1
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of bi-directional silencing of RNA Polymerase II polycistronic transcription initiation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600114. [PMID: 38948844 PMCID: PMC11213002 DOI: 10.1101/2024.06.21.600114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and that changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, we show that epigenetic mechanisms, including base J modification, are involved in regulating gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription. IMPORTANCE The single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlates with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei . This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
|
2
|
Sunitha Kumary VUN, Venters BJ, Raman K, Sen S, Estève PO, Cowles MW, Keogh MC, Pradhan S. Emerging Approaches to Profile Accessible Chromatin from Formalin-Fixed Paraffin-Embedded Sections. EPIGENOMES 2024; 8:20. [PMID: 38804369 PMCID: PMC11130958 DOI: 10.3390/epigenomes8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Nucleosomes are non-uniformly distributed across eukaryotic genomes, with stretches of 'open' chromatin strongly associated with transcriptionally active promoters and enhancers. Understanding chromatin accessibility patterns in normal tissue and how they are altered in pathologies can provide critical insights to development and disease. With the advent of high-throughput sequencing, a variety of strategies have been devised to identify open regions across the genome, including DNase-seq, MNase-seq, FAIRE-seq, ATAC-seq, and NicE-seq. However, the broad application of such methods to FFPE (formalin-fixed paraffin-embedded) tissues has been curtailed by the major technical challenges imposed by highly fixed and often damaged genomic material. Here, we review the most common approaches for mapping open chromatin regions, recent optimizations to overcome the challenges of working with FFPE tissue, and a brief overview of a typical data pipeline with analysis considerations.
Collapse
Affiliation(s)
| | - Bryan J. Venters
- EpiCypher Inc., Durham, NC 27709, USA; (V.U.N.S.K.); (B.J.V.); (M.W.C.)
| | - Karthikeyan Raman
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Sagnik Sen
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Pierre-Olivier Estève
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| | - Martis W. Cowles
- EpiCypher Inc., Durham, NC 27709, USA; (V.U.N.S.K.); (B.J.V.); (M.W.C.)
| | | | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Ipswich, MA 01983, USA; (K.R.); (S.S.); (P.-O.E.)
| |
Collapse
|
3
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
4
|
Li Z, Zhao B, Qin C, Wang Y, Li T, Wang W. Chromatin Dynamics in Digestive System Cancer: Commander and Regulator. Front Oncol 2022; 12:935877. [PMID: 35965507 PMCID: PMC9372441 DOI: 10.3389/fonc.2022.935877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Digestive system tumors have a poor prognosis due to complex anatomy, insidious onset, challenges in early diagnosis, and chemoresistance. Epidemiological statistics has verified that digestive system tumors rank first in tumor-related death. Although a great number of studies are devoted to the molecular biological mechanism, early diagnostic markers, and application of new targeted drugs in digestive system tumors, the therapeutic effect is still not satisfactory. Epigenomic alterations including histone modification and chromatin remodeling are present in human cancers and are now known to cooperate with genetic changes to drive the cancer phenotype. Chromatin is the carrier of genetic information and consists of DNA, histones, non-histone proteins, and a small amount of RNA. Chromatin and nucleosomes control the stability of the eukaryotic genome and regulate DNA processes such as transcription, replication, and repair. The dynamic structure of chromatin plays a key role in this regulatory function. Structural fluctuations expose internal DNA and thus provide access to the nuclear machinery. The dynamic changes are affected by various complexes and epigenetic modifications. Variation of chromatin dynamics produces early and superior regulation of the expression of related genes and downstream pathways, thereby controlling tumor development. Intervention at the chromatin level can change the process of cancer earlier and is a feasible option for future tumor diagnosis and treatment. In this review, we introduced chromatin dynamics including chromatin remodeling, histone modifications, and chromatin accessibility, and current research on chromatin regulation in digestive system tumors was also summarized.
Collapse
|
5
|
Whole-genome methods to define DNA and histone accessibility and long-range interactions in chromatin. Biochem Soc Trans 2022; 50:199-212. [PMID: 35166326 PMCID: PMC9847230 DOI: 10.1042/bst20210959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Defining the genome-wide chromatin landscape has been a goal of experimentalists for decades. Here we review highlights of these efforts, from seminal experiments showing discontinuities in chromatin structure related to gene activation to extensions of these methods elucidating general features of chromatin related to gene states by exploiting deep sequencing methods. We also review chromatin conformational capture methods to identify patterns in long-range interactions between genomic loci.
Collapse
|
6
|
Romanov SE, Kalashnikova DA, Laktionov PP. Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genet Selektsii 2021; 25:344-355. [PMID: 34901731 PMCID: PMC8627875 DOI: 10.18699/vj21.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
The correct deployment of genetic programs for development and differentiation relies on finely coordinated regulation of specific gene sets. Genomic regulatory elements play an exceptional role in this process. There are few types of gene regulatory elements, including promoters, enhancers, insulators and silencers. Alterations of gene regulatory elements may cause various pathologies, including cancer, congenital disorders and autoimmune diseases. The development of high-throughput genomic assays has made it possible to significantly accelerate the accumulation of information about the characteristic epigenetic properties of regulatory elements. In combination with high-throughput studies focused on the genome-wide distribution of epigenetic marks, regulatory proteins and the spatial structure of chromatin, this significantly expands the understanding of the principles of epigenetic regulation of genes and allows potential regulatory elements to be searched for in silico. However, common experimental approaches used to study the local characteristics of chromatin have a number of technical limitations that may reduce the reliability of computational identification of genomic regulatory sequences. Taking into account the variability of the functions of epigenetic determinants and complex multicomponent regulation of genomic elements activity, their functional verification is often required. A plethora of methods have been developed to study the functional role of regulatory elements on the genome scale. Common experimental approaches for in silico identification of regulatory elements and their inherent technical limitations will be described. The present review is focused on original high-throughput methods of enhancer activity reporter analysis that are currently used to validate predicted regulatory elements and to perform de novo searches. The methods described allow assessing the functional role of the nucleotide sequence of a regulatory element, to determine its exact boundaries and to assess the influence of the local state of chromatin on the activity of enhancers and gene expression. These approaches have contributed substantially to the understanding of the fundamental principles of gene regulation.
Collapse
Affiliation(s)
- S E Romanov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - D A Kalashnikova
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - P P Laktionov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| |
Collapse
|
7
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
8
|
Mika K, Marinić M, Singh M, Muter J, Brosens JJ, Lynch VJ. Evolutionary transcriptomics implicates new genes and pathways in human pregnancy and adverse pregnancy outcomes. eLife 2021; 10:e69584. [PMID: 34623259 PMCID: PMC8660021 DOI: 10.7554/elife.69584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy. We found that hundreds of genes gained or lost endometrial expression in the human lineage. Among these are genes that may contribute to human-specific maternal-fetal communication (HTR2B) and maternal-fetal immunotolerance (PDCD1LG2) systems, as well as vascular remodeling and deep placental invasion (CORIN). These data suggest that explicit evolutionary studies of anatomical systems complement traditional methods for characterizing the genetic architecture of disease. We also anticipate our results will advance the emerging synthesis of evolution and medicine ('evolutionary medicine') and be a starting point for more sophisticated studies of the maternal-fetal interface. Furthermore, the gene expression changes we identified may contribute to the development of diagnostics and interventions for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Katelyn Mika
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Mirna Marinić
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell UniversityChicagoUnited States
| | - Joanne Muter
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Jan Joris Brosens
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
9
|
De S, Rebnegger C, Moser J, Tatto N, Graf AB, Mattanovich D, Gasser B. Pseudohyphal differentiation in Komagataella phaffii: investigating the FLO gene family. FEMS Yeast Res 2020; 20:5884885. [PMID: 32766781 PMCID: PMC7419694 DOI: 10.1093/femsyr/foaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many yeasts differentiate into multicellular phenotypes in adverse environmental conditions. Here, we investigate pseudohyphal growth in Komagataella phaffii and the involvement of the flocculin (FLO) gene family in its regulation. The K. phaffii FLO family consists of 13 members, and the conditions inducing pseudohyphal growth are different from Saccharomyces cerevisiae. So far, this phenotype was only observed when K. phaffii was cultivated at slow growth rates in glucose-limited chemostats, but not upon nitrogen starvation or the presence of fusel alcohols. Transcriptional analysis identified that FLO11, FLO400 and FLO5-1 are involved in the phenotype, all being controlled by the transcriptional regulator Flo8. The three genes exhibit a complex mechanism of expression and repression during transition from yeast to pseudohyphal form. Unlike in S. cerevisiae, deletion of FLO11 does not completely prevent the phenotype. In contrast, deletion of FLO400 or FLO5-1 prevents pseudohyphae formation, and hampers FLO11 expression. FAIRE-Seq data shows that the expression and repression of FLO400 and FLO5-1 are correlated to open or closed chromatin regions upstream of these genes, respectively. Our findings indicate that K. phaffii Flo400 and/or Flo5-1 act as upstream signals that lead to the induction of FLO11 upon glucose limitation in chemostats at slow growth and chromatin modulation is involved in the regulation of their expression.
Collapse
Affiliation(s)
- Sonakshi De
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Josef Moser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Nadine Tatto
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Zhang Y, Li Z, Bian S, Zhao H, Feng D, Chen Y, Hou Y, Liu Q, Hao B. HiCoP, a simple and robust method for detecting interactions of regulatory regions. Epigenetics Chromatin 2020; 13:27. [PMID: 32611439 PMCID: PMC7329539 DOI: 10.1186/s13072-020-00348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/12/2020] [Indexed: 01/10/2023] Open
Abstract
Background Chromatin physical interactions provide essential information for understanding the regulation of cis-elements like enhancers, promoters, and insulators in cell development and differentiation. The Hi-C assay is a technique detecting chromatin structures of the whole genome, but not sensitive to interactions of regulatory elements. Several methods, like HiChIP, DNase-C, and OCEAN-C, have been developed for enriching interactions of regulatory regions, but all of them have some shortcomings. New simple, efficient, and robust methods are still in need for detecting interactions of regulatory regions. Results We developed a new, simple, and robust assay called CoP (Column Purified chromatin) for profiling of open chromatin regions by directly purifying fragmentized crosslinked chromatin with a DNA purification column. The accessible chromatin regions, including active enhancers, promoters, and insulators, were significantly enriched in CoP chromatin. The CoP-seq assay can efficiently detect open chromatin regions, especially active promoters, with a high signal-to-noise ratio. We integrated the CoP-seq and Hi-C technique (HiCoP) to detect interactions of accessible chromatin regions, which represent active cis-regulatory elements in cells. We observed that the HiCoP captured the peaks in the promoters-associated enhancer regions. HiCoP detected more promoter–enhancer (P–E), promoter–promoter (P–P), and enhancer–enhancer (E–E) interactions within 20 kb–5 Mb than Hi-C. Most of the loops identified by HiCoP are associated with the expressed genes. Conclusion CoP assay can efficiently enrich open chromatin regions. When CoP assay was integrated with Hi-C assay, it provides a simple, robust, alternative technique for profiling accessible chromatin regions and chromatin conformation simultaneously.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shasha Bian
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Delong Feng
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yanhong Chen
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuhe Hou
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, Guangdong, People's Republic of China. .,Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China. .,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
11
|
Mariani L, Weinand K, Gisselbrecht SS, Bulyk ML. MEDEA: analysis of transcription factor binding motifs in accessible chromatin. Genome Res 2020; 30:736-748. [PMID: 32424069 PMCID: PMC7263192 DOI: 10.1101/gr.260877.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to understanding transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility (MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-specific accessible regions and lineage-specific motifs associated with TF binding therein. To benchmark MEDEA, we used a panel of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA improves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel regulators, such as NRF1 in kidney development. Finally, we show that MEDEA performs well on both bulk and single-cell ATAC-seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kathryn Weinand
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves. Nat Protoc 2020; 15:713-733. [PMID: 32042178 DOI: 10.1038/s41596-019-0277-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Eukaryotic gene transcription is associated with the eviction of nucleosomes and the formation of open chromatin, which enables the recruitment of transcriptional coactivators and other regulatory factors. Open chromatin is thus a hallmark of functional regulatory DNA elements in genomes. In recent years, formaldehyde-assisted isolation of regulatory elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes, particularly yeast, human, and mouse. However, it has proven challenging to adapt the FAIRE protocol for use on plant material, and the few available protocols all have their drawbacks (e.g., applicability only to specific developmental stages). In this Protocol Extension, we describe a reliable FAIRE protocol for mature Arabidopsis (Arabidopsis thaliana) leaves that adapts the original protocol for use on plants. The main differences between this protocol extension and the earlier FAIRE protocol are an increased formaldehyde concentration in the chromatin crosslinking buffer, application of a repeated vacuum to increase crosslinking efficiency, and altered composition of the DNA extraction buffer. The protocol is applicable to leaf chromatin of unstressed and stressed plants and can be completed within 1 week. Here, we also describe downstream analysis using qPCR and next-generation sequencing. However, this Protocol Extension should also be compatible with downstream hybridization to a DNA microarray. In addition, it is likely that only minor adaptations will be necessary to apply this protocol to other Arabidopsis organs or plant species.
Collapse
|
13
|
Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev 2019; 55:1-10. [PMID: 31103921 DOI: 10.1016/j.gde.2019.04.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.
Collapse
Affiliation(s)
- Dario Nicetto
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
14
|
Hopcraft SE, Pattenden SG, James LI, Frye S, Dittmer DP, Damania B. Chromatin remodeling controls Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog 2018; 14:e1007267. [PMID: 30212584 PMCID: PMC6136816 DOI: 10.1371/journal.ppat.1007267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of three human malignancies, the endothelial cell cancer Kaposi's sarcoma, and two B cell cancers, Primary Effusion Lymphoma and multicentric Castleman's disease. KSHV has latent and lytic phases of the viral life cycle, and while both contribute to viral pathogenesis, lytic proteins contribute to KSHV-mediated oncogenesis. Reactivation from latency is driven by the KSHV lytic gene transactivator RTA, and RTA transcription is controlled by epigenetic modifications. To identify host chromatin-modifying proteins that are involved in the latent to lytic transition, we screened a panel of inhibitors that target epigenetic regulatory proteins for their ability to stimulate KSHV reactivation. We found several novel regulators of viral reactivation: an inhibitor of Bmi1, PTC-209, two additional histone deacetylase inhibitors, Romidepsin and Panobinostat, and the bromodomain inhibitor (+)-JQ1. All of these compounds stimulate lytic gene expression, viral genome replication, and release of infectious virions. Treatment with Romidepsin, Panobinostat, and PTC-209 induces histone modifications at the RTA promoter, and results in nucleosome depletion at this locus. Finally, silencing Bmi1 induces KSHV reactivation, indicating that Bmi1, a member of the Polycomb repressive complex 1, is critical for maintaining KSHV latency.
Collapse
Affiliation(s)
- Sharon E. Hopcraft
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Samantha G. Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Stephen Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
15
|
Gleason-Rodríguez G, Castillo-Méndez M, Maya K, Ramos-Castañeda J, Valverde-Garduño V. Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti. SALUD PUBLICA DE MEXICO 2018; 60:41-47. [PMID: 29689655 DOI: 10.21149/8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To identify and characterize Aedes aegypti's AAEL006536 gene proximal upstream cis-regulatory sequences activated by dengue virus infection. MATERIALS AND METHODS A. aegypti Rockefeller strain mosquitoes were blood fed or infected with dengue virus 2. Open chromatinprofiling was then carried out in pools of midguts from each group of mosquitoes. RESULTS The proximal upstream region does not contain open chromatin sites in the midguts of blood-fed mosquitoes as detected by FAIRE-qPCR. In contrast, two cis-regulatory sites were identified in the same upstream region of dengue virus-infected mosquito midguts. The distal sequence contains STAT-, REL- and C/EBP-type transcription factor binding sites. CONCLUSIONS The activation of two proximal cis-regulatory sequences, induced by dengue virus infection, is mediated by chromatin remodeling mechanisms. Binding sites suggest a dengue virus infectioninduced participation of immunity transcription factors in the up-regulation of this gene. This suggests the participation of the AAEL006536 gene in the mosquito's antiviral innate immune response.
Collapse
Affiliation(s)
- Graciela Gleason-Rodríguez
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| | - Manuel Castillo-Méndez
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| | - Krystal Maya
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México
| | - José Ramos-Castañeda
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México
| | - Verónica Valverde-Garduño
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| |
Collapse
|
16
|
Rodríguez-Gil A, Riedlinger T, Ritter O, Saul VV, Schmitz ML. Formaldehyde-assisted Isolation of Regulatory Elements to Measure Chromatin Accessibility in Mammalian Cells. J Vis Exp 2018. [PMID: 29658938 PMCID: PMC5933311 DOI: 10.3791/57272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Appropriate gene expression in response to extracellular cues, that is, tissue- and lineage-specific gene transcription, critically depends on highly defined states of chromatin organization. The dynamic architecture of the nucleus is controlled by multiple mechanisms and shapes the transcriptional output programs. It is, therefore, important to determine locus-specific chromatin accessibility in a reliable fashion that is preferably independent from antibodies, which can be a potentially confounding source of experimental variability. Chromatin accessibility can be measured by various methods, including the Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) assay, that allow the determination of general chromatin accessibility in a relatively low number of cells. Here we describe a FAIRE protocol that allows simple, reliable, and fast identification of genomic regions with a low protein occupancy. In this method, the DNA is covalently bound to the chromatin proteins using formaldehyde as a crosslinking agent and sheared to small pieces. The free DNA is afterwards enriched using phenol:chloroform extraction. The ratio of free DNA is determined by quantitative polymerase chain reaction (qPCR) or DNA sequencing (DNA-seq) compared to a control sample representing total DNA. The regions with a looser chromatin structure are enriched in the free DNA sample, thus allowing the identification of genomic regions with lower chromatin compaction.
Collapse
Affiliation(s)
- Alfonso Rodríguez-Gil
- Department of Oncohematology and Genetics. Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío;
| | - Tabea Riedlinger
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Member of the German Center for Lung Research, Justus-Liebig-University
| | - Olesja Ritter
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Member of the German Center for Lung Research, Justus-Liebig-University
| | - Vera V Saul
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Member of the German Center for Lung Research, Justus-Liebig-University
| | - M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Member of the German Center for Lung Research, Justus-Liebig-University;
| |
Collapse
|
17
|
Segorbe D, Wilkinson D, Mizeranschi A, Hughes T, Aaløkken R, Váchová L, Palková Z, Gilfillan GD. An optimized FAIRE procedure for low cell numbers in yeast. Yeast 2018; 35:507-512. [PMID: 29577419 PMCID: PMC6099244 DOI: 10.1002/yea.3316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/24/2018] [Accepted: 03/17/2018] [Indexed: 11/22/2022] Open
Abstract
We report an optimized low‐input FAIRE‐seq (Formaldehyde‐Assisted Isolation of Regulatory Elements‐sequencing) procedure to assay chromatin accessibility from limited amounts of yeast cells. We demonstrate that the method performs well on as little as 4 mg of cells scraped directly from a few colonies. Sensitivity, specificity and reproducibility of the scaled‐down method are comparable with those of regular, higher input amounts, and allow the use of 100‐fold fewer cells than existing procedures. The method enables epigenetic analysis of chromatin structure without the need for cell multiplication of exponentially growing cells in liquid culture, thus opening the possibility of studying colony cell subpopulations, or those that can be isolated directly from environmental samples.
Collapse
Affiliation(s)
- David Segorbe
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Derek Wilkinson
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | | | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Ragnhild Aaløkken
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| |
Collapse
|
18
|
Ponnaluri VKC, Zhang G, Estève PO, Spracklin G, Sian S, Xu SY, Benoukraf T, Pradhan S. NicE-seq: high resolution open chromatin profiling. Genome Biol 2017; 18:122. [PMID: 28655330 PMCID: PMC5488340 DOI: 10.1186/s13059-017-1247-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Open chromatin profiling integrates information across diverse regulatory elements to reveal the transcriptionally active genome. Tn5 transposase and DNase I sequencing-based methods prefer native or high cell numbers. Here, we describe NicE-seq (nicking enzyme assisted sequencing) for high-resolution open chromatin profiling on both native and formaldehyde-fixed cells. NicE-seq captures and reveals open chromatin sites (OCSs) and transcription factor occupancy at single nucleotide resolution, coincident with DNase hypersensitive and ATAC-seq sites at a low sequencing burden. OCSs correlate with RNA polymerase II occupancy and active chromatin marks, while displaying a contrasting pattern to CpG methylation. Decitabine-mediated hypomethylation of HCT116 displays higher numbers of OCSs.
Collapse
Affiliation(s)
| | - Guoqiang Zhang
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | - George Spracklin
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Stephanie Sian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Shuang-Yong Xu
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Sriharsa Pradhan
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
19
|
Mayes K, Alkhatib SG, Peterson K, Alhazmi A, Song C, Chan V, Blevins T, Roberts M, Dumur CI, Wang XY, Landry JW. BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity. Cancer Res 2016; 76:6183-6192. [PMID: 27651309 DOI: 10.1158/0008-5472.can-15-3125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
Genetic studies in fruit flies have implicated the chromatin remodeling complex nucleosome remodeling factor (NURF) in immunity, but it has yet to be studied in mammals. Here we show that its targeting in mice enhances antitumor immunity in two syngeneic models of cancer. NURF was disabled by silencing of bromodomain PHD-finger containing transcription factor (BPTF), the largest and essential subunit of NURF. We found that both CD8+ and CD4+ T cells were necessary for enhanced antitumor activity, with elevated numbers of activated CD8+ T cells observed in BPTF-deficient tumors. Enhanced cytolytic activity was observed for CD8+ T cells cocultured with BPTF-silenced cells. Similar effects were not produced with T-cell receptor transgenic CD8+ T cells, implicating the involvement of novel antigens. Accordingly, enhanced activity was observed for individual CD8+ T-cell clones from mice bearing BPTF-silenced tumors. Mechanistic investigations revealed that NURF directly regulated the expression of genes encoding immunoproteasome subunits Psmb8 and Psmb9 and the antigen transporter genes Tap1 and Tap2 The PSMB8 inhibitor ONX-0914 reversed the effects of BPTF ablation, consistent with a critical role for the immunoproteasome in improving tumor immunogenicity. Thus, NURF normally suppresses tumor antigenicity and its depletion improves antigen processing, CD8 T-cell cytotoxicity, and antitumor immunity, identifying NURF as a candidate therapeutic target to enhance antitumor immunity. Cancer Res; 76(21); 6183-92. ©2016 AACR.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Suehyb G Alkhatib
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Kristen Peterson
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Carolyn Song
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vivian Chan
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Tana Blevins
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Mark Roberts
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
20
|
Abstract
Eukaryotic genomes are packaged into an extensively folded state known as chromatin. Analysis of the structure of eukaryotic chromosomes has been revolutionized by development of a suite of genome-wide measurement technologies, collectively termed “epigenomics.” We review major advances in epigenomic analysis of eukaryotic genomes, covering aspects of genome folding at scales ranging from whole chromosome folding down to nucleotide-resolution assays that provide structural insights into protein-DNA interactions. We then briefly outline several challenges remaining and highlight new developments such as single-cell epigenomic assays that will help provide us with a high-resolution structural understanding of eukaryotic genomes.
Collapse
Affiliation(s)
- Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University, Jerusalem 9190401, Israel
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
21
|
Abstract
Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA—including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome—we develop a Bayes-factor–based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites.
Collapse
|
22
|
Bowman SK. Discovering enhancers by mapping chromatin features in primary tissue. Genomics 2015; 106:140-144. [DOI: 10.1016/j.ygeno.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
23
|
Fleming JD, Giresi PG, Lindahl-Allen M, Krall EB, Lieb JD, Struhl K. STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer. Epigenetics Chromatin 2015; 8:7. [PMID: 25784959 PMCID: PMC4362815 DOI: 10.1186/1756-8935-8-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transient induction of the Src oncoprotein in a non-transformed breast cell line can initiate an epigenetic switch to a cancer cell via a positive feedback loop that involves activation of the signal transducer and activator of transcription 3 protein (STAT3) and NF-κB transcription factors. RESULTS We show that during the transformation process, nucleosome-depleted regions (defined by formaldehyde-assisted isolation of regulatory elements (FAIRE)) are largely unchanged and that both before and during transformation, STAT3 binds almost exclusively to previously open chromatin regions. Roughly, a third of the transformation-inducible genes require STAT3 for the induction. STAT3 and NF-κB appear to drive the regulation of different gene sets during the transformation process. Interestingly, STAT3 directly regulates the expression of NFKB1, which encodes a subunit of NF-κB, and IL6, a cytokine that stimulates STAT3 activity. Lastly, many STAT3 binding sites are also bound by FOS and the expression of several AP-1 factors is altered during transformation in a STAT3-dependent manner, suggesting that STAT3 may cooperate with AP-1 proteins. CONCLUSIONS These observations uncover additional complexities to the inflammatory feedback loop that are likely to contribute to the epigenetic switch. In addition, gene expression changes during transformation, whether driven by pre-existing or induced transcription factors, occur largely through pre-existing nucleosome-depleted regions.
Collapse
Affiliation(s)
- Joseph D Fleming
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Paul G Giresi
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL 60637 USA
| | - Marianne Lindahl-Allen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Elsa B Krall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL 60637 USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
24
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
25
|
Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 2014; 7:33. [PMID: 25473421 PMCID: PMC4253006 DOI: 10.1186/1756-8935-7-33] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/05/2014] [Indexed: 01/09/2023] Open
Abstract
Transcriptional activation throughout the eukaryotic lineage has been tightly linked with disruption of nucleosome organization at promoters, enhancers, silencers, insulators and locus control regions due to transcription factor binding. Regulatory DNA thus coincides with open or accessible genomic sites of remodeled chromatin. Current chromatin accessibility assays are used to separate the genome by enzymatic or chemical means and isolate either the accessible or protected locations. The isolated DNA is then quantified using a next-generation sequencing platform. Wide application of these assays has recently focused on the identification of the instrumental epigenetic changes responsible for differential gene expression, cell proliferation, functional diversification and disease development. Here we discuss the limitations and advantages of current genome-wide chromatin accessibility assays with especial attention on experimental precautions and sequence data analysis. We conclude with our perspective on future improvements necessary for moving the field of chromatin profiling forward.
Collapse
Affiliation(s)
- Maria Tsompana
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, 701 Ellicott St, Buffalo, NY 14203 USA
| | - Michael J Buck
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, 701 Ellicott St, Buffalo, NY 14203 USA ; Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY USA
| |
Collapse
|
26
|
Boudot A, Kerdivel G, Lecomte S, Flouriot G, Desille M, Godey F, Leveque J, Tas P, Le Dréan Y, Pakdel F. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer 2014; 14:407. [PMID: 24906407 PMCID: PMC4063227 DOI: 10.1186/1471-2407-14-407] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/29/2014] [Indexed: 01/06/2023] Open
Abstract
Background The orphan receptors COUP-TF (chicken ovalbumin upstream promoter transcription factor) I and II are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis. The involvement of COUP-TFs in cancer development has recently been suggested by several studies but remains poorly understood. Methods MCF-7 breast cancer cells overexpressing COUP-TFI and human breast tumors were used to investigate the role of COUP-TFI in the regulation of CXCL12/CXCR4 signaling axis in relation to cell growth and migration. We used Immunofluorescence, western-blot, RT-PCR, Formaldehyde-assisted Isolation of Regulatory Elements (FAIRE) assays, as well as cell proliferation and migration assays. Results Previously, we showed that COUP-TFI expression is enhanced in breast cancer compared to normal tissue. Here, we report that the CXCL12/CXCR4 signaling pathway, a crucial pathway in cell growth and migration, is an endogenous target of COUP-TFI in breast cancer cells. The overexpression of COUP-TFI in MCF-7 cells inhibits the expression of the chemokine CXCL12 and markedly enhances the expression of its receptor, CXCR4. Our results demonstrate that the modification of CXCL12/CXCR4 expression by COUP-TFI is mediated by the activation of epithelial growth factor (EGF) and the EGF receptor. Furthermore, we provide evidence that these effects of COUP-TFI increase the growth and motility of MCF-7 cells in response to CXCL12. Cell migration toward a CXCL12 gradient was inhibited by AMD3100, a specific antagonist of CXCR4, or in the presence of excess CXCL12 in the cell culture medium. The expression profiles of CXCR4, CXCR7, CXCL12, and COUP-TFI mRNA in 82 breast tumors and control non-tumor samples were measured using real-time PCR. CXCR4 expression was found to be significantly increased in the tumors and correlated with the tumor grade, whereas the expression of CXCL12 was significantly decreased in the tumors compared with the healthy samples. Significantly higher COUP-TFI mRNA expression was also detected in grade 1 tumors. Conclusions Together, our mechanistic in vitro assays and in vivo results suggest that a reduction in chemokine CXCL12 expression, with an enhancement of CXCR4 expression, provoked by COUP-TFI, could be associated with an increase in the invasive potential of breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Farzad Pakdel
- Institut de Recherche en Santé-Environnement-Travail (IRSET), INSERM U1085, Université de Rennes 1, Equipe TREC, Biosit, Rennes, France.
| |
Collapse
|
27
|
Omidbakhshfard MA, Winck FV, Arvidsson S, Riaño-Pachón DM, Mueller-Roeber B. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:527-38. [PMID: 24373132 DOI: 10.1111/jipb.12151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/11/2013] [Indexed: 05/15/2023]
Abstract
The control of gene expression by transcriptional regulators and other types of functionally relevant DNA transactions such as chromatin remodeling and replication underlie a vast spectrum of biological processes in all organisms. DNA transactions require the controlled interaction of proteins with DNA sequence motifs which are often located in nucleosome-depleted regions (NDRs) of the chromatin. Formaldehyde-assisted isolation of regulatory elements (FAIRE) has been established as an easy-to-implement method for the isolation of NDRs from a number of eukaryotic organisms, and it has been successfully employed for the discovery of new regulatory segments in genomic DNA from, for example, yeast, Drosophila, and humans. Until today, however, FAIRE has only rarely been employed in plant research and currently no detailed FAIRE protocol for plants has been published. Here, we provide a step-by-step FAIRE protocol for NDR discovery in Arabidopsis thaliana. We demonstrate that NDRs isolated from plant chromatin are readily amenable to quantitative polymerase chain reaction and next-generation sequencing. Only minor modification of the FAIRE protocol will be needed to adapt it to other plants, thus facilitating the global inventory of regulatory regions across species.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam-Golm, 14476, Germany; Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Amanda L. Hughes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
29
|
Simon JM, Giresi PG, Davis IJ, Lieb JD. Addendum: Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 2014. [DOI: 10.1038/nprot.2014.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
McKay DJ, Lieb JD. A common set of DNA regulatory elements shapes Drosophila appendages. Dev Cell 2014; 27:306-18. [PMID: 24229644 DOI: 10.1016/j.devcel.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/19/2013] [Accepted: 10/13/2013] [Indexed: 12/20/2022]
Abstract
Animals have body parts made of similar cell types located at different axial positions, such as limbs. The identity and distinct morphology of each structure is often specified by the activity of different "master regulator" transcription factors. Although similarities in gene expression have been observed between body parts made of similar cell types, how regulatory information in the genome is differentially utilized to create morphologically diverse structures in development is not known. Here, we use genome-wide open chromatin profiling to show that among the Drosophila appendages, the same DNA regulatory modules are accessible throughout the genome at a given stage of development, except at the loci encoding the master regulators themselves. In addition, open chromatin profiles change over developmental time, and these changes are coordinated between different appendages. We propose that master regulators create morphologically distinct structures by differentially influencing the function of the same set of DNA regulatory modules.
Collapse
Affiliation(s)
- Daniel J McKay
- Department of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | |
Collapse
|
31
|
Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2013; 34:939-54. [PMID: 24379442 DOI: 10.1128/mcb.01344-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites. To directly investigate the interplay between PPARγ and C/EBPα at shared binding sites, we established a fibroblastic model system in which PPARγ and C/EBPα can be independently expressed. Using RNA sequencing, we demonstrate that coexpression of PPARγ and C/EBPα leads to synergistic activation of many key metabolic adipocyte genes. This is associated with extensive C/EBPα-mediated reprogramming of PPARγ binding and vice versa in the vicinity of these genes, as determined by chromatin immunoprecipitation combined with deep sequencing. Our results indicate that this is at least partly mediated by assisted loading involving chromatin remodeling directed by the leading factor. In conclusion, we report a novel mechanism by which the key adipogenic transcription factors, PPARγ and C/EBPα, cooperate in activation of the adipocyte gene program.
Collapse
|
32
|
Vischi Winck F, Arvidsson S, Riaño-Pachón DM, Hempel S, Koseska A, Nikoloski Z, Urbina Gomez DA, Rupprecht J, Mueller-Roeber B. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation. PLoS One 2013; 8:e79909. [PMID: 24224019 PMCID: PMC3816576 DOI: 10.1371/journal.pone.0079909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Samuel Arvidsson
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Sabrina Hempel
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Aneta Koseska
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - David Alejandro Urbina Gomez
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Jens Rupprecht
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
33
|
Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS, Prins JF, Lieb JD, Rathmell WK, Davis IJ. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2013; 24:241-50. [PMID: 24158655 PMCID: PMC3912414 DOI: 10.1101/gr.158253.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds.
Collapse
Affiliation(s)
- Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which establishes latent infection in endothelial and B cells, as well as in primary effusion lymphoma (PEL). During latency, the viral genome exists as a circular DNA minichromosome (episome) and is packaged into chromatin analogous to human chromosomes. Only a small subset of promoters, those which drive latent RNAs, are active in latent episomes. In general, nucleosome depletion ("open chromatin") is a hallmark of eukaryotic regulatory elements such as promoters and transcriptional enhancers or insulators. We applied formaldehyde-assisted isolation of regulatory elements (FAIRE) followed by next-generation sequencing to identify regulatory elements in the KSHV genome and integrated these data with previously identified locations of histone modifications, RNA polymerase II occupancy, and CTCF binding sites. We found that (i) regions of open chromatin were not restricted to the transcriptionally defined latent loci; (ii) open chromatin was adjacent to regions harboring activating histone modifications, even at transcriptionally inactive loci; and (iii) CTCF binding sites fell within regions of open chromatin with few exceptions, including the constitutive LANA promoter and the vIL6 promoter. FAIRE-identified nucleosome depletion was similar among B and endothelial cell lineages, suggesting a common viral genome architecture in all forms of latency.
Collapse
|
35
|
Simon JM, Giresi PG, Davis IJ, Lieb JD. A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). ACTA ACUST UNITED AC 2013; Chapter 21:Unit21.26. [PMID: 23547014 DOI: 10.1002/0471142727.mb2126s102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nucleosome displacement is a key event in the regulation of gene expression in the eukaryotic genome. This unit details an approach called Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) for isolating nucleosome-depleted regions. FAIRE does not rely on the use of antibodies or enzymes, and has proven successful in most eukaryotic cells and tissues. The set of regulatory elements enriched by FAIRE is similar to those identified through DNase hypersensitivity. The enriched fragments can be detected by quantitative PCR, tiling DNA microarrays, or next-generation sequencing. Although the signal-to-noise ratio is typically lower than that observed for DNase assays, FAIRE has high sample-to-sample reproducibility, requires very low amounts of input material, is inexpensive, is amenable to high-throughput adaptations, and is a relatively simple procedure with a high rate of success, even for those without extensive experience in molecular biology protocols.
Collapse
Affiliation(s)
- Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Epigenomics, the determination of epigenetic landscapes on a genome-wide scale, has progressed at an astounding rate over the past decade. Recent technological developments have enabled base-pair resolution of various epigenomic features, leading to new insights into epigenetic regulation.
Collapse
|
37
|
Zentner GE, Henikoff S. Surveying the epigenomic landscape, one base at a time. Genome Biol 2012; 13:250. [PMID: 23088423 DOI: 10.1186/gb4051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenomics, the determination of epigenetic landscapes on a genome-wide scale, has progressed at an astounding rate over the past decade. Recent technological developments have enabled base-pair resolution of various epigenomic features, leading to new insights into epigenetic regulation.
Collapse
|
38
|
Hong CP, Choe MK, Roh TY. Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells. Genomics Inform 2012; 10:145-52. [PMID: 23166525 PMCID: PMC3492650 DOI: 10.5808/gi.2012.10.3.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/30/2022] Open
Abstract
Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea. ; Theragen Etex Bio Institute, Suwon 443-270, Korea
| | | | | |
Collapse
|
39
|
Vatolin S, Khan SN, Reu FJ. Direct chromatin PCR (DC-PCR): hypotonic conditions allow differentiation of chromatin states during thermal cycling. PLoS One 2012; 7:e44690. [PMID: 22984542 PMCID: PMC3440349 DOI: 10.1371/journal.pone.0044690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/06/2012] [Indexed: 01/12/2023] Open
Abstract
Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90°C, 41 of 61 tested 5′ sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.
Collapse
Affiliation(s)
- Sergei Vatolin
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Shahper N. Khan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Frederic J. Reu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Avrahami D, Kaestner KH. Epigenetic regulation of pancreas development and function. Semin Cell Dev Biol 2012; 23:693-700. [PMID: 22728076 DOI: 10.1016/j.semcdb.2012.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/13/2012] [Indexed: 12/25/2022]
Abstract
Multiple signaling systems and transcription factor cascades control pancreas development and endocrine cell fate determination. Epigenetic processes contribute to the control of this transcriptional hierarchy, involving both histone modifications and DNA methylation. Here, we summarize recent advances in the field that demonstrate the importance of epigenetic regulation in pancreas development, β-cell proliferation, and cell fate choice. These breakthroughs were made using the phenotypic analysis of mice with mutations in genes that encode histone modifying enzymes and related proteins; by application of activators or inhibitors of the enzymes that acetylate or methylate histones to fetal pancreatic explants in culture; and by genomic approaches that determined the patterns of histone modifications and chromatin state genome-wide.
Collapse
Affiliation(s)
- Dana Avrahami
- Department of Genetics and Institute of Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Abstract
Eukaryotic genomic DNA is combined with histones, nonhistone proteins, and RNA to form chromatin, which is extensively packaged hierarchically to fit inside a cell's nucleus. The nucleosome-comprising a histone octamer with 147 base pairs of DNA wrapped around it-is the initial level and the repeating unit of chromatin packaging, which electron microscopy first made visible to the human eye as "beads on a string" nearly four decades ago. The mechanism and nature of chromatin packaging are still under intense research. Recently, classic methods like chromatin immunoprecipitation and digestion with deoxyribonuclease and micrococcal nuclease have been combined with high-throughput sequencing to provide detailed nucleosome occupancy maps, and chromosome conformation capture and its variants have revealed that higher-order chromatin structure involves long-range loop formation between distant genomic elements. This review discusses the methods for identifying higher-order chromatin structure and the information they have provided on this important topic.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Medicine, Division of Human Genetics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
42
|
Target genes of Topoisomerase IIβ regulate neuronal survival and are defined by their chromatin state. Proc Natl Acad Sci U S A 2012; 109:E934-43. [PMID: 22474351 DOI: 10.1073/pnas.1119798109] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topoisomerases are essential for DNA replication in dividing cells, but their genomic targets and function in postmitotic cells remain poorly understood. Here we show that a switch in the expression from Topoisomerases IIα (Top2α) to IIβ (Top2β) occurs during neuronal differentiation in vitro and in vivo. Genome-scale location analysis in stem cell-derived postmitotic neurons reveals Top2β binding to chromosomal sites that are methylated at lysine 4 of histone H3, a feature of regulatory regions. Indeed Top2β-bound sites are preferentially promoters and become targets during the transition from neuronal progenitors to neurons, at a time when cells exit the cell cycle. Absence of Top2β protein or its activity leads to changes in transcription and chromatin accessibility at many target genes. Top2β deficiency does not impair stem cell properties and early steps of neuronal differentiation but causes premature death of postmitotic neurons. This neuronal degeneration is caused by up-regulation of Ngfr p75, a gene bound and repressed by Top2β. These findings suggest a chromatin-based targeting of Top2β to regulatory regions in the genome to govern the transcriptional program associated with neuronal differentiation and longevity.
Collapse
|
43
|
Siersbæk R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 2012; 23:56-64. [PMID: 22079269 DOI: 10.1016/j.tem.2011.10.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 12/12/2022]
Abstract
Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications. Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression.
Collapse
Affiliation(s)
- Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
44
|
Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 2012; 7:256-67. [PMID: 22262007 DOI: 10.1038/nprot.2011.444] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements in eukaryotic genomes. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (formaldehyde-assisted isolation of regulatory elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are cross-linked briefly with formaldehyde, lysed and sonicated. Sheared chromatin is subjected to phenol/chloroform extraction and the isolated DNA, typically encompassing 1-3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays or next-generation sequencing. Regulatory elements enriched by FAIRE have high concordance with those identified by nuclease hypersensitivity or chromatin immunoprecipitation (ChIP), and the entire procedure can be completed in 3 d. FAIRE has low technical variability, which allows its usage in large-scale studies of chromatin from normal or diseased tissues.
Collapse
|
45
|
Nammo T, Rodríguez-Seguí SA, Ferrer J. Mapping open chromatin with formaldehyde-assisted isolation of regulatory elements. Methods Mol Biol 2011; 791:287-96. [PMID: 21913087 DOI: 10.1007/978-1-61779-316-5_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Noncoding regulatory genomic elements are central for cellular function, differentiation, and disease, but remain poorly characterized. FAIRE (formaldehyde-assisted isolation of regulatory elements) has emerged as a simple method to identify and analyze active regulatory sequences based on their decreased nucleosomal content. More recently FAIRE was combined with high-throughput sequencing (FAIRE-seq) to locate tissue-specific regulatory elements at a genome scale in purified human pancreatic islets. Here we describe the implementation of the FAIRE method in human pancreatic islet cells.
Collapse
Affiliation(s)
- Takao Nammo
- Genomic Programming of Beta Cells, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | | | | |
Collapse
|
46
|
Epigenetic regulation of polymerase II transcription initiation in Trypanosoma cruzi: modulation of nucleosome abundance, histone modification, and polymerase occupancy by O-linked thymine DNA glucosylation. EUKARYOTIC CELL 2011; 10:1465-72. [PMID: 21926332 DOI: 10.1128/ec.05185-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Very little is understood regarding how transcription is initiated/regulated in the early-diverging eukaryote Trypanosoma cruzi. Unusually for a eukaryote, genes transcribed by RNA polymerase (Pol) II in T. cruzi are arranged in polycistronic transcription units (PTUs). On the basis of this gene organization, it was previously thought that trypanosomes rely solely on posttranscriptional processes to regulate gene expression. We recently localized a novel glucosylated thymine DNA base, called base J, to potential promoter regions of PTUs throughout the trypanosome genome. Loss of base J, following the deletion of JBP1, a thymidine hydroxylase involved with synthesis, led to a global increase in the Pol II transcription rate and gene expression. In order to determine the mechanism by which base J regulates transcription, we have characterized changes in chromatin structure and Pol II recruitment to promoter regions following the loss of base J. The loss of base J coincides with a decrease in nucleosome abundance, increased histone H3/H4 acetylation, and increased Pol II occupancy at promoter regions, including the well-characterized spliced leader RNA gene promoter. These studies present the first direct evidence for epigenetic regulation of Pol II transcription initiation via DNA modification and chromatin structure in kinetoplastids as well as provide a mechanism for regulation of trypanosome gene expression via the novel hypermodified base J.
Collapse
|
47
|
Abstract
In eukaryotes, all DNA-templated reactions occur in the context of chromatin. Nucleosome packaging inherently restricts DNA accessibility for regulatory proteins but also provides an opportunity to regulate DNA-based processes through modulating nucleosome positions and local chromatin structure. Recent advances in genome-scale methods are yielding increasingly detailed profiles of the genomic distribution of nucleosomes, their modifications and their modifiers. The picture now emerging is one in which the dynamic control of genome accessibility is governed by contributions from DNA sequence, ATP-dependent chromatin remodelling and nucleosome modifications. Here we discuss the interplay of these processes by reviewing our current understanding of how chromatin access contributes to the regulation of transcription, replication and repair.
Collapse
|
48
|
Boudot A, Kerdivel G, Habauzit D, Eeckhoute J, Le Dily F, Flouriot G, Samson M, Pakdel F. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One 2011; 6:e20898. [PMID: 21695171 PMCID: PMC3112227 DOI: 10.1371/journal.pone.0020898] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/12/2011] [Indexed: 12/31/2022] Open
Abstract
CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2) in estrogen receptor (ER)-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE) revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20–250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors.
Collapse
Affiliation(s)
- Antoine Boudot
- UMR CNRS 6026, Molecular and Cellular Interactions, IRSET, University of Rennes 1, IFR 140, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J 2011; 30:1459-72. [PMID: 21427703 DOI: 10.1038/emboj.2011.65] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/17/2011] [Indexed: 12/27/2022] Open
Abstract
Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPβ and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPβ marks a large number of these transcription factor 'hotspots' before induction of differentiation and chromatin remodelling and is required for their establishment. Furthermore, a subset of early remodelled C/EBP-binding sites persists throughout differentiation and is later occupied by PPARγ, indicating that early C/EBP family members, in addition to their well-established role in activation of PPARγ transcription, may act as pioneering factors for PPARγ binding.
Collapse
|
50
|
Nagy PL, Price DH. Formaldehyde-assisted isolation of regulatory elements. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:400-406. [PMID: 20046543 DOI: 10.1002/wsbm.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) is based on locus-specific variations in the ability of protein components of chromatin to trap genomic DNA following formaldehyde treatment. This variation is mostly due to uneven nucleosome distribution since histones are the most abundant and highly crosslinkable components of chromatin. The method can identify and enrich for physically accessible DNA segments of the eukaryotic genome corresponding to known regulatory regions and regions that might have thus far unidentified structural role in the nuclear organization of chromatin. The enrichment patterns are cell type specific and thus might provide information about how transcriptional systems are organized and regulated in various tissues and how they might be disrupted in disease states. Analysis of a 268 kb region of chromosome 19 in human fibroblasts shown here demonstrates that while most DNA fragments detected by FAIRE correspond to sites of DNaseI hypersensitivity in active regions of chromatin, some are found in otherwise repressed chromatin domains and at other sites that are not found with other methods used to probe chromatin structure. Further exploration of FAIRE is warrented due to the simplicity of the protocol and recent advancements in massively parallel sequencing.
Collapse
Affiliation(s)
- Peter L Nagy
- Departments of Pathology, Biochemistry and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Departments of Pathology, Biochemistry and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|