1
|
Cezanne A, Foo S, Kuo YW, Baum B. The Archaeal Cell Cycle. Annu Rev Cell Dev Biol 2024; 40:1-23. [PMID: 38748857 DOI: 10.1146/annurev-cellbio-111822-120242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Sherman Foo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Yin-Wei Kuo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| |
Collapse
|
2
|
Lin MG, Yen CY, Shen YY, Huang YS, Ng I, Barillà D, Sun YJ, Hsiao CD. Unraveling the structure and function of a novel SegC protein interacting with the SegAB chromosome segregation complex in Archaea. Nucleic Acids Res 2024; 52:9966-9977. [PMID: 39077943 PMCID: PMC11381335 DOI: 10.1093/nar/gkae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Genome segregation is a fundamental process that preserves the genetic integrity of all organisms, but the mechanisms driving genome segregation in archaea remain enigmatic. This study delved into the unknown function of SegC (SSO0033), a novel protein thought to be involved in chromosome segregation in archaea. Using fluorescence polarization DNA binding assays, we discovered the ability of SegC to bind DNA without any sequence preference. Furthermore, we determined the crystal structure of SegC at 2.8 Å resolution, revealing the multimeric configuration and forming a large positively charged surface that can bind DNA. SegC has a tertiary structure folding similar to those of the ThDP-binding fold superfamily, but SegC shares only 5-15% sequence identity with those proteins. Unexpectedly, we found that SegC has nucleotide triphosphatase (NTPase) activity. We also determined the SegC-ADP complex structure, identifying the NTP binding pocket and relative SegC residues involved in the interaction. Interestingly, images from negative-stain electron microscopy revealed that SegC forms filamentous structures in the presence of DNA and NTPs. Further, more uniform and larger SegC-filaments are observed, when SegA-ATP was added. Notably, the introduction of SegB disrupts these oligomers, with ATP being essential for regulating filament formation. These findings provide insights into the functional and structural role of SegC in archaeal chromosome segregation.
Collapse
Affiliation(s)
- Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Yi Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yo-You Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Sung Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Irene W Ng
- Department of Biology, University of York, Wentworth Way, YorkYO10 5DD, UK
| | - Daniela Barillà
- Department of Biology, University of York, Wentworth Way, YorkYO10 5DD, UK
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Chu CH, Wu CT, Lin MG, Yen CY, Wu YZ, Hsiao CD, Sun YJ. Insights into the molecular mechanism of ParABS system in chromosome partition by HpParA and HpParB. Nucleic Acids Res 2024; 52:7321-7336. [PMID: 38842933 PMCID: PMC11229316 DOI: 10.1093/nar/gkae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Che-Ting Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Yi Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Zhan Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Pilatowski-Herzing E, Samson RY, Takemata N, Badel C, Bohall PB, Bell SD. Capturing chromosome conformation in Crenarchaea. Mol Microbiol 2024:10.1111/mmi.15245. [PMID: 38404013 PMCID: PMC11344861 DOI: 10.1111/mmi.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
While there is a considerable body of knowledge regarding the molecular and structural biology and biochemistry of archaeal information processing machineries, far less is known about the nature of the substrate for these machineries-the archaeal nucleoid. In this article, we will describe recent advances in our understanding of the three-dimensional organization of the chromosomes of model organisms in the crenarchaeal phylum.
Collapse
Affiliation(s)
- Elyza Pilatowski-Herzing
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Rachel Y. Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Naomichi Takemata
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
- Present address: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Catherine Badel
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
- Present address: Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Peter B. Bohall
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Cajili MKM, Prieto EI. Atomic Force Microscopy Characterization of Reconstituted Protein-DNA Complexes. Methods Mol Biol 2024; 2819:279-295. [PMID: 39028512 DOI: 10.1007/978-1-0716-3930-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
| | - Eloise I Prieto
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Quezon City, Philippines.
| |
Collapse
|
6
|
Xuyang L, Cristina LM, Laura MA, Xu P. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. Nucleic Acids Res 2023; 51:1724-1739. [PMID: 36727447 PMCID: PMC9976892 DOI: 10.1093/nar/gkad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content. Additionally, both gp21 and SiL_0190 can bind to the motif AGTATTA conserved in the promoter of several genes involved in cell division, DNA replication and cellular metabolism thereby repressing or inducing their transcription. Our results suggest that aCcr1 silences cell division and drives progression to the S-phase in Sulfolobales, a function exploited by viruses to facilitate viral propagation.
Collapse
Affiliation(s)
- Li Xuyang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lozano-Madueño Cristina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Martínez-Alvarez Laura
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peng Xu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Bell SD. Form and function of archaeal genomes. Biochem Soc Trans 2022; 50:1931-1939. [PMID: 36511238 PMCID: PMC9764264 DOI: 10.1042/bst20221396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023]
Abstract
A key maxim in modernist architecture is that 'form follows function'. While modernist buildings are hopefully the product of intelligent design, the architectures of chromosomes have been sculpted by the forces of evolution over many thousands of generations. In the following, I will describe recent advances in our understanding of chromosome architecture in the archaeal domain of life. Although much remains to be learned about the mechanistic details of archaeal chromosome organization, some general principles have emerged. At the 10-100 kb level, archaeal chromosomes have a conserved local organization reminiscent of bacterial genomes. In contrast, lineage-specific innovations appear to have imposed distinct large-scale architectural features. The ultimate functions of genomes are to store and to express genetic information. Gene expression profiles have been shown to influence chromosome architecture, thus their form follows function. However, local changes to chromosome conformation can also influence gene expression and therefore, in these instances, function follows form.
Collapse
Affiliation(s)
- Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, U.S.A
- Biology Department, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
8
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
10
|
Yen CY, Lin MG, Chen BW, Ng IW, Read N, Kabli AF, Wu CT, Shen YY, Chen CH, Barillà D, Sun YJ, Hsiao CD. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly. Nucleic Acids Res 2021; 49:13150-13164. [PMID: 34850144 PMCID: PMC8682754 DOI: 10.1093/nar/gkab1155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA–DNA and SegB–DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon–helix–helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA–SegB–DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.
Collapse
Affiliation(s)
- Cheng-Yi Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Bo-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Irene W Ng
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nicholas Read
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Azhar F Kabli
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Che-Ting Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yo-You Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Hao Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Daniela Barillà
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
11
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
13
|
Pulschen AA, Mutavchiev DR, Culley S, Sebastian KN, Roubinet J, Roubinet M, Risa GT, van Wolferen M, Roubinet C, Schmidt U, Dey G, Albers SV, Henriques R, Baum B. Live Imaging of a Hyperthermophilic Archaeon Reveals Distinct Roles for Two ESCRT-III Homologs in Ensuring a Robust and Symmetric Division. Curr Biol 2020; 30:2852-2859.e4. [PMID: 32502411 PMCID: PMC7372223 DOI: 10.1016/j.cub.2020.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Live-cell imaging has revolutionized our understanding of dynamic cellular processes in bacteria and eukaryotes. Although similar techniques have been applied to the study of halophilic archaea [1-5], our ability to explore the cell biology of thermophilic archaea has been limited by the technical challenges of imaging at high temperatures. Sulfolobus are the most intensively studied members of TACK archaea and have well-established molecular genetics [6-9]. Additionally, studies using Sulfolobus were among the first to reveal striking similarities between the cell biology of eukaryotes and archaea [10-15]. However, to date, it has not been possible to image Sulfolobus cells as they grow and divide. Here, we report the construction of the Sulfoscope, a heated chamber on an inverted fluorescent microscope that enables live-cell imaging of thermophiles. By using thermostable fluorescent probes together with this system, we were able to image Sulfolobus acidocaldarius cells live to reveal tight coupling between changes in DNA condensation, segregation, and cell division. Furthermore, by imaging deletion mutants, we observed functional differences between the two ESCRT-III proteins implicated in cytokinesis, CdvB1 and CdvB2. The deletion of cdvB1 compromised cell division, causing occasional division failures, whereas the ΔcdvB2 exhibited a profound loss of division symmetry, generating daughter cells that vary widely in size and eventually generating ghost cells. These data indicate that DNA separation and cytokinesis are coordinated in Sulfolobus, as is the case in eukaryotes, and that two contractile ESCRT-III polymers perform distinct roles to ensure that Sulfolobus cells undergo a robust and symmetrical division.
Collapse
Affiliation(s)
| | - Delyan R Mutavchiev
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Siân Culley
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Kim Nadine Sebastian
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Chantal Roubinet
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Uwe Schmidt
- Center for System Biology Dresden (CSBD), 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | - Gautam Dey
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC-Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, UCL, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Caccamo M, Dobruk-Serkowska A, Rodríguez-Castañeda F, Pennica C, Barillà D, Hayes F. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein. Front Mol Biosci 2020; 7:108. [PMID: 32613008 PMCID: PMC7308502 DOI: 10.3389/fmolb.2020.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a “Venus flytrap” mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.
Collapse
Affiliation(s)
- Marisa Caccamo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Aneta Dobruk-Serkowska
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Cecilia Pennica
- Department of Biology, University of York, York, United Kingdom
| | - Daniela Barillà
- Department of Biology, University of York, York, United Kingdom
| | - Finbarr Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Takemata N, Samson RY, Bell SD. Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell 2020; 179:165-179.e18. [PMID: 31539494 DOI: 10.1016/j.cell.2019.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."
Collapse
Affiliation(s)
- Naomichi Takemata
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA
| | - Rachel Y Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
16
|
Chien HL, Huang WZ, Tsai MY, Cheng CH, Liu CT. Overexpression of the Chromosome Partitioning Gene parA in Azorhizobium caulinodans ORS571 Alters the Bacteroid Morphotype in Sesbania rostrata Stem Nodules. Front Microbiol 2019; 10:2422. [PMID: 31749773 PMCID: PMC6842974 DOI: 10.3389/fmicb.2019.02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Azorhizobium caulinodans ORS571 is a diazotroph that forms N2-fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.
Collapse
Affiliation(s)
- Hsiao-Lin Chien
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wan-Zhen Huang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Yen Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chiung-Hsiang Cheng
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Chu CH, Yen CY, Chen BW, Lin MG, Wang LH, Tang KZ, Hsiao CD, Sun YJ. Crystal structures of HpSoj-DNA complexes and the nucleoid-adaptor complex formation in chromosome segregation. Nucleic Acids Res 2019; 47:2113-2129. [PMID: 30544248 PMCID: PMC6393308 DOI: 10.1093/nar/gky1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
ParABS, an important DNA partitioning process in chromosome segregation, includes ParA (an ATPase), ParB (a parS binding protein) and parS (a centromere-like DNA). The homologous proteins of ParA and ParB in Helicobacter pylori are HpSoj and HpSpo0J, respectively. We analyzed the ATPase activity of HpSoj and found that it is enhanced by both DNA and HpSpo0J. Crystal structures of HpSoj and its DNA complexes revealed a typical ATPase fold and that it is dimeric. DNA binding by HpSoj is promoted by ATP. The HpSoj–ATP–DNA complex non-specifically binds DNA through a continuous basic binding patch formed by lysine residues, with a single DNA-binding site. This complex exhibits a DNA-binding adept state with an active ATP-bound conformation, whereas the HpSoj–ADP–DNA complex may represent a transient DNA-bound state. Based on structural comparisons, HpSoj exhibits a similar DNA binding surface to the bacterial ParA superfamily, but the archaeal ParA superfamily exhibits distinct non-specific DNA-binding via two DNA-binding sites. We detected the HpSpo0J–HpSoj–DNA complex by electron microscopy and show that this nucleoid-adaptor complex (NAC) is formed through HpSoj and HpSpo0J interaction and parS DNA binding. NAC formation is promoted by HpSoj participation and specific parS DNA facilitation.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Cheng-Yi Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bo-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Lyu-Han Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kai-Zhi Tang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Schult F, Le TN, Albersmeier A, Rauch B, Blumenkamp P, van der Does C, Goesmann A, Kalinowski J, Albers SV, Siebers B. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. Nucleic Acids Res 2019; 46:7179-7192. [PMID: 29982548 PMCID: PMC6101591 DOI: 10.1093/nar/gky527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Exposure to UV light can result in severe DNA damage. The alternative general transcription factor (GTF) TFB3 has been proposed to play a key role in the UV stress response in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Reporter gene assays confirmed that tfb3 is upregulated 90–180 min after UV treatment. In vivo tagging and immunodetection of TFB3 confirmed the induced expression at 90 min. Analysis of a tfb3 insertion mutant showed that genes encoding proteins of the Ups pili and the Ced DNA importer are no longer induced in a tfb3 insertion mutant after UV treatment, which was confirmed by aggregation assays. Thus, TFB3 plays a crucial role in the activation of these genes. Genome wide transcriptome analysis allowed a differentiation between a TFB3-dependent and a TFB3-independent early UV response. The TFB3-dependent UV response is characterized by the early induction of TFB3, followed by TFB3-dependent expression of genes involved in e.g. Ups pili formation and the Ced DNA importer. Many genes were downregulated in the tfb3 insertion mutant confirming the hypothesis that TFB3 acts as an activator of transcription. The TFB3-independent UV response includes the repression of nucleotide metabolism, replication and cell cycle progression in order to allow DNA repair.
Collapse
Affiliation(s)
- Frank Schult
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Thuong N Le
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CEBITEC), University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bernadette Rauch
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Patrick Blumenkamp
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Chris van der Does
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CEBITEC), University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
19
|
Sun M, Feng X, Liu Z, Han W, Liang YX, She Q. An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Nucleic Acids Res 2019; 46:6697-6711. [PMID: 29878182 PMCID: PMC6061795 DOI: 10.1093/nar/gky487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/17/2018] [Indexed: 12/04/2022] Open
Abstract
While bacteria and eukaryotes show distinct mechanisms of DNA damage response (DDR) regulation, investigation of ultraviolet (UV)-responsive expression in a few archaea did not yield any conclusive evidence for an archaeal DDR regulatory network. Nevertheless, expression of Orc1-2, an ortholog of the archaeal origin recognition complex 1/cell division control protein 6 (Orc1/Cdc6) superfamily proteins was strongly activated in Sulfolobus solfataricus and Sulfolobus acidocaldarius upon UV irradiation. Here, a series of experiments were conducted to investigate the possible functions of Orc1-2 in DNA damage repair in Sulfolobus islandicus. Study of DDR in Δorc1-2 revealed that Orc1-2 deficiency abolishes DNA damage-induced differential expression of a large number of genes and the mutant showed hypersensitivity to DNA damage treatment. Reporter gene and DNase I footprinting assays demonstrated that Orc1-2 interacts with a conserved hexanucleotide motif present in several DDR gene promoters and regulates their expression. Manipulation of orc1-2 expression by promoter substitution in this archaeon revealed that a high level of orc1-2 expression is essential but not sufficient to trigger DDR. Together, these results have placed Orc1-2 in the heart of the archaeal DDR regulation, and the resulting Orc1-2-centered regulatory circuit represents the first DDR network identified in Archaea, the third domain of life.
Collapse
Affiliation(s)
- Mengmeng Sun
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wenyuan Han
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
20
|
Hürtgen D, Murray SM, Mascarenhas J, Sourjik V. DNA Segregation in Natural and Synthetic Minimal Systems. ACTA ACUST UNITED AC 2019; 3:e1800316. [DOI: 10.1002/adbi.201800316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Hürtgen
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Seán M. Murray
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Judita Mascarenhas
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| |
Collapse
|
21
|
Bisson-Filho AW, Zheng J, Garner E. Archaeal imaging: leading the hunt for new discoveries. Mol Biol Cell 2018; 29:1675-1681. [PMID: 30001185 PMCID: PMC6080714 DOI: 10.1091/mbc.e17-10-0603] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Since the identification of the archaeal domain in the mid-1970s, we have collected a great deal of metagenomic, biochemical, and structural information from archaeal species. However, there is still little known about how archaeal cells organize their internal cellular components in space and time. In contrast, live-cell imaging has allowed bacterial and eukaryotic cell biologists to learn a lot about biological processes by observing the motions of cells, the dynamics of their internal organelles, and even the motions of single molecules. The explosion of knowledge gained via live-cell imaging in prokaryotes and eukaryotes has motivated an ever-improving set of imaging technologies that could allow analogous explorations into archaeal biology. Furthermore, previous studies of essential biological processes in prokaryotic and eukaryotic organisms give methodological roadmaps for the investigation of similar processes in archaea. In this perspective, we highlight a few fundamental cellular processes in archaea, reviewing our current state of understanding about each, and compare how imaging approaches helped to advance the study of similar processes in bacteria and eukaryotes.
Collapse
Affiliation(s)
| | | | - Ethan Garner
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
22
|
Zhang H, Schumacher MA. Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation. Genes Dev 2017; 31:481-492. [PMID: 28373206 PMCID: PMC5393062 DOI: 10.1101/gad.296319.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023]
Abstract
Walker-box partition systems are ubiquitous in nature and mediate the segregation of bacterial and archaeal DNA. Well-studied plasmid Walker-box partition modules require ParA, centromere-DNA, and a centromere-binding protein, ParB. In these systems, ParA-ATP binds nucleoid DNA and uses it as a substratum to deliver ParB-attached cargo DNA, and ParB drives ParA dynamics, allowing ParA progression along the nucleoid. How ParA-ATP binds nonspecific DNA and is regulated by ParB is unclear. Also under debate is whether ParA polymerizes on DNA to mediate segregation. Here we describe structures of key ParA segregation complexes. The ParA-β,γ-imidoadenosine 5'-triphosphate (AMPPNP)-DNA structure revealed no polymers. Instead, ParA-AMPPNP dimerization creates a multifaceted DNA-binding surface, allowing it to preferentially bind high-density DNA regions (HDRs). DNA-bound ParA-AMPPNP adopts a dimer conformation distinct from the ATP sandwich dimer, optimized for DNA association. Our ParA-AMPPNP-ParB structure reveals that ParB binds at the ParA dimer interface, stabilizing the ATPase-competent ATP sandwich dimer, ultimately driving ParA DNA dissociation. Thus, the data indicate how harnessing a conformationally adaptive dimer can drive large-scale cargo movement without the requirement for polymers and suggest a segregation mechanism by which ParA-ATP dimers equilibrate to HDRs shown to be localized near cell poles of dividing chromosomes, thus mediating equipartition of attached ParB-DNA substrates.
Collapse
Affiliation(s)
- Hengshan Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
23
|
Barillà D. Driving Apart and Segregating Genomes in Archaea. Trends Microbiol 2016; 24:957-967. [PMID: 27450111 PMCID: PMC5120986 DOI: 10.1016/j.tim.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/01/2022]
Abstract
Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
24
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
25
|
Markov AV, Kaznacheev IS. Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis. Biol Direct 2016; 11:28. [PMID: 27277956 PMCID: PMC4898445 DOI: 10.1186/s13062-016-0131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background The origin of eukaryote-specific traits such as mitosis and sexual reproduction remains disputable. There is growing evidence that both mitosis and eukaryotic sex (i.e., the alternation of syngamy and meiosis) may have already existed in the basal eukaryotes. The mating system of the halophilic archaeon Haloferax volcanii probably represents an intermediate stage between typical prokaryotic and eukaryotic sex. H. volcanii is highly polyploid, as well as many other Archaea. Here, we use computer simulation to explore genetic and evolutionary outcomes of polyploidy in amitotic prokaryotes and its possible role in the origin of mitosis, meiosis and eukaryotic sex. Results Modeling suggests that polyploidy can confer strong short-term evolutionary advantage to amitotic prokaryotes. However, it also promotes the accumulation of recessive deleterious mutations and the risk of extinction in the long term, especially in highly mutagenic environment. There are several possible strategies that amitotic polyploids can use in order to reduce the genetic costs of polyploidy while retaining its benefits. Interestingly, most of these strategies resemble different components or aspects of eukaryotic sex. They include asexual ploidy cycles, equalization of genome copies by gene conversion, high-frequency lateral gene transfer between relatives, chromosome exchange coupled with homologous recombination, and the evolution of more accurate chromosome distribution during cell division (mitosis). Acquisition of mitosis by an amitotic polyploid results in chromosome diversification and specialization. Ultimately, it transforms a polyploid cell into a functionally monoploid one with multiple unique, highly redundant chromosomes. Specialization of chromosomes makes the previously evolved modes of promiscuous chromosome shuffling deleterious. This can result in selective pressure to develop accurate mechanisms of homolog pairing, and, ultimately, meiosis. Conclusion Emergence of mitosis and the first evolutionary steps towards eukaryotic sex could have taken place in the ancestral polyploid, amitotic proto-eukaryotes, as they were struggling to survive in the highly mutagenic environment of the Early Proterozoic shallow water microbial communities, through the succession of the following stages: (1) acquisition of high-frequency between-individual genetic exchange coupled with homologous recombination; (2) acquisition of mitosis, followed by rapid chromosome diversification and specialization; (3) evolution of homolog synapsis and meiosis. Additional evidence compatible with this scenario includes mass acquisition of new families of paralogous genes by the basal eukaryotes, and recently discovered correlation between polyploidy and the presence of histones in Archaea. Reviewer This article was reviewed by Eugene Koonin, Uri Gophna and Armen Mulkidjanian. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Alexander V Markov
- Biological Faculty, Department of Biological Evolution, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, Bldg. 12, Moscow, 119991, Russia.
| | - Ilya S Kaznacheev
- Biological Faculty, Department of Biological Evolution, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, Bldg. 12, Moscow, 119991, Russia
| |
Collapse
|
26
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
27
|
Schumacher MA, Tonthat NK, Lee J, Rodriguez-Castañeda FA, Chinnam NB, Kalliomaa-Sanford AK, Ng IW, Barge MT, Shaw PLR, Barillà D. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science 2015; 349:1120-4. [PMID: 26339031 PMCID: PMC4844061 DOI: 10.1126/science.aaa9046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here, we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system uses three proteins: ParA; an atypical ParB adaptor; and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The C domain of ParB harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, which suggests the possible conservation of DNA segregation principles across the three domains of life.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA.
| | - Nam K Tonthat
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | - Jeehyun Lee
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | | | - Naga Babu Chinnam
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | | | - Irene W Ng
- Department of Biology, University of York, York YO10 5DD, UK
| | - Madhuri T Barge
- Department of Biology, University of York, York YO10 5DD, UK
| | - Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | - Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
28
|
Saeed S, Jowitt TA, Warwicker J, Hayes F. Breaking and restoring the hydrophobic core of a centromere-binding protein. J Biol Chem 2015; 290:9273-83. [PMID: 25713077 DOI: 10.1074/jbc.m115.638148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
The ribbon-helix-helix (RHH) superfamily of DNA-binding proteins is dispersed widely in procaryotes. The dimeric RHH fold is generated by interlocking of two monomers into a 2-fold symmetrical structure that comprises four α-helices enwrapping a pair of antiparallel β-strands (ribbon). Residues in the ribbon region are the principal determinants of DNA binding, whereas the RHH hydrophobic core is assembled from amino acids in both the α-helices and ribbon element. The ParG protein encoded by multiresistance plasmid TP228 is a RHH protein that functions dually as a centromere binding factor during segrosome assembly and as a transcriptional repressor. Here we identify residues in the α-helices of ParG that are critical for DNA segregation and in organization of the protein hydrophobic core. A key hydrophobic aromatic amino acid at one position was functionally substitutable by other aromatic residues, but not by non-aromatic hydrophobic amino acids. Nevertheless, intramolecular suppression of the latter by complementary change of a residue that approaches nearby from the partner monomer fully restored activity in vivo and in vitro. The interactions involved in assembling the ParG core may be highly malleable and suggest that RHH proteins are tractable platforms for the rational design of diverse DNA binding factors useful for synthetic biology and other purposes.
Collapse
Affiliation(s)
- Sadia Saeed
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas A Jowitt
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jim Warwicker
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Finbarr Hayes
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
29
|
Milkevych V, Batstone DJ. Controlling mechanisms in directional growth of aggregated archaeal cells. SOFT MATTER 2014; 10:9615-9625. [PMID: 25361175 DOI: 10.1039/c4sm01870b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.
Collapse
Affiliation(s)
- Viktor Milkevych
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | | |
Collapse
|
30
|
Jékely G. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol 2014; 6:a016030. [PMID: 25183829 DOI: 10.1101/cshperspect.a016030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| |
Collapse
|
31
|
Forterre P. The common ancestor of archaea and eukarya was not an archaeon. ARCHAEA (VANCOUVER, B.C.) 2013; 2013:372396. [PMID: 24348094 PMCID: PMC3855935 DOI: 10.1155/2013/372396] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- Université Paris-Sud, Institut de Génétique et Microbiologie, CNRS UMR 8621, 91405 Orsay Cedex, France
| |
Collapse
|
32
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
33
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
34
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|