bilayers are essential to many cellular functions. Fluidity, elasticity, permeability, stiffness, tensile strength, compressibility, shear viscosity, line tension, and curvature elasticity are some of the fundamental characteristics affecting their behavior. The purpose of this review is to examine these characteristics in more detail by molecular dynamics simulation, elucidating their importance and the elements that lead to their appearance in lipid bilayers. Comprehending the mechanical characteristics of lipid bilayers is critical for creating medications, drug delivery systems, and biomaterials that interact with biological membranes because it allows one to understand how these materials respond to different stresses and deformations. The influence of mechanical characteristics on important lipid bilayer properties is examined in this review. The mechanical properties of lipid bilayers were clarified through the use of molecular dynamics simulation analysis techniques, including bilayer thickness, stress-strain analysis, lipid bilayer area compressibility, membrane bending rigidity, and time- or ensemble-averaged the area per lipid evaluation. We explain the significance of molecular dynamics simulation analysis methods, providing important new information about the stability and dynamic behavior of the bilayer. In the end, we hope to use molecular dynamics simulation to provide a comprehensive understanding of the mechanical properties and behavior of lipid bilayers, laying the groundwork for further studies and applications. Taken together, careful investigation of these mechanical aspects deepens our understanding of the adaptive capacities and functional roles of lipid bilayers in biological environments.
Collapse
Affiliation(s)
- Parvin Jalali
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Fink Z, Wu X, Kim PY, McGlasson A, Abdelsamie M, Emrick T, Sutter-Fella CM, Ashby PD, Helms BA, Russell TP. Mixed Nanosphere Assemblies at a Liquid-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308560. [PMID: 37994305 DOI: 10.1002/smll.202308560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Indexed: 11/24/2023]
Abstract
The in-plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water-oil interface is investigated in situ by UV-vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine-functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non-plasmonic (PS/SiO2) NPs. As the PS/SiO2 content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmax changes within the first few minutes of adsorption due to weak attractive inter-NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non-plasmonic NP content. Grazing incidence small angle X-ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non-plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase-separated NP films.
Collapse
Affiliation(s)
- Zachary Fink
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Maged Abdelsamie
- Material Science and Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Barakat JM, Squires TM. Curvature and shape relaxation in surface-viscous domains. PHYSICAL REVIEW FLUIDS 2023; 8:054001. [PMID: 38855576 PMCID: PMC11160971 DOI: 10.1103/physrevfluids.8.054001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The mechanics of curved, heterogeneous, surfactant-laden surfaces and interfaces are important to a variety of engineering and biological applications. To date, most models of rheologically complex interfaces have focused on homogeneous systems of planar or fixed curvature. In this study, we investigate a simple, dynamical model of a two-phase surface fluid on a curved interface: a condensed, surface-viscous domain embedded within a surface-inviscid, spherical interface of time-varying radius of curvature. Our aim is to understand how changes in surface curvature generate two-dimensional Stokes flows inside the domain, thereby resisting curvature deformation and distorting the domain shape. We model the surface stress within the domain using the classical Boussinesq-Scriven constitutive equation, simplified for a near-spherical cap undergoing a small-amplitude curvature deformation. We then analyze the frequency-dependent dynamics of the surface stress and curvature within the domain when the pressure difference across the surface is sinusoidally oscillated. We find that the curvature relaxes diffusively, and thus define a Peclet number (Pe) relating the rate of diffusion to the oscillation frequency. At small enough Pe, the surface deforms quasi-statically, whereas at high Pe, the curvature varies sharply within a thin boundary layer adjacent to the domain border. Consequently, the curvature of the domain appears discontinuous from the rest of the surface under rapid oscillation. We then examine the linear stability of the domain shape to small, non-axisymmetric perturbations when the surface is steadily compressed (i.e., the pressure difference across it is increased). While the line tension at the domain border tends to maintain circular symmetry, surface-viscous stresses generated by surface compression tend to destabilize the perimeter. A shape instability arises above a critical surface capillary number (Ca) relating surface-viscous stresses to line tension. Moreover, we show that the mechanism of instability is distinct from that of the famous Saffman-Taylor fingering instability. Various extensions of our model are discussed, including materials with finite dilatational surface viscosity, linear and nonlinear (visco)elasticity, and large-amplitude deformations.
Collapse
Affiliation(s)
- Joseph M. Barakat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Todd M. Squires
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
4
|
Pusterla JM, Cannas SA, Schneck E, Oliveira RG. Purified myelin lipids display a critical mixing point at low surface pressure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183874. [PMID: 35120896 DOI: 10.1016/j.bbamem.2022.183874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Lipids extracted from Purified Myelin Membranes (LPMM) were spread as monomolecular films at the air/aqueous interface. The films were visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) and ionic environments. Coexistence of Liquid-Expanded (LE) and cholesterol-enriched (CE) rounded domains persisted up to π ≈ 5 mN/m but the monolayers became homogeneous at higher surface pressures. Before mixing, the domains distorted to non-rounded domains. We experimentally measured the line tension (λ) for the lipid monolayers at the domain borders by a shape relaxation technique using non-homogeneous electric fields. Regardless of the subphase conditions, the obtained line tensions are of the order of pN and tended to decrease as lateral pressure increased toward the mixing point. From the mean square displacement of nested trapped domains, we also calculated the dipole density difference between phases (μ). A non-linear drop was detected in this parameter as the mixing point is approached. Here we quantitively evaluated the π-dependance of both parameters with proper power laws in the vicinity of the critical mixing surface pressure, and the exponents showed to be consistent with a critical phenomenon in the two-dimensional Ising universality class. This idea of bidimensionality was found to be compatible only for simplified lipidic systems, while for whole myelin monolayers, that means including proteins, no critical mixing point was detected. Finally, the line tension values were related with the thickness differences between phases (Δt) near the critical point.
Collapse
Affiliation(s)
- Julio M Pusterla
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Sergio A Cannas
- Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | - Emanuel Schneck
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Rafael G Oliveira
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)-Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
5
|
Valtierrez-Gaytan C, Barakat JM, Kohler M, Kieu K, Stottrup BL, Zasadzinski JA. Spontaneous evolution of equilibrium morphology in phospholipid-cholesterol monolayers. SCIENCE ADVANCES 2022; 8:eabl9152. [PMID: 35385307 PMCID: PMC8986108 DOI: 10.1126/sciadv.abl9152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Competition between intradomain electrostatic repulsions and interdomain line tension leads to domain shape transitions in phase-separating lipid monolayers. The question remains if these morphologies are energy minima or are kinetically trapped metastable states. We show the reversible evolution of uniform width stripe domains from polydisperse semicircular domains in monolayers of dipalmitoylphosphatidylcholine (DPPC), hexadecanol (HD) or palmitic acid (PA), and dihydrocholesterol (DChol). The initial semicircular domains grow at a fixed 2:1 DPPC:HD (or PA) stoichiometry, depleting the liquid phase of HD, leaving behind a liquid enriched in DPPC and DChol. At higher surface pressures, the remaining DPPC precipitates onto existing domains, decreasing the ratio of line tension to the square of the dipole density difference, λ/μ2. Theory predicts that, as λ/μ2 decreases, circular domains reversibly transform to uniform width stripes as the minimum energy structure. Measuring the stripe width provides the first estimates of λ/μ2 at liquid condensed-liquid expanded phase coexistence.
Collapse
Affiliation(s)
- Cain Valtierrez-Gaytan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph M. Barakat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mitchell Kohler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khanh Kieu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Joseph A. Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Ionic environment, thickness and line tension as determinants of phase separation in whole Purified Myelin Membranes monolayers. Colloids Surf B Biointerfaces 2021; 207:112027. [PMID: 34388613 DOI: 10.1016/j.colsurfb.2021.112027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Purified myelin membranes (PMM) were spread as monomolecular films at the air/aqueous solution interface, and visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) on three specific aqueous solutions: absence of salts, physiological conditions and presence of calcium. Coexistence of Liquid-Expanded (LE) and Liquid Ordered (LO) phases persisted up to collapse in the presence of salts, whereas monolayers became homogeneous at π ≥ 35-40 mN/m when salts are absent. This PMM phase-mixing behavior in monolayers is similar to the previously reported behavior of PMM multilamellar vesicles. Reflectivities (Rp) of p-polarized light from both phases were assessed throughout the whole π -range, and film thicknesses (t) were calculated from the Rp values and measured film refractive indices (n). The LO phase was found to be more reflective and thicker than the LE phase at π ≤ 15 mN/m, but less reflective and thinner at higher π. We also determined the line tension (λ) of PMM monolayers at the domain boundaries from the rate of domain shape relaxation, which turned out to be of the order of picoNewtons (pN) and decreased as π increased. A correlation between λ and thickness differences (Δt) was found, suggesting that Δt is a molecular determinant for λ in PMM monolayers. Both λ and Δt were found to increase markedly when calcium was present in the subphase. This result corroborates the concept of divalent cations as a stabilizing factor for phase separation, in line with earlier studies on this mixture forming multilamellar membrane arrangements.
Collapse
|
7
|
Agudelo J, Bossa GV, May S. Incorporation of Molecular Reorientation into Modeling Surface Pressure-Area Isotherms of Langmuir Monolayers. Molecules 2021; 26:4372. [PMID: 34299646 PMCID: PMC8303322 DOI: 10.3390/molecules26144372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Langmuir monolayers can be assembled from molecules that change from a low-energy orientation occupying a large cross-sectional area to a high-energy orientation of small cross-sectional area as the lateral pressure grows. Examples include cyclosporin A, amphotericin B, nystatin, certain alpha-helical peptides, cholesterol oxydation products, dumbbell-shaped amphiphiles, organic-inorganic nanoparticles and hybrid molecular films. The transition between the two orientations leads to a shoulder in the surface pressure-area isotherm. We propose a theoretical model that describes the shoulder and can be used to extract the energy cost per molecule for the reorientation. Our two-state model is based on a lattice-sublattice approximation that hosts the two orientations and a corresponding free energy expression which we minimize with respect to the orientational distribution. Inter-molecular interactions other than steric repulsion are ignored. We provide an analysis of the model, including an analytic solution for one specific lateral pressure near a point of inflection in the surface pressure-area isotherm, and an approximate solution for the entire range of the lateral pressures. We also use our model to estimate energy costs associated with orientational transitions from previously reported experimental surface pressure-area isotherms.
Collapse
Affiliation(s)
- José Agudelo
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Guilherme Volpe Bossa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
8
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
9
|
Barakat JM, Squires TM. Shape morphology of dipolar domains in planar and spherical monolayers. J Chem Phys 2020; 152:234701. [PMID: 32571056 DOI: 10.1063/5.0009667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a continuum theory for predicting the equilibrium shape and size of dipolar domains formed during liquid-liquid phase coexistence in planar and spherical monolayers. Our main objective is to assess the impact of the monolayer surface curvature on domain morphology. Following previous investigators, we base our analysis around minimizing the free energy, with contributions from line tension and electrostatic dipolar repulsions. Assuming a monodisperse system of circularly symmetric domains, we calculate self-energies and interaction energies for planar and spherical monolayers and determine the equilibrium domain size from the energy minima. We subsequently evaluate the stability of the circularly symmetric domain shapes to an arbitrary, circumferential distortion of the perimeter via a linear stability analysis. We find that the surface curvature generally promotes the formation of smaller, circularly symmetric domains instead of larger, elongated domains. We rationalize these results by examining the effect of the curvature on the intra- and inter-domain dipolar repulsions. We then present a phase diagram of domain shape morphologies, parameterized in terms of the domain area fraction and the monolayer curvature. For typical domain dimensions of 1-30 µm, our theoretical results are relevant to monolayers (and possibly also bilayers) in liquid-liquid phase coexistence with radii of curvature of 1-100 µm.
Collapse
Affiliation(s)
- J M Barakat
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - T M Squires
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
10
|
Rufeil Fiori E, Downing R, Bossa GV, May S. Influence of spontaneous curvature on the line tension of phase-coexisting domains in a lipid monolayer: A Landau-Ginzburg model. J Chem Phys 2020; 152:054707. [DOI: 10.1063/1.5138192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elena Rufeil Fiori
- Facultad de Matemática, Astronomía, Física y Computación and Instituto de Física Enrique Gaviola (IFEG), CONICET, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Rachel Downing
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Guilherme Volpe Bossa
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
11
|
Stottrup BL, TigreLazo J, Bagonza VB, Kunz JC, Zasadzinski JA. Comparison of Line Tension Measurement Methods for Lipid Monolayers at Liquid-Liquid Coexistence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16053-16061. [PMID: 31343892 PMCID: PMC6896218 DOI: 10.1021/acs.langmuir.9b01696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several methods of measuring the line tension between phase-separated liquid-ordered-liquid -disordered domains in phospholipid-cholesterol systems have been proposed. These experimental techniques are typically internally self-consistent, but the measured line tension values vary widely among these techniques. To date, no measurement of line tension has utilized multiple experimental techniques to look at the same monolayer system. Here we compare two nonperturbative methods, Fourier analysis of boundary fluctuations (BA) and one proposed by Israelachvili involving the analysis of domain size distributions (SD), to extract the line tension in a 70 mol % DMPC/30 mol % dihydrocholesterol (DChol) mixture as a function of surface pressure. We show that BA predicts the expected variation in line tension measurements consistent with the theoretical critical exponent whereas SD does not. From this comparison, we conclude that the size distribution of monolayer domains is metastable and primarily determined by the kinetics of domain nucleation and subsequent aging.
Collapse
Affiliation(s)
- Benjamin L. Stottrup
- Department of Physics, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Juan TigreLazo
- Department of Physics, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Vision B. Bagonza
- Department of Physics, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Joan C. Kunz
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | | |
Collapse
|
12
|
Velasco E, Mederos L. Anisotropic line tension of domains in lipid monolayers. Phys Rev E 2019; 100:032413. [PMID: 31639977 DOI: 10.1103/physreve.100.032413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We formulate a simple effective model to describe molecular interactions in a lipid monolayer and calculate the line tension between coexisting domains. The model represents lipid molecules in terms of two-dimensional anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating from lipid chains and dipolar forces between dipole groups in the molecular heads. The model stresses the liquid-crystalline nature of the ordered phase in lipid monolayers and explains coexistence properties between ordered and disordered phases in terms of molecular parameters. Thermodynamic and interfacial properties of the model are analyzed using density-functional theory. In particular, the line tension at the interface between ordered and disordered phases turns out to be highly anisotropic with respect to the angle between the nematic director and the interface separating the coexisting phases. This important feature mainly results from the tilt angle of lipid chains and, to a lesser extent, from dipolar interactions perpendicular to the monolayer. The role of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with computer simulation results for lipid monolayers.
Collapse
Affiliation(s)
- E Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - L Mederos
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz, 3, E-28049 Madrid, Spain
| |
Collapse
|
13
|
Cong J, Fang B, Wang Q, Su Y, Gu T, Luo T. The mechanobiology of actin cytoskeletal proteins during cell-cell fusion. J R Soc Interface 2019; 16:20190022. [PMID: 31337301 DOI: 10.1098/rsif.2019.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myosin II and spectrin β display mechanosensitive accumulations in invasive protrusions during cell-cell fusion of Drosophila myoblasts. The biochemical inhibition and deactivation of these proteins results in significant fusion defects. Yet, a quantitative understanding of how the protrusion geometry and fusion process are linked to these proteins is still lacking. Here we present a quantitative model to interpret the dependence of the protrusion size and the protrusive force on the mechanical properties and microstructures of the actin cytoskeleton and plasma membrane based on a mean-field theory. We build a quantitative linkage between mechanosensitive accumulation of myosin II and fusion pore formation at the tip of the invasive protrusion through local area dilation. The mechanical feedback loop between myosin II and local deformation suggests that myosin II accumulation possibly reduces the energy barrier and the critical radius of fusion pores. We also analyse the effect of spectrin β on maintaining the proper geometry of the protrusions required for the success of cell-cell fusion.
Collapse
Affiliation(s)
- Jing Cong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bing Fang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Qian Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yan Su
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Tianqi Gu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
14
|
Lee DW. Revisiting the Interaction Force Measurement between Lipid Bilayers Using a Surface Forces Apparatus (SFA). J Oleo Sci 2018; 67:1361-1372. [PMID: 30404956 DOI: 10.5650/jos.ess18088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology
| |
Collapse
|
15
|
Rufeil-Fiori E, Banchio AJ. Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence. SOFT MATTER 2018; 14:1870-1878. [PMID: 29457809 DOI: 10.1039/c7sm02099f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In lipid monolayers with phase coexistence, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normally distributed size domains. For this purpose, we vary the relevant system parameters, polydispersity and interaction strength, within a range of experimental interest. We also analyze the consequences of using a monodisperse model to determine the interaction strength from an experimental RDF. We find that polydispersity strongly affects the value of the interaction strength, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
Collapse
Affiliation(s)
- Elena Rufeil-Fiori
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.
| | | |
Collapse
|
16
|
Shigematsu T, Koshiyama K, Wada S. Stretch-Induced Interdigitation of a Phospholipid/Cholesterol Bilayer. J Phys Chem B 2018; 122:2556-2563. [DOI: 10.1021/acs.jpcb.7b10633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Taiki Shigematsu
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenichiro Koshiyama
- Department of Mechanical Science & Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigeo Wada
- Department of Mechanical Science & Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
17
|
Mize HE, Blanchard GJ. Interface-mediation of lipid bilayer organization and dynamics. Phys Chem Chem Phys 2018; 18:16977-85. [PMID: 27295126 DOI: 10.1039/c6cp02915a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on the morphology and dynamics of planar supported lipid bilayer structures as a function of pH and ionic strength of the aqueous overlayer. Supported lipid bilayers composed of three components (phosphocholine, sphingomyelin and cholesterol) are known to exhibit phase segregation, with the characteristic domain sizes dependent on the amount and identity of each constituent, and the composition of the aqueous overlayer in contact with the bilayer. We report on fluorescence anisotropy decay imaging measurements of a rhodamine chromophore tethered to the headgroup of a phosphoethanolamine, where anisotropy decay images were acquired as a function of solution overlayer pH and ionic strength. The data reveal a two-component anisotropy decay under all conditions, with the faster time constant being largely independent of pH and ionic strength and the slower component depending on pH and ionic strength in different manners. For liposomes of the same composition, a single exponential anisotropy decay was seen. We interpret this difference in terms of bilayer curvature and support surface-bilayer interactions, and the pH and ionic strength dependencies in terms of ionic screening and protonation in the bilayer headgroup region.
Collapse
Affiliation(s)
- Hannah E Mize
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824-1322, USA.
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824-1322, USA.
| |
Collapse
|
18
|
Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Semin Cell Dev Biol 2018; 73:188-198. [DOI: 10.1016/j.semcdb.2017.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
|
19
|
Interfacial curvature effects on the monolayer morphology and dynamics of a clinical lung surfactant. Proc Natl Acad Sci U S A 2017; 115:E134-E143. [PMID: 29279405 DOI: 10.1073/pnas.1715830115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The morphology of surfactant monolayers is typically studied on the planar surface of a Langmuir trough, even though most physiological interfaces are curved at the micrometer scale. Here, we show that, as the radius of a clinical lung surfactant monolayer-covered bubble decreases to ∼100 µm, the monolayer morphology changes from dispersed circular liquid-condensed (LC) domains in a continuous liquid-expanded (LE) matrix to a continuous LC linear mesh separating discontinuous LE domains. The curvature-associated morphological transition cannot be readily explained by current liquid crystal theories based on isotropic domains. It is likely due to the anisotropic bending energy of the LC phase of the saturated phospholipids that are common to all natural and clinical lung surfactants. This continuous LC linear mesh morphology is also present on bilayer vesicles in solution. Surfactant adsorption and the dilatational modulus are also strongly influenced by the changes in morphology induced by interfacial curvature. The changes in morphology and dynamics may have physiological consequences for lung stability and function as the morphological transition occurs at alveolar dimensions.
Collapse
|
20
|
Efimova SS, Zakharova AA, Ismagilov AA, Schagina LV, Malev VV, Bashkirov PV, Ostroumova OS. Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:691-699. [PMID: 29253504 DOI: 10.1016/j.bbamem.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at -50mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60mV at 50μM, while Rose Bengal, phloxine B and erythrosin at 2.5μM reduce the membrane dipole potential by 120, 80 and 50mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | | | - Artem A Ismagilov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ludmila V Schagina
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Valery V Malev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; St. Petersburg State University, Petergof 198504, Russia
| | - Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
21
|
Lipid Order Degradation in Autoimmune Demyelination Probed by Polarized Coherent Raman Microscopy. Biophys J 2017; 113:1520-1530. [PMID: 28978445 DOI: 10.1016/j.bpj.2017.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Myelin around axons is currently widely studied by structural analyses and large-scale imaging techniques, with the goal to decipher its critical role in neuronal protection. Although there is strong evidence that in myelin, lipid composition, and lipid membrane morphology are affected during the progression of neurodegenerative diseases, there is no quantitative method yet to report its ultrastructure in tissues at both molecular and macroscopic levels, in conditions potentially compatible with in vivo observations. In this work, we study and quantify the molecular order of lipids in myelin at subdiffraction scales, using label-free polarization-resolved coherent anti-Stokes Raman, which exploits coherent anti-Stokes Raman sensitivity to coupling between light polarization and oriented molecular vibrational bonds. Importantly, the method does not use any a priori parameters in the sample such as lipid type, orientational organization, and composition. We show that lipid molecular order of myelin in the mouse spinal cord is significantly reduced throughout the progression of experimental autoimmune encephalomyelitis, a model for multiple sclerosis, even in myelin regions that appear morphologically unaffected. This technique permits us to unravel molecular-scale perturbations of lipid layers at an early stage of the demyelination progression, whereas the membrane architecture at the mesoscopic scale (here ∼100 nm) seems much less affected. Such information cannot be brought by pure morphological observation and, to our knowledge, brings a new perspective to molecular-scale understanding of neurodegenerative diseases.
Collapse
|
22
|
Carravilla P, Cruz A, Martin-Ugarte I, Oar-Arteta IR, Torralba J, Apellaniz B, Pérez-Gil J, Requejo-Isidro J, Huarte N, Nieva JL. Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes. Biophys J 2017; 113:1301-1310. [PMID: 28797705 DOI: 10.1016/j.bpj.2017.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Membrane fusion induced by the envelope glycoprotein enables the intracellular replication of HIV-1; hence, this process constitutes a major target for antiretroviral compounds. It has been proposed that peptides having propensity to interact with membrane interfaces might exert broad antiviral activity against enveloped viruses. To test this hypothesis, in this contribution we have analyzed the antiviral effects of peptides derived from the membrane-proximal external region and the transmembrane domain of the envelope glycoprotein subunit gp41, which display different degrees of interfacial hydrophobicity. Our data support the virucidal activity of a region that combines hydrophobic-at-interface membrane-proximal external region aromatics with hydrophobic residues of the transmembrane domain, and contains the absolutely conserved 679LWYIK/R683 sequence, proposed to embody a "cholesterol recognition/interaction amino acid consensus" motif. We further sought to correlate the antiviral activity of these peptides and their effects on membranes that mimic lipid composition and biophysical properties of the viral envelope. The data revealed that peptides endowed with virucidal activity were membrane active and induced permeabilization and fusion of virus-like lipid vesicles. In addition, they modulated lipid packing and miscibility of laterally segregated liquid domains, two properties that depend on the high cholesterol content of the viral membrane. Thus, the overall experimental evidence is consistent with a pattern of HIV inhibition that involves direct alteration of the physical chemistry of the virus membrane. Furthermore, the sequence-dependent effects observed might guide the development of new virucidal peptides.
Collapse
Affiliation(s)
- Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Itziar Martin-Ugarte
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Itziar R Oar-Arteta
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Johanna Torralba
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Beatriz Apellaniz
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Requejo-Isidro
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
23
|
Usery RD, Enoki TA, Wickramasinghe SP, Weiner MD, Tsai WC, Kim MB, Wang S, Torng TL, Ackerman DG, Heberle FA, Katsaras J, Feigenson GW. Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers. Biophys J 2017; 112:1431-1443. [PMID: 28402885 DOI: 10.1016/j.bpj.2017.02.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ∼0.3 pN. A computational model incorporating line tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. We find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.
Collapse
Affiliation(s)
- Rebecca D Usery
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sanjula P Wickramasinghe
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Biochemistry and Biophysics at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Wen-Chyan Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mary B Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Shu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Harvard Medical School Library of Integrated Network-based Cellular Signatures Center and Laboratory of Systems Pharmacology, Harvard University, Boston, Massachusetts
| | - Thomas L Torng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - David G Ackerman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Scientific Computing, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - John Katsaras
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
24
|
Min Y. Phase dynamics and domain interactions in biological membranes. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Gröning A, Ahrens H, Ortmann T, Lawrenz F, Helm CA. Polyetylenimine (PEI) adsorption to a DMPG lipid-monolayer in the presence of iron salts and EDTA. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Huarte N, Carravilla P, Cruz A, Lorizate M, Nieto-Garai JA, Kräusslich HG, Pérez-Gil J, Requejo-Isidro J, Nieva JL. Functional organization of the HIV lipid envelope. Sci Rep 2016; 6:34190. [PMID: 27678107 PMCID: PMC5039752 DOI: 10.1038/srep34190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022] Open
Abstract
The chemical composition of the human immunodeficiency virus type 1 (HIV-1) membrane is critical for fusion and entry into target cells, suggesting that preservation of a functional lipid bilayer organization may be required for efficient infection. HIV-1 acquires its envelope from the host cell plasma membrane at sites enriched in raft-type lipids. Furthermore, infectious particles display aminophospholipids on their surface, indicative of dissipation of the inter-leaflet lipid asymmetry metabolically generated at cellular membranes. By combining two-photon excited Laurdan fluorescence imaging and atomic force microscopy, we have obtained unprecedented insights into the phase state of membranes reconstituted from viral lipids (i.e., extracted from infectious HIV-1 particles), established the role played by the different specimens in the mixtures, and characterized the effects of membrane-active virucidal agents on membrane organization. In determining the molecular basis underlying lipid packing and lateral heterogeneity of the HIV-1 membrane, our results may help develop compounds with antiviral activity acting by perturbing the functional organization of the lipid envelope.
Collapse
Affiliation(s)
- Nerea Huarte
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Antonio Cruz
- Department of Biochemistry, Faculty of Biology, and Research Institute Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Maier Lorizate
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jon A Nieto-Garai
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Jose Requejo-Isidro
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
27
|
Shaharabani R, Ram-On M, Avinery R, Aharoni R, Arnon R, Talmon Y, Beck R. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis. J Am Chem Soc 2016; 138:12159-65. [DOI: 10.1021/jacs.6b04826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rona Shaharabani
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maor Ram-On
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ram Avinery
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rina Aharoni
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Arnon
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yeshayahu Talmon
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Roy Beck
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School
of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Rufeil-Fiori E, Wilke N, Banchio AJ. Dipolar interactions between domains in lipid monolayers at the air-water interface. SOFT MATTER 2016; 12:4769-77. [PMID: 27139819 DOI: 10.1039/c5sm02862k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems.
Collapse
Affiliation(s)
- Elena Rufeil-Fiori
- Instituto de Física Enrique Gaviola, IFEG, CONICET and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Adolfo J Banchio
- Instituto de Física Enrique Gaviola, IFEG, CONICET and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
29
|
Antúnez LR, Livingston A, Berkland C, Dhar P. Physiochemical Properties of Aluminum Adjuvants Elicit Differing Reorganization of Phospholipid Domains in Model Membranes. Mol Pharm 2016; 13:1731-7. [DOI: 10.1021/acs.molpharmaceut.6b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena R. Antúnez
- Department of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Andrea Livingston
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Department of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
30
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
31
|
Lee DW, Kristiansen K, Donaldson SH, Cadirov N, Banquy X, Israelachvili JN. Real-time intermembrane force measurements and imaging of lipid domain morphology during hemifusion. Nat Commun 2015; 6:7238. [PMID: 26006266 PMCID: PMC4455132 DOI: 10.1038/ncomms8238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Membrane fusion is the core process in membrane trafficking and is essential for cellular transport of proteins and other biomacromolecules. During protein-mediated membrane fusion, membrane proteins are often excluded from the membrane–membrane contact, indicating that local structural transformations in lipid domains play a major role. However, the rearrangements of lipid domains during fusion have not been thoroughly examined. Here using a newly developed Fluorescence Surface Forces Apparatus (FL-SFA), migration of liquid-disordered clusters and depletion of liquid-ordered domains at the membrane–membrane contact are imaged in real time during hemifusion of model lipid membranes, together with simultaneous force–distance and lipid membrane thickness measurements. The load and contact time-dependent hemifusion results show that the domain rearrangements decrease the energy barrier to fusion, illustrating the significance of dynamic domain transformations in membrane fusion processes. Importantly, the FL-SFA can unambiguously correlate interaction forces and in situ imaging in many dynamic interfacial systems. During membrane fusion, lipid bilayers come into direct contact but rearrangements of lipid domains during fusion have not been thoroughly examined. Here the authors observe and correlate membrane morphology, interaction forces and domain rearrangements during hemifusion of two model membranes.
Collapse
Affiliation(s)
- Dong Woog Lee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kai Kristiansen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Stephen H Donaldson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Nicholas Cadirov
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Xavier Banquy
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jacob N Israelachvili
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.,Department of Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
32
|
Chakraborty A, Mucci NJ, Tan ML, Steckley A, Zhang T, Forrest ML, Dhar P. Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5093-104. [PMID: 25876023 PMCID: PMC4702515 DOI: 10.1021/la504923j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Nicolas J. Mucci
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ming Li Tan
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ashleigh Steckley
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- Corresponding Author:
| |
Collapse
|
33
|
Bischof AA, Mangiarotti A, Wilke N. Searching for line active molecules on biphasic lipid monolayers. SOFT MATTER 2015; 11:2147-2156. [PMID: 25633226 DOI: 10.1039/c5sm00022j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In membranes with phase coexistence, line tension appears as an important parameter for the determination of the amount of domains, as well as their size and their shape, thus defining the membrane texture. Different molecules have been proposed as "linactants" (i.e. molecules that reduce the line tension, thereby modulating the membrane texture). In this work, we explore the efficiency of different molecules as linactants in monolayers with two coexisting phases of different thicknesses. We tested the linactant ability of a molecule with chains of different saturation degrees, another molecule with different chain lengths and a bulky molecule. In this way, we show in the same system the effect of molecules with chains of different rigidities, with an intrinsic thickness mismatch and with a bulky moiety, thereby analyzing different hypotheses of how a molecule may change the line tension in a monolayer system. Both lipids with different hydrocarbon chains did not act as linactants, while only one of the bulky molecules tested decreased the line tension in the monolayer studied. We conclude that there are no universal rules for the structure of a molecule that enable us to predict that it will behave as a linactant and thus, designing linactants appears to be a difficult task and a challenge for future studies. Furthermore, in regard to the membrane texture, there was no direct influence of the line tension in the distribution of domain sizes.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | | | | |
Collapse
|
34
|
Lee DW, Banquy X, Kristiansen K, Min Y, Ramachandran A, Boggs JM, Israelachvili JN. Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3159-3166. [PMID: 25706854 DOI: 10.1021/acs.langmuir.5b00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and its capacity to interact with and bridge solid substrates has been studied using a surface forces apparatus (SFA) and a quartz crystal microbalance with dissipation (QCM-D). Adsorption experiments show that MBP molecules adsorb to the surfaces in a swollen state before undergoing a conformational change into a more compact structure with a thickness of ∼3 nm. Moreover, this compact structure is able to interact with nearby mica surfaces to form adhesive bridges. The measured adhesion force (energy) between two bridged surfaces is 1.0 ± 0.1 mN/m, (Ead = 0.21 ± 0.02 mJ/m(2)), which is slightly smaller than our previously reported adhesion force of 1.7 mN/m (Ead = 0.36 mJ/m(2)) for MBP adsorbed on two supported lipid bilayers (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775). The saturated surface concentration of compact MBP on a single SiO2 surface reaches a stable value of 310 ± 10 ng/cm(2) regardless of the bulk MBP concentration. A kinetic three-step adsorption model was developed that accurately fits the adsorption data. The developed model is a general model, not limited to intrinsically disordered proteins, that can be extended to the adsorption of various chemical compounds that undergo chemical reactions and/or conformational changes upon adsorbing to surfaces. Taken together with our previously published data (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775), the present results confirm that conformational changes of MBP upon adsorption are a key for strong adhesion, and that such conformational changes are strongly dependent on the nature of the surfaces.
Collapse
Affiliation(s)
- Dong Woog Lee
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Xavier Banquy
- ‡Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal C.P. 6128, succursale Centre Ville, Montréal, Québec H3C 3J7, Canada
| | - Kai Kristiansen
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Younjin Min
- §Department of Polymer Engineering, University of Akron, Akron, Ohio United States
| | - Arun Ramachandran
- ∥Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Joan M Boggs
- ⊥Department of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- #Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | - Jacob N Israelachvili
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- ∇Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer. Proc Natl Acad Sci U S A 2015; 112:E826-35. [PMID: 25675499 DOI: 10.1073/pnas.1419033112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.
Collapse
|
36
|
Parkkila P, Stefl M, Olżyńska A, Hof M, Kinnunen PKJ. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:167-73. [PMID: 25450344 DOI: 10.1016/j.bbamem.2014.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
Abstract
Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.
Collapse
Affiliation(s)
- Petteri Parkkila
- Helsinki Biophysics & Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, Espoo, Finland
| | - Martin Stefl
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Paavo K J Kinnunen
- Helsinki Biophysics & Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, Espoo, Finland.
| |
Collapse
|
37
|
Guzmán E, Orsi D, Cristofolini L, Liggieri L, Ravera F. Two-dimensional DPPC based emulsion-like structures stabilized by silica nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11504-11512. [PMID: 25210864 DOI: 10.1021/la502183t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the mechanical and structural properties of mixed surface layers composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and silica nanoparticles (NPs). These layers are obtained by spreading a DPPC Langmuir monolayer on a colloidal silica dispersion. The transfer/incorporation of NPs into the DPPC monolayer, driven by electrostatic interactions, alters the molecular orientation, the mechanisms of domain formation, and consequently the phase behavior of the surface layer during compression. The investigation of these systems by means of complementary techniques (Langmuir trough, fluorescence microscopy, ellipsometry, and scanning electron microscopy (SEM)) shows that the incorporated NPs preferentially distribute along the liquid expanded phase of DPPC. The layer assumes the stable and homogeneous bidimensional structure of a two-dimensional (2D) analogue of a Pickering emulsion. In fact, the presence of particles provides a circular shape to the DPPC domains and stabilizes them against growth and coalescence during the monolayer compression.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Consiglio Nazionale delle Ricerche-Istituto per l'Energetica e le Interfasi, U.O.S. Genova (CNR-IENI) , Via De Marini 6, 16149 Genova, Italy
| | | | | | | | | |
Collapse
|
38
|
Palmieri B, Grant M, Safran SA. Prediction of the dependence of the line tension on the composition of linactants and the temperature in phase separated membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11734-11745. [PMID: 25184568 DOI: 10.1021/la502347a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We calculate the line tension between domains in phase separated, ternary membranes that comprise line active molecules (linactants) that tend to increase the compatibility of the two phase separating species. The predicted line tension, which depends explicitly on the linactant composition and temperature, is shown to decrease significantly as the fraction of linactants in the membrane increases toward a Lifshitz point, above which the membrane phase separates into a modulated phase. We predict regimes of zero line tension at temperatures close to the mixing transition and clarify the two different ways in which the line tension can be reduced: (1) The linactants uniformly distribute in the system and reduce the compositional mismatch between the two bulk domains. (2) The linactants accumulate at the interface with a preferred orientation. Both of these mechanisms have been observed in recent experiments and simulations. The second one is unique to line active molecules, and our work shows that it is increasingly important at large fraction of linactants and is necessary for the emergence of a regime of zero line tension. The methodology is based on the ternary mixture model proposed by Palmieri and Safran [Palmieri, B.; Safran, S. A. Langmuir 2013, 29, 5246], and the line tension is calculated via variationally derived, self-consistent profiles for the local variation of composition and linactant orientation in the interface region.
Collapse
Affiliation(s)
- Benoit Palmieri
- Department of Physics, McGill University , 3600 rue University, Montréal, Québec Canada H3A 2T8
| | | | | |
Collapse
|
39
|
Puff N, Watanabe C, Seigneuret M, Angelova MI, Staneva G. Lo/Ld phase coexistence modulation induced by GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2105-14. [DOI: 10.1016/j.bbamem.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/31/2023]
|
40
|
Choi S, Kim K, Fellows CM, Cao KD, Lin B, Lee KYC, Squires TM, Zasadzinski JA. Influence of molecular coherence on surface viscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8829-38. [PMID: 24991992 PMCID: PMC4334248 DOI: 10.1021/la501615g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Adding small fractions of cholesterol decreases the interfacial viscosity of dipalmitoylphosphatidylcholine (DPPC) monolayers by an order of magnitude per wt %. Grazing incidence X-ray diffraction shows that cholesterol at these small fractions does not mix ideally with DPPC but rather induces nanophase separated structures of an ordered, primarily DPPC phase bordered by a line-active, disordered, mixed DPPC-cholesterol phase. We propose that the free area in the classic Cohen and Turnbull model of viscosity is inversely proportional to the number of molecules in the coherence area, or product of the two coherence lengths. Cholesterol significantly reduces the coherence area of the crystals as well as the interfacial viscosity. Using this free area collapses the surface viscosity data for all surface pressures and cholesterol fractions to a universal logarithmic relation. The extent of molecular coherence appears to be a fundamental factor in determining surface viscosity in ordered monolayers.
Collapse
Affiliation(s)
- Siyoung
Q. Choi
- Chemical
Engineering and Materials Science, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kyuhan Kim
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Colin M. Fellows
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kathleen D. Cao
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- Center
for Advanced Radiation Sources and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Ka Yee C. Lee
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Todd M. Squires
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Joseph A. Zasadzinski
- Chemical
Engineering and Materials Science, University
of Minnesota, Minneapolis, Minnesota 55455, United States
- E-mail: . Phone: 612-626-2957
| |
Collapse
|
41
|
Palmieri B, Yamamoto T, Brewster RC, Safran SA. Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments. Adv Colloid Interface Sci 2014; 208:58-65. [PMID: 24630340 DOI: 10.1016/j.cis.2014.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/16/2022]
Abstract
We review recent theoretical efforts that predict how line-active molecules can promote lateral heterogeneities (or domains) in model membranes. This fundamental understanding may be relevant to membrane composition in living cells, where it is thought that small domains, called lipid rafts, are necessary for the cells to be functional. The theoretical work reviewed here ranges in scale from coarse grained continuum models to nearly atomistic models. The effect of line active molecules on domain sizes and shapes in the phase separated regime or on fluctuation length scales and lifetimes in the single phase, mixed regime, of the membrane is discussed. Recent experimental studies on model membranes that include line active molecules are also presented together with some comparisons with the theoretical predictions.
Collapse
|
42
|
Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc Natl Acad Sci U S A 2014; 111:E768-75. [PMID: 24516125 DOI: 10.1073/pnas.1401165111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.
Collapse
|
43
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Ostroumova OS, Chulkov EG, Stepanenko OV, Schagina LV. Effect of flavonoids on the phase separation in giant unilamellar vesicles formed from binary lipid mixtures. Chem Phys Lipids 2013; 178:77-83. [PMID: 24361549 DOI: 10.1016/j.chemphyslip.2013.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/03/2013] [Accepted: 12/09/2013] [Indexed: 11/30/2022]
Abstract
Confocal fluorescence microscopy have been employed to investigate phase separation in giant unilamellar vesicles prepared from binary mixtures of unsaturated dioleoylphosphocholine with saturated phosphocholines or brain sphingomyelin in the absence and presence of the flavonoids, biochanin A, phloretin, and myricetin. It has been demonstrated that biochanin A and phloretin make uncolored domains more circular or eliminate visible phase separation in liposomes while myricetin remains the irregular shape of fluorescence probe-excluding domains. Influence of the flavonoids on the endotherms of liposome suspension composed of dioleoylphosphocholine and dimyristoylphosphocholine was investigated by the differential scanning calorimetry. Calorimetry data do not contradict to confocal imaging results.
Collapse
Affiliation(s)
- Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Evgeny G Chulkov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - Olga V Stepanenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - Ludmila V Schagina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| |
Collapse
|
45
|
Kollmitzer B, Heftberger P, Rappolt M, Pabst G. Monolayer spontaneous curvature of raft-forming membrane lipids. SOFT MATTER 2013; 9:10877-10884. [PMID: 24672578 PMCID: PMC3963256 DOI: 10.1039/c3sm51829a] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontaneous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 values are closer to zero. Interestingly, a significant positive J0 value was retrieved for DPPC. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 °C, resulting in a quite narrow distribution of -1 to -3 × 10-3 (nm °C)-1 for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered/liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.
Collapse
Affiliation(s)
- Benjamin Kollmitzer
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Austria. ; ; Tel: +43 316 4120-342
| | - Peter Heftberger
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Austria. ; ; Tel: +43 316 4120-342
| | - Michael Rappolt
- Institute of Inorganic Chemistry, Graz University of Technology, Austria ; School of Food Science and Nutrition, University of Leeds, UK
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Austria. ; ; Tel: +43 316 4120-342
| |
Collapse
|
46
|
Israelachvili JN, Kristiansen K, Gebbie MA, Lee DW, Donaldson SH, Das S, Rapp MV, Banquy X, Valtiner M, Yu J. The Intersection of Interfacial Forces and Electrochemical Reactions. J Phys Chem B 2013; 117:16369-87. [DOI: 10.1021/jp408144g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jacob N. Israelachvili
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Materials
Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kai Kristiansen
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew A. Gebbie
- Materials
Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Dong Woog Lee
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephen H. Donaldson
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Saurabh Das
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael V. Rapp
- Department
of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Xavier Banquy
- Faculty
of Pharmacy, Universite de Montreal, Succursale Centre Ville Montreal, Quebec H3C 3J7, Canada
| | - Markus Valtiner
- Interface
Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Jing Yu
- NanoSystems
Biology Cancer Center and Kavli Nanoscience Institute, Division of
Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Palmieri B, Safran SA. Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5246-5261. [PMID: 23530895 DOI: 10.1021/la4006168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated, and hybrid lipids (with one saturated and one unsaturated hydrocarbon chain). The hybrids are line-active and can reduce the packing incompatibility between the saturated and unsaturated lipids. We introduce a lattice model that extends previous studies by taking into account the dependence of the interactions of the hybrid lipids on their orientations in a simple way. A methodology to recast the free energy of the lattice model in terms of a continuous, isotropic field theory is proposed and used to analyze composition fluctuations in the one-phase region (above the critical temperature). The effect of hybrid lipids on fluctuation domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids; this implies that nanoscale fluctuation domains are more probable compared to the case with no hybrids. Smaller correlated fluctuation domains arise even when the temperature is close to a critical point, where very large correlation lengths are normally expected. This decrease in the correlation length is largest as the hybrid composition tends toward a crossover value above which stripelike fluctuations are predicted. This crossover value defines the Lifshitz line. The characteristic wavelength of the stripelike fluctuations is large close to the Lifshitz point but decreases toward a molecular size in a membrane that contains only hybrids. Micrometer size, stripelike domains have recently been observed experimentally in giant unilamelar vesicles (GUVs) made of saturated, unsaturated, and hybrid lipids. These results suggest that the line activity of hybrid lipids in such mixtures may be significant only at large hybrid fractions; in that regime, the interface between domains can be diffuse and several hybrid molecules with correlated orientations can separate saturated and unsaturated lipid regions.
Collapse
Affiliation(s)
- Benoit Palmieri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Varela AR, Gonçalves da Silva AM, Fedorov A, Futerman AH, Prieto M, Silva LC. Effect of glucosylceramide on the biophysical properties of fluid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013. [DOI: 10.1016/j.bbamem.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Sriram I, Singhana B, Lee TR, Schwartz DK. Line tension and line activity in mixed monolayers composed of aliphatic and terphenyl-containing surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16294-16299. [PMID: 23101697 DOI: 10.1021/la303735r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Custom-designed surfactants, known as "linactants", have the ability to reduce the line tension between coexisting phases within mixed monolayers of chemically dissimilar compounds at the air-water interface. Thus far, linactants have been successfully identified for only one type of chemical dissimilarity, involving mixed monolayers of hydrocarbon and fluorocarbon surfactants. In the present work, we have pursued a more general interpretation of linactant compounds by extending the concept to a new system that is comprised of a mixture of aliphatic (pentadecanoic acid) and aromatic (p-terphenyl carboxylic acid) compounds. We found that the "bare" line tension between phases of this mixed monolayer was ~4 pN, and within the same order of magnitude as our previous measurement in mixed monolayers containing hydrocarbons and fluorocarbons. Furthermore, we examined a homologous series of potential linactant compounds possessing an aliphatic tail of variable length and a p-terphenyl block. We determined that linactants with longer tails were able to reduce the line tension more efficiently and effectively. In particular, the addition of only 0.14% of a linactant with an 11-carbon chain reduced the line tension by more than a factor of 2. We hypothesize that the efficiency of this particular linactant is associated with its long tail; this creates strong van der Waals interactions with the aliphatic chains and enables the tail to adopt conformations that facilitate π-stacking interactions with the aromatic compounds within the monolayer.
Collapse
Affiliation(s)
- Indira Sriram
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
50
|
Bischof AA, Wilke N. Molecular determinants for the line tension of coexisting liquid phases in monolayers. Chem Phys Lipids 2012; 165:737-44. [PMID: 22982729 DOI: 10.1016/j.chemphyslip.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/01/2023]
Abstract
The line tension (λ) in biphasic membranes has been determined in monolayers and bilayers using a variety of techniques. In this work we present a novel approach to the determination of λ in monolayers with liquid/liquid phase coexistence, overcoming several of the drawbacks of current techniques. Using our method, we determined the line tension of liquid/liquid phases in binary mixtures of different lipids and a molecule similar to cholesterol but less oxidizable. We analyzed the effect of the hydrocarbon chain length and the polar head-group of the non-sterol lipid and found the latter to exert much more influence than the former. The presence of PE led to high λ values, PG to low values and PS and PC to intermediate values. The line tension showed a strong correlation with the critical packing parameter of the phospholipid. The spontaneous curvature displayed by the phases constituted by a particular lipid appears to be an important parameter for determining the line tension in mixed films.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | |
Collapse
|