1
|
Kohon AI, Man K, Hessami A, Mathis K, Webb J, Fang J, Radfar P, Yang Y, Meckes B. Targeting nanoparticles to lung cancer-derived A549 cells based on changes on interstitial stiffness in biomimetic models. iScience 2024; 27:111015. [PMID: 39435151 PMCID: PMC11492096 DOI: 10.1016/j.isci.2024.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
The mechanical properties and forces of the extracellular environment modulate alveolar epithelial cell behavior. To model cancer/fibrosis associated stiffening and dynamic stretch, a biomimetic device was developed that imitates the active forces in the alveolus, while allowing control over the interstitial matrix stiffness. Alveolar epithelial A549 cancer cells were cultured on the devices and their transcriptome was profiled with RNA sequencing. Pathway analysis showed soft materials upregulated the expression of proteoglycans associated with cancer. Consequently, liposomes were modified with peptides targeting heparan sulfate and chondroitin sulfates of the cell surface glycocalyx. Chondroitin sulfate A targeting improved uptake in cells seeded on stiff biomimetic devices, which is attributed to increased chondroitin sulfate proteoglycan localization on cell surfaces in comparison to cells grown on soft devices. These results demonstrate the critical role that mechanical stiffness and stretch play in the alveolus and the importance of including these properties in nanotherapeutic design.
Collapse
Affiliation(s)
- Afia Ibnat Kohon
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Ala Hessami
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Katelyn Mathis
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| | - Jade Webb
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Joanna Fang
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Parsa Radfar
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Brian Meckes
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| |
Collapse
|
2
|
Han Q, Fernandez J, Rajczewski AT, Kono TJY, Weirath NA, Rahim A, Lee AS, Seabloom D, Tretyakova NY. A Multi-Omics Study of Epigenetic Changes in Type II Alveolar Cells of A/J Mice Exposed to Environmental Tobacco Smoke. Int J Mol Sci 2024; 25:9365. [PMID: 39273313 PMCID: PMC11394788 DOI: 10.3390/ijms25179365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer remains a major contributor to cancer fatalities, with cigarette smoking known to be responsible for up to 80% of cases. Based on the ability of cigarette smoke to induce inflammation in the lungs and increased lung cancer incidence in smokers with inflammatory conditions such as COPD, we hypothesized that inflammation plays an important role in the carcinogenicity of cigarette smoke. To test this hypothesis, we performed multi-omic analyses of Type II pneumocytes of A/J mice exposed to cigarette smoke for various time periods. We found that cigarette smoke exposure resulted in significant changes in DNA methylation and hydroxymethylation, gene expression patterns, and protein abundance that were partially reversible and contributed to an inflammatory and potentially oncogenic phenotype.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Jenna Fernandez
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Andrew T Rajczewski
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Nicholas A Weirath
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Abdur Rahim
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Alexander S Lee
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
| | - Donna Seabloom
- AeroCore Testing Services, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Yang M, Shulkin N, Gonzalez E, Castillo J, Yan C, Zhang K, Arvanitis L, Borok Z, Wallace WD, Raz D, Torres ETR, Marconett CN. Cell of origin alters myeloid-mediated immunosuppression in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599651. [PMID: 38948812 PMCID: PMC11213232 DOI: 10.1101/2024.06.19.599651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| | - Noah Shulkin
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Edgar Gonzalez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Jonathan Castillo
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Chunli Yan
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
| | - Keqiang Zhang
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA USA 92093
| | - W. Dean Wallace
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Dan Raz
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Evanthia T. Roussos Torres
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Crystal N. Marconett
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| |
Collapse
|
4
|
Abstract
All cancers arise from normal cells whose progeny acquire the cancer-initiating mutations and epigenetic modifications leading to frank tumorigenesis. The identity of those "cells-of-origin" has historically been a source of controversy across tumor types, as it has not been possible to witness the dynamic events giving rise to human tumors. Genetically engineered mouse models (GEMMs) of cancer provide an invaluable substitute, enabling researchers to interrogate the competence of various naive cellular compartments to initiate tumors in vivo. Researchers using these models have relied on lineage-specific promoters, knowledge of preneoplastic disease states in humans, and technical advances allowing more precise manipulations of the mouse germline. These approaches have given rise to the emerging view that multiple lineages within a given organ may generate tumors with similar histopathology. Here, we review some of the key studies leading to this conclusion in solid tumors and highlight the biological and clinical ramifications.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Gagnon KA, Huang J, Hix OT, Hui VW, Hinds A, Bullitt E, Eyckmans J, Kotton DN, Chen CS. Multicompartment duct platform to study epithelial-endothelial crosstalk associated with lung adenocarcinoma. APL Bioeng 2024; 8:026126. [PMID: 38911024 PMCID: PMC11191334 DOI: 10.1063/5.0207228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | - Veronica W. Hui
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
6
|
Ward NP, Yoon SJ, Flynn T, Sherwood AM, Olley MA, Madej J, DeNicola GM. Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC. Nat Commun 2024; 15:4244. [PMID: 38762605 PMCID: PMC11102494 DOI: 10.1038/s41467-024-48695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Sang Jun Yoon
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tyce Flynn
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Amanda M Sherwood
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maddison A Olley
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Juliana Madej
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
7
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Mitchell MI, Ben‐Dov IZ, Ye K, Liu C, Shi M, Sadoughi A, Shah C, Siddiqui T, Okorozo A, Gutierrez M, Unawane R, Biamonte L, Parikh K, Spivack S, Loudig O. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J Extracell Vesicles 2024; 13:e12440. [PMID: 38659349 PMCID: PMC11043690 DOI: 10.1002/jev2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical Transcriptomics, Internal Medicine BHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Kenny Ye
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Miao Shi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Ali Sadoughi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Chirag Shah
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Taha Siddiqui
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Aham Okorozo
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Martin Gutierrez
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Rashmi Unawane
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Lisa Biamonte
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Kaushal Parikh
- Department of Thoracic OncologyThe Mayo ClinicRochesterMinnesotaUSA
| | - Simon Spivack
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
9
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
10
|
Han G, Sinjab A, Rahal Z, Lynch AM, Treekitkarnmongkol W, Liu Y, Serrano AG, Feng J, Liang K, Khan K, Lu W, Hernandez SD, Liu Y, Cao X, Dai E, Pei G, Hu J, Abaya C, Gomez-Bolanos LI, Peng F, Chen M, Parra ER, Cascone T, Sepesi B, Moghaddam SJ, Scheet P, Negrao MV, Heymach JV, Li M, Dubinett SM, Stevenson CS, Spira AE, Fujimoto J, Solis LM, Wistuba II, Chen J, Wang L, Kadara H. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. Nature 2024; 627:656-663. [PMID: 38418883 PMCID: PMC10954546 DOI: 10.1038/s41586-024-07113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiping Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ke Liang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia D Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuanye Cao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Abaya
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorena I Gomez-Bolanos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minyue Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Dubinett
- Department of Medicine, The University of California Los Angeles, Los Angeles, CA, USA
| | | | - Avrum E Spira
- Lung Cancer Initiative at Johnson & Johnson, Boston, MA, USA
- Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
11
|
Rouhani MJ, Janes SM, Kim CF. Epithelial stem and progenitor cells of the upper airway. Cells Dev 2024; 177:203905. [PMID: 38355015 DOI: 10.1016/j.cdev.2024.203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The upper airway acts as a conduit for the passage of air to the respiratory system and is implicated in several chronic diseases. Whilst the cell biology of the distal respiratory system has been described in great detail, less is known about the proximal upper airway. In this review, we describe the relevant anatomy of the upper airway and discuss the literature detailing the identification and roles of the progenitor cells of these regions.
Collapse
Affiliation(s)
- Maral J Rouhani
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Takahara T, Satou A, Tsuyuki T, Ito T, Taniguchi N, Yamamoto Y, Ohashi A, Takahashi E, Kadota K, Tsuzuki T. Endobronchial spread of adenocarcinoma is a distinct pattern of invasion and associated with inferior clinical outcomes in lung adenocarcinoma. Histopathology 2024; 84:646-660. [PMID: 38148681 DOI: 10.1111/his.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
AIM The spread of lung adenocarcinoma cells into the bronchi and bronchioles is not well documented. We termed this histological finding "endobronchial spreading of adenocarcinoma" (EBSA) and investigated its prevalence and clinical significance. METHODS AND RESULTS We reviewed 320 resected specimens from patients diagnosed with invasive adenocarcinoma, and EBSA was observed in 144 patients (45%). EBSA was significantly associated with advanced pathological stage, higher histological grade, larger tumour invasion, lymphovascular infiltration, and spread through air spaces. Patients with EBSA had significantly shorter relapse-free survival (RFS) and cancer-specific survival (CSS) in univariate analysis (P < 0.001). In a subgroup analysis of patient with small-sized (invasion size ≤30 mm) adenocarcinoma in the localized stage, EBSA was an independent inferior prognostic indicator in multivariate analysis. In a subgroup analysis of patients with small-sized Grade 1 nonmucinous adenocarcinoma (n = 61), EBSA was observed in 11 patients, and the presence of EBSA was associated with significantly shorter RFS and CSS (P = 0.026 and P = 0.001, respectively). CONCLUSION Our results demonstrated that EBSA is a significant risk factor for disease recurrence and cancer-related deaths. EBSA can be regarded as a distinctive pattern of invasion and its recognition can be beneficial in the diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Takuji Tsuyuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Takanori Ito
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Natsuki Taniguchi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuki Yamamoto
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Kyuichi Kadota
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
13
|
Lasse-Opsahl E, Baliira R, Barravecchia I, McLintock E, Lee JM, Ferris SF, Espinoza CE, Hinshaw R, Cavanaugh S, Robotti M, Brown K, Donahue K, Abdelmalak KY, Galban CJ, Frankel TL, Zhang Y, di Magliano MP, Galban S. WITHDRAWN: Oncogenic KRAS G12D extrinsically induces an immunosuppressive microenvironment in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.568090. [PMID: 38293141 PMCID: PMC10827108 DOI: 10.1101/2024.01.16.568090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This manuscript has been withdrawn by the authors due to a dispute over co-first authorship that is currently being arbitrated by the medical school at our institution. Therefore, the authors do not wish this work to be cited as reference for the project. Upon completion of the arbitration process, we will take steps to revert the current withdrawn status. If you have any questions, please contact the corresponding author.
Collapse
|
14
|
Xu W, Cui J, Busayli AM, Zhang T, Chen G. Arsenic up-regulates PD-L1 and enhances lung tumorigenesis through activation of STAT3 in alveolar epithelial type 2 cells. Toxicol Appl Pharmacol 2024; 482:116787. [PMID: 38101582 PMCID: PMC10843590 DOI: 10.1016/j.taap.2023.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Arsenic is a carcinogen and chronic exposure to arsenic increases the risk of many cancers, including lung cancer. However, the underlying mechanism is not clear. Using A/J mice as a model, our previous animal study has shown that chronic arsenic exposure up-regulates PD-L1 on lung tumor cells which interacts with PD-1 on T cells and inhibits T cell anti-tumor function resulting in increased lung tumorigenesis. In a subsequent in vitro study, we further found that arsenic up-regulated PD-L1 by activating STAT3 at tyrosine 705 in lung epithelial cells, and inhibition of STAT3 mitigated arsenic-induced PD-L1 up-regulation. The present study aims to determine whether STAT3 regulates PD-L1 in the lung of A/J mice and the type of cells from which lung tumor develops upon arsenic exposure. For that purpose, a mouse line with STAT3 conditional knockout in alveolar type 2 (AT2) cells was developed. Our results indicate that arsenic exposure up-regulates PD-L1 in AT2 cells through activating STAT3 in A/J mice. Conditional knockout of STAT3 in AT2 cells inhibited arsenic-induced PD-L1 up-regulation and lung tumor formation. Thus, our findings reveal that STAT3 is the upstream regulator of arsenic-induced PD-L1 up-regulation in AT2 cells and the inhibition of T cell anti-tumor function in the lung, and that AT2 cells are sensitive to arsenic exposure and from which arsenic-enhanced lung tumor formation in A/J mice.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neurology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Abdulrahman M Busayli
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Tong Zhang
- Department of General Medicine, The First People's Hospital of Yunnan Province Kunming, Yunnan 650032, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
15
|
Yang M, Shen H, Flodby P, Koss MD, Bassiouni R, Liu Y, Jashashvili T, Neely A, Ogbolu E, Castillo J, Stueve TR, Mullen DJ, Ryan AL, Carpten J, Castaldi A, Wallace WD, Zhou B, Borok Z, Marconett CN. Alveolar type I cells can give rise to KRAS-induced lung adenocarcinoma. Cell Rep 2023; 42:113286. [PMID: 37995179 PMCID: PMC10842735 DOI: 10.1016/j.celrep.2023.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael D Koss
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rania Bassiouni
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aaron Neely
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Ezuka Ogbolu
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Castillo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Theresa Ryan Stueve
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Mullen
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| | - John Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Alessandra Castaldi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - W Dean Wallace
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Beiyun Zhou
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Crystal N Marconett
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Kwon J, Zhang J, Mok B, Allsup S, Kim C, Toretsky J, Han C. USP13 drives lung squamous cell carcinoma by switching lung club cell lineage plasticity. Mol Cancer 2023; 22:204. [PMID: 38093367 PMCID: PMC10717271 DOI: 10.1186/s12943-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Jinmin Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Samuel Allsup
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Chul Kim
- Division of Hematology and Oncology, Georgetown University School of Medicine, Washington D.C, USA
- MedStar Georgetown University Hospital, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
- Departments of Pediatrics, Washington D.C, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA.
- Lombardi Comprehensive Cancer Center, Washington D.C, USA.
| |
Collapse
|
17
|
Guild J, Juul NH, Andalon A, Taenaka H, Coffey RJ, Matthay MA, Desai TJ. Evidence for lung barrier regeneration by differentiation prior to binucleated and stem cell division. J Cell Biol 2023; 222:e202212088. [PMID: 37843535 PMCID: PMC10579698 DOI: 10.1083/jcb.202212088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.
Collapse
Affiliation(s)
- Joshua Guild
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas H. Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Andalon
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Tushar J. Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Chaudhary P, Xu X, Wang G, Hoj JP, Rampersad RR, Asselin-Labat ML, Ting S, Kim W, Tamayo P, Pendergast AM, Onaitis MW. Activation of KrasG12D in Subset of Alveolar Type II Cells Enhances Cellular Plasticity in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2400-2411. [PMID: 37882674 PMCID: PMC10668634 DOI: 10.1158/2767-9764.crc-22-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
We have previously identified alveolar type II cell as the cell-of-origin of KrasG12D-induced lung adenocarcinoma using cell lineage-specific inducible Cre mouse models. Using gain-of-function and loss-of-function genetic models, we discovered that active Notch signaling and low Sox2 levels dictate the ability of type II cells to proliferate and progress into lung adenocarcinoma upon KrasG12D activation. Here, we examine the phenotype of type II cells after Kras activation and find evidence for proliferation of cells that coexpress type I and type II markers. Three-dimensional organoid culture and transplantation studies determine that these dual-positive cells are highly plastic and tumor initiating in vivo. RNA sequencing analysis reveals that these dual-positive cells are enriched in Ras/MAPK, EGFR, and Notch pathways. Furthermore, the proliferation of these cells requires active Notch signaling and is inhibited by genetic/chemical Sox2 upregulation. Our findings could provide new therapeutic strategies to target KRAS-activated lung adenocarcinomas. SIGNIFICANCE Identification of progenitor like tumor-initiating cells in KRAS-mutant lung adenocarcinoma may allow development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Moores Cancer Center, University of California San Diego, San Diego, California
- Department of Surgery, University of California San Diego, San Diego, California
| | - Xia Xu
- Department of Surgery, Duke Medicine, Durham, North California
- Department of Pharmacology and Cancer Biology, Duke Medicine, Durham, North California
| | - Guangfang Wang
- Moores Cancer Center, University of California San Diego, San Diego, California
- Department of Surgery, University of California San Diego, San Diego, California
| | - Jacob P. Hoj
- Department of Pharmacology and Cancer Biology, Duke Medicine, Durham, North California
| | | | - Marie-Liesse Asselin-Labat
- Moores Cancer Center, University of California San Diego, San Diego, California
- Department of Surgery, University of California San Diego, San Diego, California
| | - Stephanie Ting
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - William Kim
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke Medicine, Durham, North California
| | - Mark W. Onaitis
- Moores Cancer Center, University of California San Diego, San Diego, California
- Department of Surgery, University of California San Diego, San Diego, California
- Department of Surgery, Duke Medicine, Durham, North California
| |
Collapse
|
19
|
Niu M, Zhu Y, Ding X, Zu Y, Zhao Y, Wang Y. Biomimetic Alveoli System with Vivid Mechanical Response and Cell-Cell Interface. Adv Healthc Mater 2023; 12:e2300850. [PMID: 37288987 DOI: 10.1002/adhm.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Alveolar microenvironmental models are important for studying the basic biology of the alveolus, therapeutic trials, and drug testing. However, a few systems can fully reproduce the in vivo alveolar microenvironment including dynamic stretching and the cell-cell interface. Here, a novel biomimetic alveolus-on-a-chip microsystem is presented suitable for visualizing physiological breathing for simulating the 3D architecture and function of human pulmonary alveoli. This biomimetic microsystem contains an inverse opal structured polyurethane membrane that achieves real-time observation of mechanical stretching. In this microsystem, the alveolar-capillary barrier is created by alveolar type 2 (ATII) cells cocultured with vascular endothelial cells (ECs) on this membrane. Based on this microsystem, the phenomena of flattening and the tendency of differentiation in ATII cells are observed. The synergistic effects of mechanical stretching and ECs on the proliferation of ATII cells are also observed during the repair process following lung injury. These features indicate the potential of this novel biomimetic microsystem for exploring the mechanisms of lung diseases, which can provide future guidance concerning drug targets for clinical therapies.
Collapse
Affiliation(s)
- Mengying Niu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
20
|
Withdrawal Notice. Cancer Med 2023; 12:19353. [PMID: 36372952 PMCID: PMC10557851 DOI: 10.1002/cam4.5306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Withdrawal Notice: Zhu, Y, Pu, Q, Zhang, Q, et al. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small-cell lung cancer. Cancer Med. 2022; 00: 1-22. doi: 10.1002/cam4.5306. The above article, published online on 13th November 2022 in Wiley Online Library (https://onlinelibrary.wiley.com/doi/10.1002/cam4.5306), has been withdrawn by agreement between the journal Editor in Chief, Dr Stephen Tait, the Authors, and John Wiley & Sons, Ltd. The withdrawal has been agreed due to an editorial office error that led to the publication of the article without peer review. The revised article, which has undergone peer review may be read here: https://onlinelibrary.wiley.com/doi/10.1002/cam4.6309.
Collapse
|
21
|
Zhu Y, Pu Q, Zhang Q, Liu Y, Ma Y, Yuan Y, Liu L, Zhu W. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small cell lung cancer. Cancer Med 2023; 12:17149-17170. [PMID: 37606338 PMCID: PMC10501285 DOI: 10.1002/cam4.6309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Selenium is an essential trace element in the human body. In epidemiological and clinical studies, Se supplementation significantly reduced the incidence of lung cancer in individuals with low baseline Se levels. The significant action of selenium is based on the selenium-containing protein as a mediator. Of note, the previous studies reported that the expression of selenium-binding protein 1 (SELENBP1) was obviously decreased in many human cancer tissues including non-small cell lung cancer (NSCLC). However, its roles in the origin and development of NSCLC are still unclear. METHODS The expression of SELENBP1 was measured by qRT-PCR, Western blotting and IHC in our collected clinical NSCLC tissues and cell lines. Next, the CCK-8, colony formation, wound-haeling, Millicell, Transwell, FCM assay, and in vivo xenograft model were performed to explore the function of SELENBP1 in NSCLC. The molecular mechanisms of SELENBP1 were investigated by Western blotting or IF assay. RESULTS We further identified that the expression of SELENBP1 was significantly decreased in NSCLC tissues in TCGA database and 45 out of 59 collected clinical NSCLC tissues compared with adjacent nontumor tissues, as well as in four NSCLC cell lines compared with normal lung cells. Particularly, we unexpectedly discovered that SELENBP1 was obviously expressed in alveolar type 2 (AT-II) cells for the first time. Then, a series of in vitro experiments uncovered that overexpression of SELENBP1 inhibited the proliferation, migration, and invasion of NSCLC cells, and induced cell apoptosis. Moreover, overexpression of SELENBP1 also inhibited growth and induced apoptosis of NSCLC cells in vivo. Mechanistically, we demonstrated that overexpression of SELENBP1 inhibited the malignant characteristics of NSCLC cells in part via inactivating the PI3K/AKT/mTOR signal pathway. Meanwhile, we found that overexpression of SELENBP1 inducing the apoptosis of NSCLC cells was associated with the activation of caspase-3 signaling pathway under nonhigh level of oxidative stress, but overexpression of SELENBP1 facilitating the cell apoptosis might be related to its combining with GPX1 and colocalizing in the nucleus under high level of oxidative stress. CONCLUSIONS Our findings highlighted that SELENBP1 was an important tumor suppressor during the origin and development of NSCLC. It may help to discover novel biomarkers or drug therapy targets for NSCLC.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiang Pu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiongyin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yongfang Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yue Yuan
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lunxu Liu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
22
|
Schoultz E, Liang S, Carlsson T, Filges S, Ståhlberg A, Fagman H, Wiel C, Sayin V, Nilsson M. Tissue specificity of oncogenic BRAF targeted to lung and thyroid through a shared lineage factor. iScience 2023; 26:107071. [PMID: 37534159 PMCID: PMC10391731 DOI: 10.1016/j.isci.2023.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Cells of origin in cancer determine tumor phenotypes, but whether lineage-defining transcription factors might influence tissue specificity of tumorigenesis among organs with similar developmental traits are unknown. We demonstrate here that tumor development and progression markedly differ in lung and thyroid targeted by Braf mutation in Nkx2.1CreERT2 mice heterozygous for Nkx2-1. In absence of tamoxifen, non-induced Nkx2.1CreERT2;BrafCA/+ mutants developed multiple full-blown lung adenocarcinomas with a latency of 1-3 months whereas thyroid tumors were rare and constrained, although minute BrafCA activation documented by variant allele sequencing was similar in both tissues. Induced oncogene activation accelerated neoplastic growth only in the lungs. By contrast, NKX2-1+ progenitor cells were equally responsive to constitutive expression of mutant Braf during lung and thyroid development. Both lung and thyroid cells transiently downregulated NKX2-1 in early tumor stages. These results indicate that BRAFV600E-induced tumorigenesis obey organ-specific traits that might be differentially modified by a shared lineage factor.
Collapse
Affiliation(s)
- Elin Schoultz
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Shawn Liang
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Therese Carlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Göteborg, Sweden
| | - Volkan Sayin
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Göteborg, Sweden
| | - Mikael Nilsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Göteborg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
23
|
Kaiser AM, Gatto A, Hanson KJ, Zhao RL, Raj N, Ozawa MG, Seoane JA, Bieging-Rolett KT, Wang M, Li I, Trope WL, Liou DZ, Shrager JB, Plevritis SK, Newman AM, Van Rechem C, Attardi LD. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature 2023; 619:851-859. [PMID: 37468633 PMCID: PMC11288504 DOI: 10.1038/s41586-023-06253-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/24/2023] [Indexed: 07/21/2023]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.
Collapse
Affiliation(s)
- Alyssa M Kaiser
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alberto Gatto
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn J Hanson
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard L Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - José A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Kathryn T Bieging-Rolett
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengxiong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irene Li
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston L Trope
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas Z Liou
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Capucine Van Rechem
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Juul NH, Yoon JK, Martinez MC, Rishi N, Kazadaeva YI, Morri M, Neff NF, Trope WL, Shrager JB, Sinha R, Desai TJ. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. Nature 2023; 619:860-867. [PMID: 37468622 PMCID: PMC10423036 DOI: 10.1038/s41586-023-06324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Collapse
Affiliation(s)
- Nicholas H Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina C Martinez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Neha Rishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yana I Kazadaeva
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Winston L Trope
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Luo W, Zeng Z, Jin Y, Yang L, Fan T, Wang Z, Pan Y, Yang Y, Yao M, Li Y, Xiao X, Wang G, Wang C, Chang S, Che G, Zhang L, Li Y, Peng Y, Li W. Distinct immune microenvironment of lung adenocarcinoma in never-smokers from smokers. Cell Rep Med 2023:101078. [PMID: 37301197 DOI: 10.1016/j.xcrm.2023.101078] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Lung cancer in never-smokers (LCINS) presents clinicopathological and molecular features distinct from that in smokers. Tumor microenvironment (TME) plays important roles in cancer progression and therapeutic response. To decipher the difference in TME between never-smoker and smoker lung cancers, we conduct single-cell RNA sequencing on 165,753 cells from 22 treatment-naive lung adenocarcinoma (LUAD) patients. We find that the dysfunction of alveolar cells induced by cigarette smoking contributes more to the aggressiveness of smoker LUADs, while the immunosuppressive microenvironment exerts more effects on never-smoker LUADs' aggressiveness. Moreover, the SPP1hi pro macrophage is identified to be another independent source of monocyte-derived macrophage. Importantly, higher expression of immune checkpoint CD47 and lower expression of major histocompatibility complex (MHC)-I in cancer cells of never-smoker LUADs imply that CD47 may be a better immunotherapy target for LCINS. Therefore, this study reveals the difference of tumorigenesis between never-smoker and smoker LUADs and provides a potential immunotherapy strategy for LCINS.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zeng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhoufeng Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Yao
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangqian Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Xiao
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuai Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Rubio K, Romero-Olmedo AJ, Sarvari P, Swaminathan G, Ranvir VP, Rogel-Ayala DG, Cordero J, Günther S, Mehta A, Bassaly B, Braubach P, Wygrecka M, Gattenlöhner S, Tresch A, Braun T, Dobreva G, Rivera MN, Singh I, Graumann J, Barreto G. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. Theranostics 2023; 13:2384-2407. [PMID: 37215577 PMCID: PMC10196829 DOI: 10.7150/thno.79493] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| | - Addi J. Romero-Olmedo
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Department of Medicine, Philipps-University Marburg; Marburg, Germany
| | - Pouya Sarvari
- Independent Researcher, collaborator of International Laboratory EPIGEN-CONCYTEP
| | | | - Vikas P. Ranvir
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diana G. Rogel-Ayala
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Aditi Mehta
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University of Munich; Munich, Germany
| | - Birgit Bassaly
- Institute for Pathology, Justus Liebig University; 35392 Gießen, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School; Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network; Hanover, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center; Giessen, Germany
- Institute of Lung Health, German Center for Lung Research (DZL); Giessen, Germany
| | | | - Achim Tresch
- CECAD, University of Cologne; Cologne, Germany
- Faculty of Medicine and University Hospital, University of Cologne; Cologne, Germany
- Center for Data and Simulation Science, University of Cologne; Cologne, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Miguel N. Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg; 35043 Marburg, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| |
Collapse
|
27
|
Cao L, Wang X, Liu X, Meng W, Guo W, Duan C, Liang X, Kang L, Lv P, Lin Q, Zhang R, Zhang X, Shen H. Tumor Necrosis Factor α-Dependent Lung Inflammation Promotes the Progression of Lung Adenocarcinoma Originating From Alveolar Type II Cells by Upregulating MIF-CD74. J Transl Med 2023; 103:100034. [PMID: 36925198 DOI: 10.1016/j.labinv.2022.100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. We recently reported that inflammation-driven lung adenocarcinoma (IDLA) originates from alveolar type (AT)-II cells, which depend on major histocompatibility complex (MHC) class II to promote the expansion of regulatory T cells. The MHC class II-associated invariant chain (CD74) binds to the macrophage migration inhibitory factor (MIF), which is associated with promoting tumor growth and invasion. However, the role of MIF-CD74 in the progression of lung adenocarcinoma and the underlying mechanisms remain unclear. We aimed to explore the role of MIF-CD74 in the progression of lung adenocarcinoma and elucidate the mechanisms by which tumor necrosis (TNF)-α-mediated inflammation regulates CD74 and MIF expression in IDLA. In human lung adenocarcinoma, CD74 was upregulated on the surface of tumor cells originating from AT-II cells, which correlated positively with lymph node metastasis, tumor origin/nodal involvement/metastasis stage, and TNF-α expression. MIF interaction with CD74 promoted the proliferation and migration of A549 and H1299 cells in vitro. Using a urethane-induced IDLA mouse model, we observed that CD74 was upregulated in tumor cells and macrophages. MIF expression was upregulated in macrophages in IDLA. Blocking TNF-α-dependent inflammation downregulated CD74 expression in tumor cells and CD74 and MIF expression in macrophages in IDLA. Conditioned medium from A549 cells or activated mouse AT-II cells upregulated MIF in macrophages by secreting TNF-α. TNF-α-dependent lung inflammation contributes to the progression of lung adenocarcinoma by upregulating CD74 and MIF expression, and AT-II cells upregulate MIF expression in macrophages by secreting TNF-α. This study provides novel insights into the function of CD74 in the progression of IDLA.
Collapse
Affiliation(s)
- Lei Cao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China; The Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoyi Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Meng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wenli Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chenyang Duan
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoyan Liang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lifei Kang
- Department of Pathology, Hebei Chest Hospital, Shijiazhuang, Hebei Province, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, Renqiu, Hebei Province, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
28
|
Yang J, Hou C, Wang H, Perez EA, Do-Umehara HC, Dong H, Arunagiri V, Tong F, Van Scoyk M, Cho M, Liu X, Ge X, Winn RA, Ridge KM, Wang X, Chandel NS, Liu J. Miz1 promotes KRAS-driven lung tumorigenesis by repressing the protocadherin Pcdh10. Cancer Lett 2023; 555:216025. [PMID: 36538983 PMCID: PMC9870713 DOI: 10.1016/j.canlet.2022.216025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Targeting KRAS-mutated non-small-cell lung cancer (NSCLC) remains clinically challenging. Here we show that loss of function of Miz1 inhibits lung tumorigenesis in a mouse model of oncogenic KRAS-driven lung cancer. In vitro, knockout or silencing of Miz1 decreases cell proliferation, clonogenicity, migration, invasion, or anchorage-independent growth in mutant (MT) KRAS murine or human NSCLC cells but has unremarkable impact on non-tumorigenic cells or wild-type (WT) KRAS human NSCLC cells. RNA-sequencing reveals Protocadherin-10 (Pcdh10) as the top upregulated gene by Miz1 knockout in MT KRAS murine lung tumor cells. Chromatin immunoprecipitation shows Miz1 binding on the Pcdh10 promoter in MT KRAS lung tumor cells but not non-tumorigenic cells. Importantly, silencing of Pcdh10 rescues cell proliferation and clonogenicity in Miz1 knockout/knockdown MT KRAS murine or human tumor cells, and rescues allograft tumor growth of Miz1 knockout tumor cells in vivo. Miz1 is upregulated in MT KRAS lung tumor tissues compared with adjacent non-involved tissues in mice. Consistent with this, Miz1 is upregulated while Pcdh10 is downregulated in human lung adenocarcinomas (LUAD) compared with normal tissues, and high Miz1 levels or low Pcdh10 levels are associated with poor survival in lung cancer patients. Furthermore, the Miz1 signature is associated with worse survival in MT but not WT KRAS LUAD, and Pcdh10 is downregulated in MT compared to WT KRAS LUAD. Taken together, our studies implicate the Miz1/Pcdh10 axis in oncogenic KRAS-driven lung tumorigenesis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Changchun Hou
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huashan Wang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Edith A Perez
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huali Dong
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vinothini Arunagiri
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fangjia Tong
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Michelle Van Scoyk
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Minsu Cho
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL, 60612, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jing Liu
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Hao L, Chen H, Wang L, Zhou H, Zhang Z, Han J, Hou J, Zhu Y, Zhang H, Wang Q. Transformation or tumor heterogeneity: Mutations in EGFR, SOX2, TP53, and RB1 persist in the histological rapid conversion from lung adenocarcinoma to small-cell lung cancer. Thorac Cancer 2023; 14:1036-1041. [PMID: 36810856 PMCID: PMC10101832 DOI: 10.1111/1759-7714.14832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The transformation from non-small-cell lung cancer (NSCLC) to small-cell lung cancer (SCLC) is one of the mechanisms of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) resistance. Previous studies exhibited that the median transformation time was 17.8 months for NSCLC to SCLC. Here we introduced a case of lung adenocarcinoma (LADC) with EGFR19 exon deletion mutation in which the pathological transformation emerged only 1 month after lung cancer surgery and receiving EGFR-TKI inhibitor. Eventually, the pathological examination confirmed the patient experienced a transformation from LADC to SCLC with EGFR, tumor protein p53 (TP53), RB transcriptional corepressor 1 (RB1), and SRY-box transcription factor 2 (SOX2) mutation. Although the transformation of LADC with EGFR-mutant into SCLC after targeted therapy was frequent, the pathological results of most patients were only biopsy specimens, which cannot rule out the existence of mixed pathological components of the primary tumor. In this case, the patient's postoperative pathology was sufficient to exclude the probability of mixed tumor components, confirming that the patient's pathological change was indeed transformation from LADC to SCLC. In addition, primary drug resistance in such a short time after surgery and osimertinib-targeted therapy has not been reported before. We detected the molecular state of this patient before and after SCLC transformation through targeted gene capture and high-throughput sequencing, and also found for the first time that the mutations of EGFR, TP53, RB1, and SOX2 continue to exist before and after transformation, but the mutation abundance is different. In our paper, the occurrence of small-cell transformation is affected largely by these gene mutations.
Collapse
Affiliation(s)
- Lidan Hao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Haiyang Chen
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lili Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jiabao Hou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - He Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Tao X, Li Y, Fan S, Wu L, Xin J, Su Y, Xian X, Huang Y, Huang R, Fang W, Liu Z. Downregulation of Linc00173 increases BCL2 mRNA stability via the miR-1275/PROCA1/ZFP36L2 axis and induces acquired cisplatin resistance of lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:12. [PMID: 36627670 PMCID: PMC9830831 DOI: 10.1186/s13046-022-02560-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/04/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND LINC00173 had been reported as a cisplatin (cis-diamminedichloroplatinum, DDP) chemotherapy-resistant inducer in small-cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). This study aimed to display reverse data for LINC00173 as a DDP chemosensitivity-inducing factor in lung adenocarcinoma (LUAD). METHODS LINC00173 was screened from the Gene Expression Omnibus database (GSE43493). The expression level of LINC00173 in LUAD tissues and cell lines was detected using in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Colony formation, cell viability, half-maximal inhibitory concentration, flow cytometry, and xenograft mouse model were used to evaluate the role of LINC00173 in the chemosensitivity of LUAD to DDP. The mechanism of LINC00173 in DDP resistance by mediating miR-1275/PROCA1/ZFP36L2 axis to impair BCL2 mRNA stability was applied, and co-immunoprecipitation, chromatin immunoprecipitation, RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays were performed. RESULTS LINC00173 downregulation in patients with DDP-resistant LUAD was correlated with poor prognosis. Further, LINC00173 expression was significantly reduced in DDP-resistant LUAD cells and DDP-treated human LUAD tissues. Suppressed LINC00173 expression in LUAD cells enhanced DDP chemoresistance in vivo and in vitro, while restored LINC00173 expression in DDP-resistant LUAD cells markedly regained chemosensitivity to DDP. Mechanistically, DDP-resistant LUAD cells activated PI3K/AKT signal and further elevated the c-Myc expression. The c-Myc, as an oncogenic transcriptional factor, bound to the promoter of LINC00173 and suppressed its expression. The reduced LINC00173 expression attenuated the adsorption of oncogenic miR-1275, downregulating the expression of miR-1275 target gene PROCA1. PROCA1 played a potential tumor-suppressive role inducing cell apoptosis and DDP chemosensitivity via recruiting ZFP36L2 to bind to the 3' untranslated region of BCL2, reducing the stability of BCL2 mRNA and thus activating the apoptotic signal. CONCLUSIONS This study demonstrated a novel and critical role of LINC00173. It was transcriptionally repressed by DDP-activated PI3K/AKT/c-Myc signal in LUAD, promoting DDP-acquired chemotherapeutic resistance by regulating miR-1275 to suppress PROCA1/ZFP36L2-induced BCL2 degradation, which led to apoptotic signal reduction. These data were not consistent with the previously described role of LINC00173 in SCLC or LUSC, which suggested that LINC00173 could play fine-tuned DDP resistance roles in different pathological subtypes of lung cancer. This study demonstrated that the diminished expression of LINC00173 might serve as an indicator of DDP-acquired resistance in LUAD.
Collapse
Affiliation(s)
- Xingyu Tao
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yang Li
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Songqing Fan
- grid.452708.c0000 0004 1803 0208The Second Xiangya Hospital of Central South University, Changsha, 410008 China
| | - Liyang Wu
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianyang Xin
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yun Su
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Xiaoyang Xian
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yingying Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Rongquan Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Weiyi Fang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China
| | - Zhen Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China ,grid.410737.60000 0000 8653 1072Department of Pathology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| |
Collapse
|
31
|
Wu J, Feng J, Zhang Q, He Y, Xu C, Wang C, Li W. Epigenetic regulation of stem cells in lung cancer oncogenesis and therapy resistance. Front Genet 2023; 14:1120815. [PMID: 37144123 PMCID: PMC10151750 DOI: 10.3389/fgene.2023.1120815] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Epigenetics plays an important role in regulating stem cell signaling, as well as in the oncogenesis of lung cancer and therapeutic resistance. Determining how to employ these regulatory mechanisms to treat cancer is an intriguing medical challenge. Lung cancer is caused by signals that cause aberrant differentiation of stem cells or progenitor cells. The different pathological subtypes of lung cancer are determined by the cells of origin. Additionally, emerging studies have demonstrated that the occurrence of cancer treatment resistance is connected to the hijacking of normal stem cell capability by lung cancer stem cells, especially in the processes of drug transport, DNA damage repair, and niche protection. In this review, we summarize the principles of the epigenetic regulation of stem cell signaling in relation to the emergence of lung cancer and resistance to therapy. Furthermore, several investigations have shown that the tumor immune microenvironment in lung cancer affects these regulatory pathways. And ongoing experiments on epigenetics-related therapeutic strategies provide new insight for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiran Zhang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yazhou He
- Department of oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| |
Collapse
|
32
|
Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp Mol Med 2022; 54:2060-2076. [PMID: 36434043 PMCID: PMC9722784 DOI: 10.1038/s12276-022-00896-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/18/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
The cell ecology and spatial niche implicated in the dynamic and sequential process of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) have not yet been elucidated. Here, we performed an integrative analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to characterize the cell atlas of the invasion trajectory of LUAD. We found that the UBE2C + cancer cell subpopulation constantly increased during the invasive process of LUAD with remarkable elevation in IAC, and its spatial distribution was in the peripheral cancer region of the IAC, representing a more malignant phenotype. Furthermore, analysis of the TME cell type subpopulation showed a constant decrease in mast cells, monocytes, and lymphatic endothelial cells, which were implicated in the whole process of invasive LUAD, accompanied by an increase in NK cells and MALT B cells from AIS to MIA and an increase in Tregs and secretory B cells from MIA to IAC. Notably, for AIS, cancer cells, NK cells, and mast cells were colocalized in the cancer region; however, for IAC, Tregs colocalized with cancer cells. Finally, communication and interaction between cancer cells and TME cell-induced constitutive activation of TGF-β signaling were involved in the invasion of IAC. Therefore, our results reveal the specific cellular information and spatial architecture of cancer cells and TME subpopulations, as well as the cellular interaction between them, which will facilitate the identification and development of precision medicine in the invasive process of LUAD from AIS to IAC.
Collapse
|
33
|
Le Roux Ö, Pershing NLK, Kaltenbrun E, Newman NJ, Everitt JI, Baldelli E, Pierobon M, Petricoin EF, Counter CM. Genetically manipulating endogenous Kras levels and oncogenic mutations in vivo influences tissue patterning of murine tumorigenesis. eLife 2022; 11:e75715. [PMID: 36069770 PMCID: PMC9451540 DOI: 10.7554/elife.75715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.
Collapse
Affiliation(s)
- Özgün Le Roux
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole LK Pershing
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Erin Kaltenbrun
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole J Newman
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical CenterDurhamUnited States
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
34
|
Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Umeda Y. No evidence for carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. Sci Rep 2022; 12:14969. [PMID: 36056156 PMCID: PMC9440215 DOI: 10.1038/s41598-022-19139-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
With the rapid development of alternative methods based on the spirit of animal welfare, the publications of animal studies evaluating endpoints such as cancer have been extremely reduced. We performed a 26-week inhalation exposure studies of titanium dioxide nanoparticles (TiO2 NPs) using CByB6F1-Tg(HRAS)2Jic (rasH2) mice model for detecting carcinogenicity. Male and female rasH2 mice were exposed to 2, 8 or 32 mg/m3 of TiO2 NPs for 6 h/day, 5 days/week for 26 weeks. All tissues and blood were collected and subjected to biological and histopathological analyses. TiO2 NPs exposure induced deposition of particles in lungs in a dose-dependent manner in each exposure group. Exposure to TiO2 NPs, as well as other organs, did not increase the incidence of lung tumors in any group, and pulmonary fibrosis and pre-neoplastic lesions were not observed in all groups. Finally, the cell proliferative activity of alveolar epithelial type 2 cells was examined, and it was not increased by exposure to TiO2 NPs. This is the first report showing the lack of pulmonary fibrogenicity and carcinogenicity (no evidence of carcinogenic activity) of TiO2 NPs in 26-week inhalation study in rasH2 mice exposed up to 32 mg/m3, which is considered to be a high concentration.
Collapse
Affiliation(s)
- Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan.
| | - Tomoki Takeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan.
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Shigeyuki Hirai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yusuke Furukawa
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yoshinori Kikuchi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Tatsuya Kasai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Kyohei Misumi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Masaaki Suzuki
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Kenji Takanobu
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Hideki Senoh
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Misae Saito
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Hitomi Kondo
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yumi Umeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| |
Collapse
|
35
|
Pribluda A, Daemen A, Lima AN, Wang X, Hafner M, Poon C, Modrusan Z, Katakam AK, Foreman O, Eastham J, Hung J, Haley B, Garcia JT, Jackson EL, Junttila MR. EHMT2 methyltransferase governs cell identity in the lung and is required for KRAS G12D tumor development and propagation. eLife 2022; 11:57648. [PMID: 35983994 PMCID: PMC9439681 DOI: 10.7554/elife.57648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound β-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells—the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.
Collapse
Affiliation(s)
- Ariel Pribluda
- Discovery Biology, Surrozen, South San Francisco, United States
| | - Anneleen Daemen
- Computational biology, Oric Pharma, South San Francisco, United States
| | - Anthony Nelson Lima
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Xi Wang
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Marc Hafner
- Department of Bioinformatics and Computational Biology, Genentech, Inc, South San Francisco, United States
| | - Chungkee Poon
- Department of Immunology, Genentech, Inc, South San Francisco, United States
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | | | - Oded Foreman
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Eastham
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Hung
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | - Julia T Garcia
- Department of Genetics, Stanford University, Stanford, United States
| | | | | |
Collapse
|
36
|
Li Q, Wang R, Yang Z, Li W, Yang J, Wang Z, Bai H, Cui Y, Tian Y, Wu Z, Guo Y, Xu J, Wen L, He J, Tang F, Wang J. Molecular profiling of human non-small cell lung cancer by single-cell RNA-seq. Genome Med 2022; 14:87. [PMID: 35962452 PMCID: PMC9375433 DOI: 10.1186/s13073-022-01089-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer, one of the most common malignant tumors, exhibits high inter- and intra-tumor heterogeneity which contributes significantly to treatment resistance and failure. Single-cell RNA sequencing (scRNA-seq) has been widely used to dissect the cellular composition and characterize the molecular properties of cancer cells and their tumor microenvironment in lung cancer. However, the transcriptomic heterogeneity among various cancer cells in non-small cell lung cancer (NSCLC) warrants further illustration. METHODS To comprehensively analyze the molecular heterogeneity of NSCLC, we performed high-precision single-cell RNA-seq analyses on 7364 individual cells from tumor tissues and matched normal tissues from 19 primary lung cancer patients and 1 pulmonary chondroid hamartoma patient. RESULTS In 6 of 16 patients sequenced, we identified a significant proportion of cancer cells simultaneously expressing classical marker genes for two or even three histologic subtypes of NSCLC-adenocarcinoma (ADC), squamous cell carcinoma (SCC), and neuroendocrine tumor (NET) in the same individual cell, which we defined as mixed-lineage tumor cells; this was verified by both co-immunostaining and RNA in situ hybridization. These data suggest that mixed-lineage tumor cells are highly plastic with mixed features of different types of NSCLC. Both copy number variation (CNV) patterns and mitochondrial mutations clearly showed that the mixed-lineage and single-lineage tumor cells from the same patient had common tumor ancestors rather than different origins. Moreover, we revealed that patients with high mixed-lineage features of different cancer subtypes had worse survival than patients with low mixed-lineage features, indicating that mixed-lineage tumor features were associated with poorer prognosis. In addition, gene signatures specific to mixed-lineage tumor cells were identified, including AKR1B1. Gene knockdown and small molecule inhibition of AKR1B1 can significantly decrease cell proliferation and promote cell apoptosis, suggesting that AKR1B1 plays an important role in tumorigenesis and can serve as a candidate target for tumor therapy of NSCLC patients with mixed-lineage tumor features. CONCLUSIONS In summary, our work provides novel insights into the tumor heterogeneity of NSCLC in terms of the identification of prevalent mixed-lineage subpopulations of cancer cells with combined signatures of SCC, ADC, and NET and offers clues for potential treatment strategies in these patients.
Collapse
Affiliation(s)
- Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Rui Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Zhenlin Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yueli Cui
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Yanhua Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Wu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jie He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China. .,Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Haake SM, Plosa EJ, Kropski JA, Venton LA, Reddy A, Bock F, Chang BT, Luna AJ, Nabukhotna K, Xu ZQ, Prather RA, Lee S, Tanjore H, Polosukhin VV, Viquez OM, Jones A, Luo W, Wilson MH, Rathmell WK, Massion PP, Pozzi A, Blackwell TS, Zent R. Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 2022; 7:154098. [PMID: 35763345 PMCID: PMC9462485 DOI: 10.1172/jci.insight.154098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Integrins - the principal extracellular matrix (ECM) receptors of the cell - promote cell adhesion, migration, and proliferation, which are key events for cancer growth and metastasis. To date, most integrin-targeted cancer therapeutics have disrupted integrin-ECM interactions, which are viewed as critical for integrin functions. However, such agents have failed to improve cancer patient outcomes. We show that the highly expressed integrin β1 subunit is required for lung adenocarcinoma development in a carcinogen-induced mouse model. Likewise, human lung adenocarcinoma cell lines with integrin β1 deletion failed to form colonies in soft agar and tumors in mice. Mechanistically, we demonstrate that these effects do not require integrin β1-mediated adhesion to ECM but are dependent on integrin β1 cytoplasmic tail-mediated activation of focal adhesion kinase (FAK). These studies support a critical role for integrin β1 in lung tumorigenesis that is mediated through constitutive, ECM binding-independent signaling involving the cytoplasmic tail.
Collapse
Affiliation(s)
- Scott M. Haake
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Erin J. Plosa
- Division of Neonatology, Department of Pediatrics, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Veterans Affairs, Nashville, Tennessee, USA.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lindsay A. Venton
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anupama Reddy
- Vindhya Data Science, Morrisville, North Carolina, USA
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Betty T. Chang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allen J. Luna
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Zhi-Qi Xu
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca A. Prather
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sharon Lee
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Angela Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wentian Luo
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Matthew H. Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine, and
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Pierre P. Massion
- Department of Veterans Affairs, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Veterans Affairs, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine, and
| | - Timothy S. Blackwell
- Department of Veterans Affairs, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Roy Zent
- Department of Veterans Affairs, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine, and
| |
Collapse
|
38
|
Chen Y, Toth R, Chocarro S, Weichenhan D, Hey J, Lutsik P, Sawall S, Stathopoulos GT, Plass C, Sotillo R. Club cells employ regeneration mechanisms during lung tumorigenesis. Nat Commun 2022; 13:4557. [PMID: 35931677 PMCID: PMC9356049 DOI: 10.1038/s41467-022-32052-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we employ lineage-tracing mouse models to investigate the cell of origin of Eml4-Alk LUAD, and show that Club and Alveolar type 2 (AT2) cells give rise to tumours. We focus on Club cell originated tumours and find that Club cells experience an epigenetic switch by which they lose their lineage fidelity and gain an AT2-like phenotype after oncogenic transformation. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, suggesting that lung epithelial cells leverage on their plasticity and intrinsic regeneration mechanisms to give rise to a tumour. Together, this study highlights the role of Club cells in LUAD initiation, identifies the mechanism of Club cell lineage infidelity, confirms the presence of these features in human tumours, and unveils key mechanisms conferring LUAD heterogeneity.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Reka Toth
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU), Max-Lebsche-Platz 31, 81377, Munich, Bavaria, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Center for Lung Research (DZL), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany. .,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
40
|
Chen J, Wen Y, Su H, Yu X, Hong R, Chen C, Su C. Deciphering Prognostic Value of TTN and Its Correlation With Immune Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:877878. [PMID: 35875159 PMCID: PMC9304871 DOI: 10.3389/fonc.2022.877878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for around 40%. Despite achievements in the treatment approach, the prognosis is still dismal, with overall survival of fewer than five years. Thus, novel prognostic biomarkers are needed to predict the clinical outcomes of individual patients better. TTN has a high mutation rate in the LUAD, which encodes a large abundant protein of striated muscle. However, the value of TTN in prognosis and the immune environment are poorly understood. Methods We investigated the clinicopathological characteristics, transcriptional and protein level, prognostic value, biological function, and its relationship with immune infiltration of TTN gene in LUAD patients through bioinformatics analysis. Results TTN expression was significantly lower in LUAD than that in normal lung tissue. Lower TTN expression was associated with worse survival. Besides, TTN is highly expressed in alveolar type 2 cells which were surmised as the origin of LUAD. Conclusion Our findings indicated the potential prognostic value of TTN and its role as a biomarker for determining the immune infiltration levels in patients with LUAD.
Collapse
Affiliation(s)
- Jianing Chen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ruisheng Hong
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| |
Collapse
|
41
|
Ahmadvand N, Lingampally A, Khosravi F, Vazquez-Armendariz AI, Rivetti S, Jones MR, Wilhelm J, Herold S, Barreto G, Koepke J, Samakovlis C, Carraro G, Zhang JS, Al Alam D, Bellusci S. Fgfr2b signaling is essential for the maintenance of the alveolar epithelial type 2 lineage during lung homeostasis in mice. Cell Mol Life Sci 2022; 79:302. [PMID: 35587837 PMCID: PMC9120111 DOI: 10.1007/s00018-022-04327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. SftpcCreERT2; Fgfr2bflox/flox; tdTomatoflox/flox mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel SftpcLow lineage-traced population called "injury activated alveolar progenitors" or IAAPs. Upon continuous tamoxifen exposure for either 1 or 2 weeks to delete Fgfr2b, a shrinking of the AT2 population is observed. Mature AT2s exit the cell cycle, undergo apoptosis and fail to form alveolospheres in vitro. However, the lung morphometry appears normal, suggesting the involvement of compensatory mechanisms. In mutant lungs, IAAPs which escaped Fgfr2b deletion expand, display enhanced alveolosphere formation in vitro and increase drastically their AT2 signature, suggesting differentiation towards mature AT2s. Interestingly, a significant increase in AT2s and decrease in IAPPs occurs after a 1-week tamoxifen exposure followed by an 8-week chase period. Although mature AT2s partially recover their alveolosphere formation capabilities, the IAAPs no longer display this property. Single-cell RNA seq analysis confirms that AT2s and IAAPs represent stable and distinct cell populations and recapitulate some of their characteristics observed in vivo. Our results underscore the essential role played by Fgfr2b signaling in the maintenance of the AT2 lineage in the adult lung during homeostasis and suggest that the IAAPs could represent a new population of AT2 progenitors.
Collapse
Affiliation(s)
- Negah Ahmadvand
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Stefano Rivetti
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Matthew R Jones
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Susanne Herold
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Guillermo Barreto
- Laboratoire IMoPA, UMR 7365 CNRS, Biopole de l'Universite de Lorraine, 54505, Vandoeuvre-les-Nancy, France
| | - Janine Koepke
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, 90027, USA
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, USA
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
- Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal Medicine, Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
42
|
Rowbotham SP, Goruganthu MUL, Arasada RR, Wang WZ, Carbone DP, Kim CF. Lung Cancer Stem Cells and Their Clinical Implications. Cold Spring Harb Perspect Med 2022; 12:a041270. [PMID: 34580078 PMCID: PMC9121890 DOI: 10.1101/cshperspect.a041270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is now widely accepted that stem cells exist in various cancers, including lung cancer, which are referred to as cancer stem cells (CSCs). CSCs are defined in this context as the subset of tumor cells with the ability to form tumors in serial transplantation and cloning assays and form tumors at metastatic sites. Mouse models of lung cancer have shown that lung CSCs reside in niches that are essential for the maintenance of stemness, plasticity, enable antitumor immune evasion, and provide metastatic potential. Similar to normal lung stem cells, Notch, Wnt, and the Hedgehog signaling cascades have been recruited by the CSCs to regulate stemness and also provide therapy-driven resistance in lung cancer. Compounds targeting β-catenin and Sonic hedgehog (Shh) activity have shown promising anti-CSC activity in preclinical murine models of lung cancer. Understanding CSCs and their niches in lung cancer can answer fundamental questions pertaining to tumor maintenance and associated immune regulation and escape that appear important in the quest to develop novel lung cancer therapies and enhance sensitivity to currently approved chemo-, targeted-, and immune therapeutics.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mounika U L Goruganthu
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Rajeswara R Arasada
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Walter Z Wang
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - David P Carbone
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
43
|
Garcia KA, Costa ML, Lacunza E, Martinez ME, Corsico B, Scaglia N. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci 2022; 301:120621. [PMID: 35545133 DOI: 10.1016/j.lfs.2022.120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
AIMS Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.
Collapse
Affiliation(s)
- Karina Andrea Garcia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Lucía Costa
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Elizabeth Martinez
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Caeser R, Egger JV, Chavan S, Socci ND, Jones CB, Kombak FE, Asher M, Roehrl MH, Shah NS, Allaj V, Manoj P, Tischfield SE, Kulick A, Meneses M, Iacobuzio-Donahue CA, Lai WV, Bhanot U, Baine MK, Rekhtman N, Hollmann TJ, de Stanchina E, Poirier JT, Rudin CM, Sen T. Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nat Commun 2022; 13:2144. [PMID: 35440124 PMCID: PMC9018685 DOI: 10.1038/s41467-022-29794-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Access to clinically relevant small cell lung cancer (SCLC) tissue is limited because surgical resection is rare in metastatic SCLC. Patient-derived xenografts (PDX) and circulating tumor cell-derived xenografts (CDX) have emerged as valuable tools to characterize SCLC. Here, we present a resource of 46 extensively annotated PDX/CDX models derived from 33 patients with SCLC. We perform multi-omic analyses, using targeted tumor next-generation sequencing, RNA-sequencing, and immunohistochemistry to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these SCLC models. SCLC subtypes characterized by transcriptional regulators, ASCL1, NEUROD1 and POU2F3 are confirmed in this cohort. A subset of SCLC clinical specimens, including matched PDX/CDX and clinical specimen pairs, confirm that the primary features and genomic and proteomic landscapes of the tumors of origin are preserved in the derivative PDX models. This resource provides a powerful system to study SCLC biology.
Collapse
Affiliation(s)
- Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jacklynn V Egger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shweta Chavan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Caitlin Byrne Jones
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Faruk Erdem Kombak
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael H Roehrl
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - Christine A Iacobuzio-Donahue
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W Victoria Lai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Umeshkumar Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
45
|
Kim M, Vu NT, Wang X, Bulut GB, Wang MH, Uram-Tuculescu C, Pillappa R, Kim S, Chalfant CE. Caspase-9b drives cellular transformation, lung inflammation, and lung tumorigenesis. Mol Cancer Res 2022; 20:1284-1294. [PMID: 35412615 DOI: 10.1158/1541-7786.mcr-21-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Caspase 9 undergoes alternative splicing to produce two opposing isoforms: pro-apoptotic Caspase-9a (C9a) and pro-survival Caspase-9b (C9b). Previously, our laboratory reported that C9b is expressed in majority of non-small cell lung cancer tumors and directly activates the NF-κB pathway. In this study, the role of C9b in activation of the NF-κB pathway in vivo, lung inflammation and immune responses, and lung tumorigenesis were examined. Specifically, a transgenic mouse model expressing human C9b in the lung pneumocytes developed inflammatory lung lesions, which correlated with enhanced activation of the NF-κB pathway and increased influx of immunosuppressive MDSCs in contrast to wild-type mice. C9b mice presented with facial dermatitis, a thickened and disorganized dermis, enhanced collagen depth, and increased serum levels of IL-6. C9b mice also developed spontaneous lung tumors, and C9b cooperated with oncogenic KRAS in lung tumorigenesis. C9b expression also cooperated with oncogenic KRAS and p53 downregulation to drive the full cell transformation of human bronchial epithelial cells (e.g., tumor formation). Implications: Our findings show that C9b can directly activate NF-κB pathway in vivo to modulate lung inflammation, immune cell influx, and peripheral immune responses, which demonstrates that C9b is key factor in driving cell transformation and lung tumorigenesis.
Collapse
Affiliation(s)
- Minjung Kim
- University of South Florida, Tampa, FL, United States
| | - Ngoc T Vu
- University of South Florida, United States
| | - Xue Wang
- University of South Florida, Tampa, Virginia, United States
| | - Gamze B Bulut
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | - Min-Hsuan Wang
- H. Lee Moffitt Cancer Center & Research, Tampa, Florida, United States
| | | | - Raghavendra Pillappa
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | | | - Charles E Chalfant
- University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
46
|
Seguin L, Durandy M, Feral CC. Lung Adenocarcinoma Tumor Origin: A Guide for Personalized Medicine. Cancers (Basel) 2022; 14:cancers14071759. [PMID: 35406531 PMCID: PMC8996976 DOI: 10.3390/cancers14071759] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related death worldwide, with an average 5-year survival rate of approximately 15%. Among the multiple histological type of lung cancer, adenocarcinoma is the most common. Adenocarcinoma is characterized by a high degree of heterogeneity at many levels, including histological, cellular, and molecular. Understanding the cell of origin of adenocarcinoma, and the molecular changes during tumor progression, will allow better therapeutic strategies. Abstract Lung adenocarcinoma, the major form of lung cancer, is the deadliest cancer worldwide, due to its late diagnosis and its high heterogeneity. Indeed, lung adenocarcinoma exhibits pronounced inter- and intra-tumor heterogeneity cofounding precision medicine. Tumor heterogeneity is a clinical challenge driving tumor progression and drug resistance. Several key pieces of evidence demonstrated that lung adenocarcinoma results from the transformation of progenitor cells that accumulate genetic abnormalities. Thus, a better understanding of the cell of origin of lung adenocarcinoma represents an opportunity to unveil new therapeutic alternatives and stratify patient tumors. While the lung is remarkably quiescent during homeostasis, it presents an extensive ability to respond to injury and regenerate lost or damaged cells. As the lung is constantly exposed to potential insult, its regenerative potential is assured by several stem and progenitor cells. These can be induced to proliferate in response to injury as well as differentiate into multiple cell types. A better understanding of how genetic alterations and perturbed microenvironments impact progenitor-mediated tumorigenesis and treatment response is of the utmost importance to develop new therapeutic opportunities.
Collapse
|
47
|
Loss of TET reprograms Wnt signaling through impaired demethylation to promote lung cancer development. Proc Natl Acad Sci U S A 2022; 119:2107599119. [PMID: 35110400 PMCID: PMC8832965 DOI: 10.1073/pnas.2107599119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have identified the tumor-suppressive function of TET enzymes in hematological cancers. Given the differential mutational incidence and lacking functional validation, how TET contributes to carcinogenesis in solid tumors remains largely undefined. Here, we report that TET mutations co-occur with KRAS mutations, and such co-occurrence predicts poor survival in human LUAD. Using genetically engineered mouse models (GEMMs), we show that inactivation of TET cooperates with oncogenic KRAS to potentiate LUAD development, and that this effect is preferentially induced by augmented Wnt signaling as a consequence of impaired expression of Wnt-associated antagonists due to DNA hypermethylation. Our work reveals the tissue-specific and context-dependent roles of TET during carcinogenesis and implicates Wnt signaling as a therapeutic modality for TET-mutant lung tumors. Oncogenic imbalance of DNA methylation is well recognized in cancer development. The ten-eleven translocation (TET) family of dioxygenases, which facilitates DNA demethylation, is frequently dysregulated in cancers. How such dysregulation contributes to tumorigenesis remains poorly understood, especially in solid tumors which present infrequent mutational incidence of TET genes. Here, we identify loss-of-function mutations of TET in 7.4% of human lung adenocarcinoma (LUAD), which frequently co-occur with oncogenic KRAS mutations, and this co-occurrence is predictive of poor survival in LUAD patients. Using an autochthonous mouse model of KrasG12D-driven LUAD, we show that individual or combinational loss of Tet genes markedly promotes tumor development. In this Kras-mutant and Tet-deficient model, the premalignant lung epithelium undergoes neoplastic reprogramming of DNA methylation and transcription, with a particular impact on Wnt signaling. Among the Wnt-associated components that undergo reprogramming, multiple canonical Wnt antagonizing genes present impaired expression arising from elevated DNA methylation, triggering aberrant activation of Wnt signaling. These impairments can be largely reversed upon the restoration of TET activity. Correspondingly, genetic depletion of β-catenin, the transcriptional effector of Wnt signaling, substantially reverts the malignant progression of Tet-deficient LUAD. These findings reveal TET enzymes as critical epigenetic barriers against lung tumorigenesis and highlight the therapeutic vulnerability of TET-mutant lung cancer through targeting Wnt signaling.
Collapse
|
48
|
Kadur Lakshminarasimha Murthy P, Xi R, Arguijo D, Everitt JI, Kocak DD, Kobayashi Y, Bozec A, Vicent S, Ding S, Crawford GE, Hsu D, Tata PR, Reddy T, Shen X. Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity. Dev Cell 2022; 57:310-328.e9. [PMID: 35134344 PMCID: PMC8938988 DOI: 10.1016/j.devcel.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/15/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Oncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.
Collapse
Affiliation(s)
- Preetish Kadur Lakshminarasimha Murthy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA. :
| | - Rui Xi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Diana Arguijo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dewran D Kocak
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aline Bozec
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain; University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Shengli Ding
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - David Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Timothy Reddy
- Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
49
|
Abstract
In this issue of Developmental Cell, Murthy et al. identify AP-1 as a driver of oncogenic KRAS early tumor progression and demonstrate the distinct paths of transformation from two different cells of origin.
Collapse
Affiliation(s)
- James Kim
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX 75208, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75208, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA.
| | - John D Minna
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX 75208, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75208, USA; Department of Pharmacology, University of Texas Southwestern, Dallas, TX 75208, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA
| |
Collapse
|
50
|
ΔNp63 regulates a common landscape of enhancer associated genes in non-small cell lung cancer. Nat Commun 2022; 13:614. [PMID: 35105868 PMCID: PMC8807845 DOI: 10.1038/s41467-022-28202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct lung stem cells give rise to lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). ΔNp63, the p53 family member and p63 isoform, guides the maturation of these stem cells through the regulation of their self-renewal and terminal differentiation; however, the underlying mechanistic role regulated by ∆Np63 in lung cancer development has remained elusive. By utilizing a ΔNp63-specific conditional knockout mouse model and xenograft models of LUAD and LUSC, we found that ∆Np63 promotes non-small cell lung cancer by maintaining the lung stem cells necessary for lung cancer cell initiation and progression in quiescence. ChIP-seq analysis of lung basal cells, alveolar type 2 (AT2) cells, and LUAD reveals robust ∆Np63 regulation of a common landscape of enhancers of cell identity genes. Importantly, one of these genes, BCL9L, is among the enhancer associated genes regulated by ∆Np63 in Kras-driven LUAD and mediates the oncogenic effects of ∆Np63 in both LUAD and LUSC. Accordingly, high BCL9L levels correlate with poor prognosis in LUAD patients. Taken together, our findings provide a unifying oncogenic role for ∆Np63 in both LUAD and LUSC through the regulation of a common landscape of enhancer associated genes. The mechanistic role regulated by the oncogene ∆Np63 in lung cancer development is currently unclear. Here, the authors show that ΔNp63 is pro-tumorigenic in lung adenocarcinoma as well as squamous cell carcinoma, and maintains lung cancer progenitor cells via regulation of super-enhancer-associated genes, including BCL9L
Collapse
|