1
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Luo Y, He J, Lyu R, Xiao J, Li W, Yao M, Pei L, Cheng J, Li J, Xie L. Comparative Analysis of Complete Chloroplast Genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and Insights Into Phylogenetic Relationships of Onagraceae. Front Genet 2021; 12:730495. [PMID: 34804117 PMCID: PMC8600051 DOI: 10.3389/fgene.2021.730495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/20/2021] [Indexed: 02/01/2023] Open
Abstract
The evening primrose family, Onagraceae, is a well defined family of the order Myrtales, comprising 22 genera widely distributed from boreal to tropical areas. In this study, we report and characterize the complete chloroplast genome sequences of 13 species in Circaea, Chamaenerion, and Epilobium using a next-generation sequencing method. We also retrieved chloroplast sequences from two other Onagraceae genera to characterize the chloroplast genome of the family. The complete chloroplast genomes of Onagraceae encoded an identical set of 112 genes (with exclusion of duplication), including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The chloroplast genomes are basically conserved in gene arrangement across the family. However, a large segment of inversion was detected in the large single copy region of all the samples of Oenothera subsect. Oenothera. Two kinds of inverted repeat (IR) region expansion were found in Oenothera, Chamaenerion, and Epilobium samples. We also compared chloroplast genomes across the Onagraceae samples in some features, including nucleotide content, codon usage, RNA editing sites, and simple sequence repeats (SSRs). Phylogeny was inferred by the chloroplast genome data using maximum-likelihood (ML) and Bayesian inference methods. The generic relationship of Onagraceae was well resolved by the complete chloroplast genome sequences, showing potential value in inferring phylogeny within the family. Phylogenetic relationship in Oenothera was better resolved than other densely sampled genera, such as Circaea and Epilobium. Chloroplast genomes of Oenothera subsect. Oenothera, which are biparental inheritated, share a syndrome of characteristics that deviate from primitive pattern of the family, including slightly expanded inverted repeat region, intron loss in clpP, and presence of the inversion.
Collapse
Affiliation(s)
- Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenhe Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Min Yao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Linying Pei
- Beijing Engineering Research Center for Landscape Plant, Beijing Forestry University Forest Science Co. Ltd., Beijing, China
| | - Jin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinyu Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Wambugu PW, Ndjiondjop MN, Henry RJ. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genomics 2019; 17:198-206. [PMID: 29688255 PMCID: PMC5967547 DOI: 10.1093/bfgp/ely014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Global efforts have seen the world's plant genetic resources (PGRs) conserved in about 1625 germ plasm repositories. Utility of these resources is important in increasing the resilience and productivity of agricultural production systems. However, despite their importance, utility of these resources has been poor. This article reviews the real and potential application of the current advances in genomic technologies in improving the utilization of these resources. The actual and potential application of these genomic approaches in plant identification, phylogenetic analysis, analysing the genetic value of germ plasm, facilitating germ plasm selection in genebanks as well as instilling confidence in international germ plasm exchange system is discussed. We note that if genebanks are to benefit from this genomic revolution, there is need for fundamental changes in the way genebanks are managed, perceived, organized and funded. Increased collaboration between genebank managers and the user community is also recommended.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Corresponding author: Robert Henry, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia. Tel.: ±61733460551; Fax: ±61733460555; E-mail:
| | | | | |
Collapse
|
4
|
Vafadar Shamasbi F, Nasiri N, Shokri E. Genetic Diversity of Persian Ecotypes of Indian Walnut (Aeluropus littoralis (Gouan) Pari.) by AFLP and ISSR Markers. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271803012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Al-Gharaibeh MM, Hamasha HR, Rosche C, Lachmuth S, Wesche K, Hensen I. Environmental gradients shape the genetic structure of two medicinal Salvia species in Jordan. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:227-238. [PMID: 27714972 DOI: 10.1111/plb.12512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among-population variation in ecological processes and can thus interrupt populations' connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance. Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano-Turanian and Saharo-Arabian) representing the extent of the species' geographic range in Jordan. Differences in geographic location and climate were considered in the analyses. For both species, flowering phenology varied among populations and regions. Irano-Turanian and Saharo-Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well-supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano-Turanian and Saharo-Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance. Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
Collapse
Affiliation(s)
- M M Al-Gharaibeh
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle/Saale, Germany
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - H R Hamasha
- Biology Department, Jerash University, Jerash, Jordan
| | - C Rosche
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle/Saale, Germany
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - S Lachmuth
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - K Wesche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - I Hensen
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Wang T, Wang Z, Chen G, Wang C, Su Y. Invasive Chloroplast Population Genetics of Mikania micrantha in China: No Local Adaptation and Negative Correlation between Diversity and Geographic Distance. FRONTIERS IN PLANT SCIENCE 2016; 7:1426. [PMID: 27708663 PMCID: PMC5030282 DOI: 10.3389/fpls.2016.01426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Two fundamental questions on how invasive species are able to rapidly colonize novel habitat have emerged. One asks whether a negative correlation exists between the genetic diversity of invasive populations and their geographic distance from the origin of introduction. The other is whether selection on the chloroplast genome is important driver of adaptation to novel soil environments. Here, we addressed these questions in a study of the noxious invasive weed, Mikania micrantha, which has rapidly expanded in to southern China after being introduced to Hong Kong in 1884. Seven chloroplast simple sequence repeats (cpSSRs) were used to investigate population genetics in 28 populations of M. micrantha, which produced 39 loci. The soil compositions for these populations, including Mg abundance, were measured. The results showed that M. micrantha possessed relatively high cpSSR variation and differentiation among populations. Multiple diversity indices were quantified, and none was significantly correlated with distance from the origin of introduction. No evidence for "isolation by distance," significant spatial structure, bottlenecks, nor linkage disequilibrium was detected. We also were unable to identify loci on the chloroplast genome that exhibited patterns of differentiation that would suggest adaptive evolution in response to soil attributes. Soil Mg had only a genome-wide effect instead of being a selective factor, which highlighted the association between Mg and the successful invasion. This study characterizes the role of the chloroplast genome of M. micrantha during its recent invasion of southern China.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Zhen Wang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Guopei Chen
- School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Chunbo Wang
- School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
- Research Institute of Sun Yat-sen UniversityShenzhen, China
- Institute for Technology Research and Innovation, Sun Yat-sen UniversityZhuhai, China
| |
Collapse
|
7
|
Sanitá Lima M, Woods LC, Cartwright MW, Smith DR. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol Ecol Resour 2016; 16:1279-1286. [PMID: 27482846 DOI: 10.1111/1755-0998.12585] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/04/2023]
Abstract
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.
Collapse
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Laura C Woods
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Matthew W Cartwright
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7.
| |
Collapse
|
8
|
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1070-85. [PMID: 26311018 DOI: 10.1111/pbi.12454] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
9
|
Timsina BA, Hausner G, Piercey-Normore MD. Evolution of ketosynthase domains of polyketide synthase genes in the Cladonia chlorophaea species complex (Cladoniaceae). Fungal Biol 2014; 118:896-909. [PMID: 25442293 DOI: 10.1016/j.funbio.2014.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Lichen-forming fungi synthesize a diversity of polyketides, but only a few non-reducing polyketide synthase (PKS) genes from a lichen-forming fungus have been linked with a specific polyketide. While it is a challenge to link the large number of PKS paralogs in fungi with specific products, it might be expected that the PKS paralogs from closely related species would be similar because of recent evolutionary divergence. The objectives of this study were to reconstruct a PKS gene phylogeny of the Cladonia chlorophaea species complex based on the ketosynthase domain, a species phylogeny of the complex, and to explore the presence of PKS gene paralogs among members of the species complex. DNA was isolated from 51 individuals of C. chlorophaea and allies to screen for the presence of 13 PKS paralogs. A 128 sequence PKS gene phylogeny using deduced amino acid sequences estimated from the 13 PKS paralogs and sequences subjected to BLASTx comparisons showed losses of each of two PKS domains (reducing and methylation). This research provided insight into the evolution of PKS genes in the C. chlorophaea group, species evolution in the group, and it identified potential directions for further investigation of polyketide synthesis in the C. chlorophaea species complex.
Collapse
Affiliation(s)
- Brinda A Timsina
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | | |
Collapse
|
10
|
Henry RJ, Nevo E. Exploring natural selection to guide breeding for agriculture. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:655-62. [PMID: 24975385 DOI: 10.1111/pbi.12215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/13/2014] [Accepted: 05/15/2014] [Indexed: 05/02/2023]
Abstract
Climate change threatens reduced crop production and poses major challenges to food security. The breeding of climate-resilient crop varieties is increasingly urgent. Wild plant populations evolve to cope with changes in their environment due to the forces of natural selection. This adaptation may be followed over time in populations at the same site or explored by examining differences between populations growing in different environments or across an environmental gradient. Survival in the wild has important differences to the objective of agriculture to maximize crop yields. However, understanding the nature of adaptation in wild populations at the whole genome level may suggest strategies for crop breeding to deliver agricultural production with more resilience to climate variability.
Collapse
Affiliation(s)
- Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | | |
Collapse
|
11
|
Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I. Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 2014; 72:54-60. [DOI: 10.1016/j.ympev.2013.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
|
12
|
Henry RJ. Genomics strategies for germplasm characterization and the development of climate resilient crops. FRONTIERS IN PLANT SCIENCE 2014; 5:68. [PMID: 24616732 PMCID: PMC3934019 DOI: 10.3389/fpls.2014.00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/10/2014] [Indexed: 05/05/2023]
Abstract
Food security requires the development and deployment of crop varieties resilient to climate variation and change. The study of variations in the genome of wild plant populations can be used to guide crop improvement. Genome variation found in wild crop relatives may be directly relevant to the breeding of environmentally adapted and climate resilient crops. Analysis of the genomes of populations growing in contrasting environments will reveal the genes subject to natural selection in adaptation to climate variations. Whole genome sequencing of these populations should define the numbers and types of genes associated with climate adaptation. This strategy is facilitated by recent advances in sequencing technologies. Wild relatives of rice and barley have been used to assess these approaches. This strategy is most easily applied to species for which a high quality reference genome sequence is available and where populations of wild relatives can be found growing in diverse environments or across environmental gradients.
Collapse
Affiliation(s)
- Robert J. Henry
- *Correspondence: Robert J. Henry, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia e-mail:
| |
Collapse
|
13
|
Shapter FM, Cross M, Ablett G, Malory S, Chivers IH, King GJ, Henry RJ. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLoS One 2013; 8:e82641. [PMID: 24367532 PMCID: PMC3867367 DOI: 10.1371/journal.pone.0082641] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022] Open
Abstract
Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇) of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.
Collapse
Affiliation(s)
- Frances M. Shapter
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| | - Michael Cross
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Gary Ablett
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Sylvia Malory
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Ian H. Chivers
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
- Native Seeds Pty Ltd, Sandringham, Victoria, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Stiebens VA, Merino SE, Roder C, Chain FJJ, Lee PLM, Eizaguirre C. Living on the edge: how philopatry maintains adaptive potential. Proc Biol Sci 2013; 280:20130305. [PMID: 23720544 PMCID: PMC3774223 DOI: 10.1098/rspb.2013.0305] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Without genetic variation, species cannot cope with changing environments, and evolution does not proceed. In endangered species, adaptive potential may be eroded by decreased population sizes and processes that further reduce gene flow such as philopatry and local adaptations. Here, we focused on the philopatric and endangered loggerhead sea turtle (Caretta caretta) nesting in Cape Verde as a model system to investigate the link between adaptive potential and philopatry. We produced a dataset of three complementary genomic regions to investigate female philopatric behaviour (mitochondrial DNA), male-mediated gene flow (microsatellites) and adaptive potential (major histocompatibility complex, MHC). Results revealed genetically distinct nesting colonies, indicating remarkably small-scale philopatric behaviour of females. Furthermore, these colonies also harboured local pools of MHC alleles, especially at the margins of the population's distribution, which are therefore important reserves of additional diversity for the population. Meanwhile, directional male-mediated gene flow from the margins of distribution sustains the adaptive potential for the entire rookery. We therefore present the first evidence for a positive association between philopatry and locally adapted genomic regions. Contrary to expectation, we propose that philopatry conserves a high adaptive potential at the margins of a distribution, while asymmetric gene flow maintains genetic connectivity with the rest of the population.
Collapse
Affiliation(s)
- Victor A Stiebens
- Department of Evolutionary Ecology of Marine Fishes, GEOMAR
- Helmholtz Centre for Ocean Research, Kiel 24105, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Advances in DNA sequencing provide tools for efficient large-scale discovery of markers for use in plants. Discovery options include large-scale amplicon sequencing, transcriptome sequencing, gene-enriched genome sequencing and whole genome sequencing. Examples of each of these approaches and their potential to generate molecular markers for specific applications have been described. Sequencing the whole genome of parents identifies all the polymorphisms available for analysis in their progeny. Sequencing PCR amplicons of sets of candidate genes from DNA bulks can be used to define the available variation in these genes that might be exploited in a population or germplasm collection. Sequencing of the transcriptomes of genotypes varying for the trait of interest may identify genes with patterns of expression that could explain the phenotypic variation. Sequencing genomic DNA enriched for genes by hybridization with probes for all or some of the known genes simplifies sequencing and analysis of differences in gene sequences between large numbers of genotypes and genes especially when working with complex genomes. Examples of application of the above-mentioned techniques have been described.
Collapse
|
16
|
Kitchen JL, Allaby RG. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations. PLANTS (BASEL, SWITZERLAND) 2013; 2:16-49. [PMID: 27137364 PMCID: PMC4844292 DOI: 10.3390/plants2010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 01/16/2013] [Indexed: 11/16/2022]
Abstract
Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation.
Collapse
Affiliation(s)
- James L Kitchen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Whalley RDB, Chivers IH, Waters CM. Revegetation with Australian native grasses – a reassessment of the importance of using local provenances. RANGELAND JOURNAL 2013. [DOI: 10.1071/rj12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many restoration guidelines strongly recommend the use of local sources of seed in native plant revegetation projects. These recommendations are based on assumptions that the species used for revegetation are cross-pollinated and woody, as they were developed for overstorey vegetation from the northern hemisphere. Their validity is challenged with respect to replacing or enhancing the native Australian grass component of degraded ecosystems. First, far from being the dominant pollination mechanism, obligatory cross-pollination has not been recorded in any Australian native grasses except for a few dioecious species. Indeed, the common Australian native grasses so far studied have revealed complicated breeding systems that provide the evolutionary resilience necessary for coping with the variable Australian climate as well as with future climate change. It is suggested that a key feature of this flexibility is polyploidy and its implications for sourcing seed are discussed. Second, it is argued that the genetic dissimilarity among populations of a species is not proportional to the distance between them but is more related to the environmental stresses that have been placed on those populations in the past. This is illustrated by different scales of ecotypic variation that are often trait-dependent. Evidence for this can be found in several translocation experiments, where populations of native grasses from a great distance away survive and often perform better than local populations. It is concluded that there is little justification for the recommendation that only local sources of seed of Australian native grasses should be used for revegetation projects, and particularly in large-scale programs. Instead, it is argued that studies on Australian native grasses provide clear evidence that distinct adaptive advantages may be gained by sourcing non-local provenance seed, which is matched to the environment of the revegetation site, and which contains appropriate stress tolerance genes, or by mixing populations from several locations to increase the genetic diversity of seed sources. Some general guidelines are provided for deciding whether or not to use local provenances depending on the purpose of the revegetation, the degree of environmental modification of the site and the characteristics of the species of choice.
Collapse
|
18
|
Shapter FM, Fitzgerald TL, Waters DL, McDonald S, Chivers IH, Nevo E, Henry R. Analysis of adaptive ribosomal gene diversity in wild plant populations from contrasting climatic environments. PLANT SIGNALING & BEHAVIOR 2012; 7:602-4. [PMID: 22580709 PMCID: PMC3442849 DOI: 10.4161/psb.19938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant populations may contain variation that reflects adaptation to local environmental conditions. Clues to adaptive evolution of plants may be found in the genomes of species growing in diverse environments or across steep environmental gradients, and under stress. We have examined populations of wild relatives of barley and rice across diverse environmental gradients. Greater diversity, in a nuclear biotic stress defense gene and in chloroplast genes, was found in the more stressed, hotter and dryer environments. This may reflect the greater heterogeneity of these environments. Adaptation of plants to different abiotic stresses (temperatures and levels of water availability) may also require significant adaptation to the different biotic (pest and disease) pressures in these environments.
Collapse
Affiliation(s)
- Frances M. Shapter
- Southern Cross Plant Science; Southern Cross University; Lismore, NSW Australia
| | | | - Daniel L.E. Waters
- Southern Cross Plant Science; Southern Cross University; Lismore, NSW Australia
| | - Stuart McDonald
- Southern Cross Plant Science; Southern Cross University; Lismore, NSW Australia
| | | | - Eviatar Nevo
- Institute for Evolution;University of Haifa; Haifa, Israel
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation; University of Queensland; Brisbane, Australia
- Correspondence to: Robert Henry,
| |
Collapse
|