1
|
Köhler L, Trunk F, Rohr V, Fischer T, Gärtner W, Wachtveitl J, Matysik J, Slavov C, Song C. Rotameric Heterogeneity of Conserved Tryptophan Is Responsible for Reduced Photochemical Quantum Yield in Cyanobacteriochrome Slr1393g3. Chemphyschem 2025; 26:e202400453. [PMID: 39382835 DOI: 10.1002/cphc.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8 % for its forward photoconversion, significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496. Here we use solid-state NMR to explore all possible sidechain rotamers of this Trp residue and their local interactions at the atomic level. The indole nitrogen (Nϵ1) is used as an NMR probe, achieved by site-specific 15N-indole labeling of a quadruply Trp-deleted variant and trehalose vitrification technique. The data reveal a set of seven indole rotamers of W496 with four distinct environments for the Nϵ1-H group. Only a minority population of 20 % is found to retain the π-stacking and hydrogen-bonding interactions with the chromophore in the dark state that has been assigned to account for complete forward photoconversion. Our results demonstrate the direct role of W496 in modulating the forward quantum yield of slr1393g3 via rearrangement of its sidechain rotameric conformations.
Collapse
Affiliation(s)
- Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Florian Trunk
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Valentin Rohr
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Tobias Fischer
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Josef Wachtveitl
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| | - Chavdar Slavov
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Chemistry, University of South Florida, 33620, Tampa, United States of America
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
3
|
Hoshino H, Miyake K, Fushimi K, Narikawa R. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Protein Sci 2024; 33:e5132. [PMID: 39072823 DOI: 10.1002/pro.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.
Collapse
Affiliation(s)
- Hiroki Hoshino
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Keita Miyake
- Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Keiji Fushimi
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Yang HW, Kim YW, Villafani Y, Song JY, Park YI. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Int J Biol Macromol 2024; 274:133407. [PMID: 38925190 DOI: 10.1016/j.ijbiomac.2024.133407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Cyanobacteriochromes (CBCRs) are distinctive tetrapyrrole (bilin)-binding photoreceptors exclusively found in cyanobacteria. Unlike canonical phytochromes, CBCRs require only a GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domain for autolyase activity to form a bilin adduct via a Cys residue and cis-trans photoisomerization. Apart from the canonical Cys, which attaches covalently to C31 in the A-ring of the bilin, some GAF domains of CBCRs contain a second-Cys in the Asp-Xaa-Cys-Phe (DXCF) motif, responsible for isomerization of phycocyanobilin (PCB) to phycoviolobilin (PVB) and/or for the formation of a reversible 2nd thioether linkage to the C10. Unlike green/teal-absorbing GAF proteins lacking ligation activity, the second-Cys in another teal-absorbing lineage (DXCF blue/teal group) exhibits both isomerization and ligation activity due to the presence of the Tyr instead of His next to the canonical Cys. Herein, we discovered an atypical CBCR GAF protein, Tpl7205g1, belonging to the DXCF blue/teal group, but having His instead of Tyr next to the first-Cys. Consistent with its subfamily, the second-Cys of Tpl7205g1 did not form a thioether linkage at C10 of PCB, showing only isomerization activity. Instead of forming 2nd thioether linkage, this novel GAF protein exhibits a pH-dependent photocycle between protonated 15Z and deprotonated 15E. Site-directed mutagenesis to the GAF scaffolds revealed its combined characteristics, including properties of teal-DXCF CBCRs and red/green-absorbing CBCRs (XRG CBCRs), suggesting itself as the evolutionary bridge between the two CBCR groups. Our study thus sheds light on the expanded spectral tuning characteristics of teal-light absorbing CBCRs and enhances feasibility of engineering these photoreceptors.
Collapse
Affiliation(s)
- Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Won Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yvette Villafani
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Suzuki T, Yoshimura M, Arai M, Narikawa R. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. J Mol Biol 2024; 436:168451. [PMID: 38246412 DOI: 10.1016/j.jmb.2024.168451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Masataka Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Rei Narikawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
7
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
8
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
9
|
Janis MK, Zou W, Zastrow ML. A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. Chembiochem 2023; 24:e202300358. [PMID: 37423892 PMCID: PMC10653908 DOI: 10.1002/cbic.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| |
Collapse
|
10
|
Suzuki T, Yoshimura M, Hoshino H, Fushimi K, Arai M, Narikawa R. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. FEBS J 2023; 290:4999-5015. [PMID: 37488966 DOI: 10.1111/febs.16911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far-red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far-red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV-binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far-red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Masataka Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Hiroki Hoshino
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Japan
| | - Rei Narikawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
11
|
Takeda Y, Ohtsu I, Suzuki T, Nakasone Y, Fushimi K, Ikeuchi M, Terazima M, Dohra H, Narikawa R. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Arch Biochem Biophys 2023; 745:109715. [PMID: 37549803 DOI: 10.1016/j.abb.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Cyanobacteriochromes (CBCRs) derived from cyanobacteria are linear-tetrapyrrole-binding photoreceptors related to the canonical red/far-red reversible phytochrome photoreceptors. CBCRs contain chromophore-binding cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that are highly diverse in their primary sequences and are categorized into many subfamilies. Among this repertoire, the biliverdin (BV)-binding CBCR GAF domains receive considerable attention for their in vivo optogenetic and bioimaging applications because BV is a mammalian intrinsic chromophore and can absorb far-red light that penetrates deep into the mammalian body. The typical BV-binding CBCR GAF domain exhibits reversible photoconversion between far-red-absorbing dark-adapted and orange-absorbing photoproduct states. Herein, we applied various biochemical and spectral studies to identify the details of the conformational change during this photoconversion process. No oligomeric state change was observed, whereas the surface charge would change with a modification of the α-helix structures during the photoconversion process. Combinatorial analysis using partial protease digestion and mass spectrometry identified the region where the conformational change occurred. These results provide clues for the future development of optogenetic tools.
Collapse
Affiliation(s)
- Yuka Takeda
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Itsuki Ohtsu
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takahisa Suzuki
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 657-0013, Japan
| | - Masahiko Ikeuchi
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideo Dohra
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
12
|
Janis MK, Zou W, Zastrow ML. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540396. [PMID: 37214816 PMCID: PMC10197653 DOI: 10.1101/2023.05.11.540396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed in E. coli . Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
13
|
Church JR, Olsen JMH, Schapiro I. Induction effects on the absorption maxima of photoreceptor proteins. Biophys Physicobiol 2023; 20:e201007. [PMID: 38362325 PMCID: PMC10865876 DOI: 10.2142/biophysico.bppb-v20.s007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Multiscale simulations have been established as a powerful tool to calculate and predict excitation energies in complex systems such as photoreceptor proteins. In these simulations the chromophore is typically treated using quantum mechanical (QM) methods while the protein and surrounding environment are described by a classical molecular mechanics (MM) force field. The electrostatic interactions between these regions are often treated using electrostatic embedding where the point charges in the MM region polarize the QM region. A more sophisticated treatment accounts also for the polarization of the MM region. In this work, the effect of such a polarizable embedding on excitation energies was benchmarked and compared to electrostatic embedding. This was done for two different proteins, the lipid membrane-embedded jumping spider rhodopsin and the soluble cyanobacteriochrome Slr1393g3. It was found that the polarizable embedding scheme produces absorption maxima closer to experimental values. The polarizable embedding scheme was also benchmarked against expanded QM regions and found to be in qualitative agreement. Treating individual residues as polarizable recovered between 50% and 71% of the QM improvement in the excitation energies, depending on the system. A detailed analysis of each amino acid residue in the chromophore binding pocket revealed that aromatic residues result in the largest change in excitation energy compared to the electrostatic embedding. Furthermore, the computational efficiency of polarizable embedding allowed it to go beyond the binding pocket and describe a larger portion of the environment, further improving the results.
Collapse
Affiliation(s)
- Jonathan R. Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Priyadarshini N, Steube N, Wiens D, Narikawa R, Wilde A, Hochberg GKA, Enomoto G. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00387-4. [PMID: 36781703 DOI: 10.1007/s43630-023-00387-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.
Collapse
Affiliation(s)
- Nibedita Priyadarshini
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albertstr. 19, 79104, Freiburg, Germany
| | - Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Dennis Wiens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Faculty of Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Gen Enomoto
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany. .,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
15
|
Hou Y, Höppner A, Rao AG, Lahav Y, Kumar Das P, Ding W, Jiang X, Hu J, Schapiro I, Noy D, Zhao K. Control of a far‐red/near‐infrared spectral switch in an artificial fluorescent biliprotein derived from allophycocyanin. Protein Sci 2022. [DOI: 10.1002/pro.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Nan Hou
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Astrid Höppner
- Center for Structural Studies Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Aditya G. Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| | - Yigal Lahav
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
| | - Prabir Kumar Das
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
| | - Wen‐Long Ding
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Xiang‐Xiang Jiang
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Ji‐Ling Hu
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| | - Dror Noy
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
- Faculty of Sciences and Technology Tel‐Hai Academic College Upper Galilee Israel
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| |
Collapse
|
16
|
Otsu T, Eki T, Hirose Y. A hybrid type of chromatic acclimation regulated by the dual green/red photosensory systems in cyanobacteria. PLANT PHYSIOLOGY 2022; 190:779-793. [PMID: 35751608 PMCID: PMC9434153 DOI: 10.1093/plphys/kiac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are phototrophic bacteria that perform oxygenic photosynthesis. They use a supermolecular light-harvesting antenna complex, the phycobilisome (PBS), to capture and transfer light energy to photosynthetic reaction centers. Certain cyanobacteria alter the absorption maxima and/or overall structure of their PBSs in response to the ambient light wavelength-a process called chromatic acclimation (CA). One of the most well-known CA types is the response to green and red light, which is controlled by either the RcaEFC or CcaSR photosensory system. Here, we characterized a hybrid type of CA in the cyanobacterium Pleurocapsa sp. Pasteur Culture Collection (PCC) 7319 that uses both RcaEFC and CcaSR systems. In vivo spectroscopy suggested that strain PCC 7319 alters the relative composition of green-absorbing phycoerythrin and red-absorbing phycocyanin in the PBS. RNA sequencing and promoter motif analyses suggested that the RcaEFC system induces a gene operon for phycocyanin under red light, whereas the CcaSR system induces a rod-membrane linker gene under green light. Induction of the phycoerythrin genes under green light may be regulated through a yet unidentified photosensory system called the Cgi system. Spectroscopy analyses of the isolated PBSs suggested that hemidiscoidal and rod-shaped PBSs enriched with phycoerythrin were produced under green light, whereas only hemidiscoidal PBSs enriched with phycocyanin were produced under red light. PCC 7319 uses the RcaEFC and CcaSR systems to regulate absorption of green or red light (CA3) and the amount of rod-shaped PBSs (CA1), respectively. Cyanobacteria can thus flexibly combine diverse CA types to acclimate to different light environments.
Collapse
Affiliation(s)
- Takuto Otsu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
17
|
Jang J, Reed PMM, Rauscher S, Woolley GA. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates. Biochemistry 2022; 61:1444-1455. [PMID: 35759789 DOI: 10.1021/acs.biochem.2c00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - P Maximilian M Reed
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sarah Rauscher
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada.,Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Influence of the PHY domain on the ms-photoconversion dynamics of a knotless phytochrome. Photochem Photobiol Sci 2022; 21:1627-1636. [PMID: 35687310 DOI: 10.1007/s43630-022-00245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.
Collapse
|
19
|
Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Photochem Photobiol Sci 2022; 21:447-469. [PMID: 35394641 DOI: 10.1007/s43630-022-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly 13C- and 15N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states. We also identify a greater structural heterogeneity of the bilin chromophore in the photoproduct than in the dark state. In addition, the binding pocket is more hydrated in the photoproduct. Observation of interfacial 1H contacts of the photoproduct chromophore, together with quantum mechanics/molecular mechanics (QM/MM)-based structural models for this photoproduct, clearly suggests the presence of a biprotonated (cationic) imidazolium side-chain for a conserved histidine residue (322) at a distance of ~2.7 Å, generalizing the recent theoretical findings that explicitly link the structural heterogeneity of the dark-state chromophore to the protonation of this specific residue. Moreover, we examine pH effects on this in vitro assembled holoprotein, showing a substantially altered electronic structure and protonation of the photoproduct chromophore even with a small pH drop from 7.8 to 7.2. Our studies provide further information regarding the light- and pH-induced changes of the chromophore and the rearrangements of the hydrogen-bonding and electrostatic interaction network around it. Possible correlations between structural heterogeneity of the chromophore, protonation of the histidine residue nearby, and hydration of the pocket in both photostates are discussed.
Collapse
|
20
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Xu HF, Dai GZ, Wang YJ, Cheng C, Shang JL, Li RH, Liu K, Duanmu D, Qiu BS. Expansion of bilin-based red light sensors in the subaerial desert cyanobacterium Nostoc flagelliforme. Environ Microbiol 2022; 24:2047-2058. [PMID: 35172392 DOI: 10.1111/1462-2920.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
Light is the crucial environmental signal for desiccation-tolerant cyanobacteria to activate photosynthesis and prepare for desiccation at dawn. However, the photobiological characteristics of desert cyanobacteria adaptation to one of the harshest habitats on Earth remain unresolved. In this study, we surveyed the genome of a subaerial desert cyanobacterium Nostoc flagelliforme and identified two phytochromes and seven cyanobacteriochromes (CBCRs) with one or more bilin-binding GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains. Biochemical and spectroscopic analyses of 69 purified GAF-containing proteins from recombinant phycocyanobilin (PCB), biliverdin or phycoerythrobilin-producing Escherichia coli indicated that nine of these proteins bind chromophores. Further investigation revealed that 11 GAFs form covalent adducts responsive to near-UV and visible light: eight GAFs contained PCB chromophores, three GAFs contained biliverdin chromophores and one contained the PCB isomer, phycoviolobilin. Interestingly, COO91_03972 is the first-ever reported GAF-only CBCR capable of sensing five wavelengths of light. Bioinformatics and biochemical analyses revealed that residue P132 of COO91_03972 is essential for chromophore binding to dual-cysteine CBCRs. Furthermore, the complement of N. flagelliforme CBCRs is enriched in red light sensors. We hypothesize that these sensors are critical for the acclimatization of N. flagelliforme to weak light environments at dawn.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yu-Jie Wang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chao Cheng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Ren-Han Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
22
|
Okuda Y, Miyoshi R, Kamo T, Fujisawa T, Nagae T, Mishima M, Eki T, Hirose Y, Unno M. Raman Spectroscopy of an Atypical C15-E,syn Bilin Chromophore in Cyanobacteriochrome RcaE. J Phys Chem B 2022; 126:813-821. [DOI: 10.1021/acs.jpcb.1c09652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuji Okuda
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
23
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Blain-Hartung M, Rockwell NC, Lagarias JC. Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases. PLANT PHYSIOLOGY 2021; 187:632-645. [PMID: 34608946 PMCID: PMC8491021 DOI: 10.1093/plphys/kiab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/02/2021] [Indexed: 05/03/2023]
Abstract
Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transitions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum optogenetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin to shade lower leaves-affecting elongation growth, initiation of flowering, and responses to pathogens, these studies presage application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important plants for robust mitigation of such deleterious responses under natural growing conditions in the field.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
- Author for communication:
| |
Collapse
|
25
|
Fischer T, van Wilderen LJGW, Gnau P, Bredenbeck J, Essen LO, Wachtveitl J, Slavov C. Ultrafast Photoconversion Dynamics of the Knotless Phytochrome SynCph2. Int J Mol Sci 2021; 22:ijms221910690. [PMID: 34639031 PMCID: PMC8508867 DOI: 10.3390/ijms221910690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore’s isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
| | - Luuk J. G. W. van Wilderen
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Petra Gnau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| |
Collapse
|
26
|
Liu X, Zhang T, Fang Q, Fang W, González L, Cui G. Hydrogen‐Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang‐Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Teng‐Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Leticia González
- Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna Währinger Straße 17 1090 Vienna Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
27
|
Liu XY, Zhang TS, Fang Q, Fang WH, González L, Cui G. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021; 60:18688-18693. [PMID: 34097335 PMCID: PMC8456922 DOI: 10.1002/anie.202104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited‐state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S1, T1, and S0 potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S1 electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited‐state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
28
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
29
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Ultrafast proton release reaction and primary photochemistry of phycocyanobilin in solution observed with fs-time-resolved mid-IR and UV/Vis spectroscopy. Photochem Photobiol Sci 2021; 20:715-732. [PMID: 34002345 DOI: 10.1007/s43630-021-00045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Deactivation processes of photoexcited (λex = 580 nm) phycocyanobilin (PCB) in methanol were investigated by means of UV/Vis and mid-IR femtosecond (fs) transient absorption (TA) as well as static fluorescence spectroscopy, supported by density-functional-theory calculations of three relevant ground state conformers, PCBA, PCBB and PCBC, their relative electronic state energies and normal mode vibrational analysis. UV/Vis fs-TA reveals time constants of 2.0, 18 and 67 ps, describing decay of PCBB*, of PCBA* and thermal re-equilibration of PCBA, PCBB and PCBC, respectively, in line with the model by Dietzek et al. (Chem Phys Lett 515:163, 2011) and predecessors. Significant substantiation and extension of this model is achieved first via mid-IR fs-TA, i.e. identification of molecular structures and their dynamics, with time constants of 2.6, 21 and 40 ps, respectively. Second, transient IR continuum absorption (CA) is observed in the region above 1755 cm-1 (CA1) and between 1550 and 1450 cm-1 (CA2), indicative for the IR absorption of highly polarizable protons in hydrogen bonding networks (X-H…Y). This allows to characterize chromophore protonation/deprotonation processes, associated with the electronic and structural dynamics, on a molecular level. The PCB photocycle is suggested to be closed via a long living (> 1 ns), PCBC-like (i.e. deprotonated), fluorescent species.
Collapse
|
31
|
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Proc Natl Acad Sci U S A 2021; 118:2024583118. [PMID: 33972439 DOI: 10.1073/pnas.2024583118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pK a, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
Collapse
|
32
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
33
|
Jiang SD, sheng Y, Wu XJ, Zhu YL, Li PP. Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions. J Microbiol Biotechnol 2021; 31:233-239. [PMID: 33203817 PMCID: PMC9705869 DOI: 10.4014/jmb.2009.09048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.
Collapse
Affiliation(s)
- Su-Dan Jiang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 20037, P.R. China
| | - Yi sheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 20037, P.R. China
| | - Xian-Jun Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 20037, P.R. China,Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 10037, P.R. China,National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 22100, P.R. China,Corresponding authors X. Wu Phone: +86-158-5052-0507 E-mail:
| | - Yong-Li Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 20037, P.R. China,Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 10037, P.R. China,National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 22100, P.R. China
| | - Ping-Ping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 20037, P.R. China,Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 10037, P.R. China,National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 22100, P.R. China,P. Li Phone: +86-25-8542-7210 E-mail:
| |
Collapse
|
34
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Clinger JA, Chen E, Kliger DS, Phillips GN. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. J Phys Chem B 2021; 125:202-210. [PMID: 33355472 DOI: 10.1021/acs.jpcb.0c04822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bilin-containing photoreceptor TePixJ, a member of the cyanobacteriochrome (CBCR) family of phytochromes, switches between blue-light-absorbing and green-light-absorbing states in order to drive phototaxis in Thermosynechococcus elongatus. Its photoswitching process involves the formation of a thioether linkage between the C10 carbon of phycoviolobilin and the sidechain of Cys494 during the change in state from green-absorbing to blue-absorbing forms. Complex changes in the binding pocket propagate the signal to other domains for downstream signaling. Here, we report time-resolved circular dichroism experiments in addition to pump-probe absorption measurements for interpretation of the biophysical mechanism of the green-to-blue photoconversion process of this receptor.
Collapse
Affiliation(s)
- Jonathan A Clinger
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
36
|
Kirpich JS, Chang CW, Franse J, Yu Q, Escobar FV, Jenkins AJ, Martin SS, Narikawa R, Ames JB, Lagarias JC, Larsen DS. Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry 2021; 60:274-288. [PMID: 33439010 DOI: 10.1021/acs.biochem.0c00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr → 15EPg) and reverse (15EPg → 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
Collapse
Affiliation(s)
- Julia S Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Jasper Franse
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Sciences, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka-Shi, Shizuoka-Ken 422-8529, Japan
| | - James B Ames
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
37
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
38
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
39
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
40
|
Wang D, Li X, Wang L, Yang X, Zhong D. Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome. J Phys Chem Lett 2020; 11:8819-8824. [PMID: 32940473 PMCID: PMC8172094 DOI: 10.1021/acs.jpclett.0c02467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding photoisomerization dynamics in cyanobacteriochromes is important to the development of optical agents in near-infrared biological imaging and optogenetics. Here, by integrating femtosecond spectroscopy and site-directed mutagenesis, we investigate the photoinduced Pr-state isomerization dynamics and mechanism of a unique red/green cyanobacteriochrome from Leptolyngbya sp. JSC-1. We observed multiphasic dynamics in the Pr state, a widespread phenomenon for photoreceptors in the phytochrome superfamily, and revealed their origins; the initial dynamics over a few to tens and hundreds of picoseconds arises from the local active-site relaxations followed by the slow double-bond isomerization in several hundreds of picoseconds. Such continuous active-site evolution results in a unique spectral tuning effect that favors the blue-side emission and suppresses the red-side emission. We also observed the faster dynamics in both relaxation and isomerization with critical mutants at the active site that render a looser active site. These results clearly distinguish the multiphasic dynamics between relaxation and isomerization and reveal a novel molecular mechanism for better biological applications.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
41
|
Fushimi K, Matsunaga T, Narikawa R. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Photochem Photobiol Sci 2020; 19:1289-1299. [PMID: 32789394 DOI: 10.1039/d0pp00208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanobacteriochrome photoreceptors (CBCRs) ligate linear tetrapyrrole chromophores via their first (canonical) Cys residue and show reversible photoconversion triggered by light-dependent Z/E isomerization of the chromophore. Among the huge repertoire of CBCRs, DXCF CBCRs contain a second Cys residue within the highly conserved Asp-Xaa-Cys-Phe (DXCF) motif. In the typical receptors, the second Cys covalently attaches to the 15Z-chromophore in the dark state and detaches from the 15E-chromophore in the photoproduct state, whereas atypical ones that lack reversible ligation activity show red-shifted absorption in the dark state due to a more extended π-conjugated system. Moreover, some DXCF CBCRs show blue-shifted absorption in the photoproduct state due to the twisted geometry of the rotating ring. During the process of rational color tuning of a certain DXCF CBCR, we unexpectedly found that twisted photoproducts of some variant molecules showed dark reversion to the dark state, which prompted us to hypothesize that the photoproduct is destabilized by the twisted geometry of the rotating ring. In this study, we comprehensively examined the photoproduct stability of the twisted and relaxed molecules derived from the same CBCR scaffolds under dark conditions. In the DXCF CBCRs lacking reversible ligation activity, the twisted photoproducts showed faster dark reversion than the relaxed ones, supporting our hypothesis. By contrast, in the DXCF CBCRs exhibiting reversible ligation activity, the twisted photoproducts showed no detectable photoconversion. Reversible Cys adduct formation thus results in drastic rearrangement of the protein-chromophore interaction in the photoproduct state, which would contribute to the previously unknown photoproduct stability.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takumi Matsunaga
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| |
Collapse
|
42
|
Jenkins AJ, Gottlieb SM, Chang CW, Kim PW, Hayer RJ, Hanke SJ, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry 2020; 59:4015-4028. [PMID: 33021375 DOI: 10.1021/acs.biochem.0c00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg → 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
Collapse
Affiliation(s)
- Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sean Marc Gottlieb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W Kim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J Hayer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J Hanke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
43
|
Kim Y, Xu QZ, Zhao KH, Gärtner W, Matysik J, Song C. Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. J Phys Chem B 2020; 124:7115-7127. [PMID: 32693592 DOI: 10.1021/acs.jpcb.0c03431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria sense and respond to various colors of light employing a large number of bilin-based phytochrome-like photoreceptors. All2699 from Nostoc 7120 has three consecutive GAF domains with GAF1 and GAF3 binding a phycocyanobilin chromophore. GAF1, even when expressed independently, can be photoconverted between red-absorbing Pr and far-red-absorbing Pfr states, while the nonphotosensory GAF2 domain is structurally and functionally homologous to the PHY domains in canonical and Cph2-like phytochromes. Here, we characterize possible bilin chromophore conformers using solid-state NMR spectroscopy on the two lyophilized All2699 samples (GAF1-only and GAF1-PHY constructs). On the basis of complete 1H, 13C, and 15N assignments for the chromophore obtained on the two Pr lyophilizates, multiple static conformations of the chromophore in both cases are identified. Moreover, most atoms of the chromophore in the bidomain sample show only subtle changes in the mean chemical shifts relative to those in frozen solution (FS), indicating an optimized interaction of the GAF2 domain with the GAF1-bound chromophore. Our results confirm the conservation of key chromophore-protein interactions and the photoreversibility in both All2699 lyophilizates, offering the possibility to investigate conformational distributions of the heterogeneous chromophore and its functional consequences in phytochromes and other bilin-dependent photoreceptors intractable by the solid-state NMR technique as FSs.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Abstract
![]()
Due
to the recent advances in X-ray free electron laser techniques,
bilin-containing cyanobacteriochrome photoreceptors have become prime
targets for the ever-expanding field of time-resolved structural biology.
However, to facilitate these challenging studies, it is essential
that the time scales of any structural changes during the photocycles
of cyanobacteriochromes be established. Here, we have used visible
and infrared transient absorption spectroscopy to probe the photocycle
of a model cyanobacteriochrome system, TePixJ. The kinetics span multiple
orders of magnitude from picoseconds to seconds. Localized changes
in the bilin binding pocket occur in picoseconds to nanoseconds, followed
by more large-scale changes in protein structure, including formation
and breakage of a second thioether linkage, in microseconds to milliseconds.
The characterization of the entire photocycle will provide a vital
frame of reference for future time-resolved structural studies of
this model photoreceptor.
Collapse
Affiliation(s)
- Samantha J O Hardman
- Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
45
|
Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome. Proc Natl Acad Sci U S A 2020; 117:19731-19736. [PMID: 32759207 DOI: 10.1073/pnas.2001114117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes are photoreceptors in cyanobacteria that exhibit a wide spectral coverage and unique photophysical properties from the photoinduced isomerization of a linear tetrapyrrole chromophore. Here, we integrate femtosecond-resolved fluorescence and transient-absorption methods and unambiguously showed the significant solvation dynamics occurring at the active site from a few to hundreds of picoseconds. These motions of local water molecules and polar side chains are continuously convoluted with the isomerization reaction, leading to a nonequilibrium processes with continuous active-site motions. By mutations of critical residues at the active site, the modified local structures become looser, resulting in faster solvation relaxations and isomerization reaction. The observation of solvation dynamics is significant and critical to the correct interpretation of often-observed multiphasic dynamic behaviors, and thus the previously invoked ground-state heterogeneity may not be relevant to the excited-state isomerization reaction.
Collapse
|
46
|
Villafani Y, Yang HW, Park YI. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes. Mol Cells 2020; 43:509-516. [PMID: 32438780 PMCID: PMC7332365 DOI: 10.14348/molcells.2020.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.
Collapse
Affiliation(s)
- Yvette Villafani
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
47
|
The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome. Proc Natl Acad Sci U S A 2020; 117:16356-16362. [PMID: 32591422 DOI: 10.1073/pnas.1921706117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.
Collapse
|
48
|
Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc Natl Acad Sci U S A 2020; 117:15573-15580. [PMID: 32571944 DOI: 10.1073/pnas.2004273117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Collapse
|
49
|
Song JY, Lee HY, Yang HW, Song JJ, Lagarias JC, Park YI. Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes. J Biol Chem 2020; 295:6754-6766. [PMID: 32184354 DOI: 10.1074/jbc.ra120.012950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Indexed: 11/06/2022] Open
Abstract
The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.
Collapse
Affiliation(s)
- Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ha Yong Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Joon Song
- Department of Biological Science and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
50
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|