1
|
Sim EJ, Tran QG, Lee YR, Le TT, Yoon HR, Choi DY, Cho DH, Yun JH, Il Choi H, Kim HS, Lee YJ. Cell-Penetrating Peptide-Based Triple Nanocomplex Enables Efficient Nuclear Gene Delivery in Chlamydomonas reinhardtii. Biotechnol Bioeng 2025. [PMID: 40342143 DOI: 10.1002/bit.29019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025]
Abstract
Microalgae are a promising solution for mitigating climate change due to their ability to capture greenhouse gases and produce renewable materials. However, their effective application is often hindered by barriers that necessitate advances in genetic engineering to improve photosynthesis and productivity. One major obstacle is the microalgal cell wall, which complicates the delivery of genetic material into these organisms. To address these challenges, we developed a novel triple nanocomplex system integrating cell-penetrating peptides (CPPs), nuclear localization signal (NLS) peptides, and plasmid DNA. This system allows simple preparation while achieving efficient nuclear translocation of plasmid DNA. We evaluated two CPPs, pVEC-ORI and pVEC-R6A, for their efficacy in facilitating intracellular transfer of DNA into wild-type Chlamydomonas reinhardtii cells. Notably, pVEC-R6A demonstrated a 6.88-fold increase in efficiency compared to pVEC-ORI, despite the presence of thick cell walls. The optimal CPP:DNA ratio for stable nanocomplex formation was determined to be 5:1 for pVEC-ORI and 10:1 for pVEC-R6A. By incorporating the simian virus 40 (SV40) NLS into CPP/DNA nanocomplexes, we successfully directed the localization of plasmid DNA into the nucleus. Our findings indicate that this simple and efficient DNA delivery system has significant potential as a tool to advance microalgal synthetic biology.
Collapse
Affiliation(s)
- Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yu Rim Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Labara Tirado J, Herdean A, Ralph PJ. The need for smart microalgal bioprospecting. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:7. [PMID: 39815030 PMCID: PMC11735771 DOI: 10.1007/s13659-024-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080-5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810-3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Collapse
Affiliation(s)
- Joan Labara Tirado
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
3
|
Flavin C, Chatterjee A. Cell-Penetrating Peptide Delivery of Nucleic Acid Cargo to Emiliania huxleyi, a Calcifying Marine Coccolithophore. ACS Synth Biol 2024; 13:77-84. [PMID: 38147049 DOI: 10.1021/acssynbio.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Coccolithophores are a group of unicellular marine phytoplankton that exhibit a prolific capacity for carbon conversion and are critical to ocean biogeochemistry. A fundamental understanding of coccolithophore biomineralization has been limited, in part, by the lack of genetic and molecular tools to investigate the organisms. In particular, it has proven to be difficult to deliver macromolecules across the coccosphere-membrane complex. To overcome this barrier, we employed cell-penetrating peptides (CPP) in the Emiliania huxleyi coccolithophores. We evaluated three established CPPs (TAT, R9, and KFF) and designed a CPP that incorporates a high proline content identified in the protein transduction domain of EhV060, an E. huxleyi virus lectin protein. To measure the delivery performance, we covalently linked CPPs to synthetic peptide nucleic acids (PNA) and attached a fluorescein marker. CPP-PNA-FITC complexes were efficiently delivered across the coccosphere-membrane complex to the cytoplasm of E. huxleyi cells. Characterization of E. huxleyi demonstrates that CPP-PNA are nontoxic and reveals specific effects of CPP-PNA on cell biology and calcification. Direct delivery and characterization of synthetic nucleic acids represent a step forward in synthetic biology to explore coccolithophore biomineralization.
Collapse
Affiliation(s)
- Cory Flavin
- Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80301, United States
- Materials Science & Engineering Program, University of Colorado, Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80301, United States
- Sachi Bio, Louisville, Colorado 80027, United States
- Antimicrobial Regeneration Consortium Laboratories, Louisville, Colorado 80027, United States
| |
Collapse
|
4
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Werby SH, Brčić J, Chosy MB, Sun J, Rendell JT, Neville LF, Wender PA, Cegelski L. Detection of intact vancomycin-arginine as the active antibacterial conjugate in E. coli by whole-cell solid-state NMR. RSC Med Chem 2023; 14:1192-1198. [PMID: 37360389 PMCID: PMC10285746 DOI: 10.1039/d3md00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
The introduction of new and improved antibacterial agents based on facile synthetic modifications of existing antibiotics represents a promising strategy to deliver urgently needed antibacterial candidates to treat multi-drug resistant bacterial infections. Using this strategy, vancomycin was transformed into a highly active agent against antibiotic-resistant Gram-negative organisms in vitro and in vivo through the addition of a single arginine to yield vancomycin-arginine (V-R). Here, we report detection of the accumulation of V-R in E. coli by whole-cell solid-state NMR using 15N-labeled V-R. 15N CPMAS NMR revealed that the conjugate remained fully amidated without loss of arginine, demonstrating that intact V-R represents the active antibacterial agent. Furthermore, C{N}REDOR NMR in whole cells with all carbons at natural abundance 13C levels exhibited the sensitivity and selectivity to detect the directly bonded 13C-15N pairs of V-R within E. coli cells. Thus, we also present an effective methodology to directly detect and evaluate active drug agents and their accumulation within bacteria without the need for potentially perturbative cell lysis and analysis protocols.
Collapse
Affiliation(s)
- Sabrina H Werby
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Madeline B Chosy
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | | | | | - Paul A Wender
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Department of Chemical and Systems Biology, Stanford University Stanford CA 94305 USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
6
|
Nuclear localization signal peptides enhance genetic transformation of Dunaliella salina. Mol Biol Rep 2023; 50:1459-1467. [PMID: 36482029 DOI: 10.1007/s11033-022-08159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dunaliella salina (D. salina) expression system shows a very attractive application prospect, but it currently has a technical bottleneck, namely the low or unstable expression of recombinant proteins. Given the characteristics of cell-penetrating peptides or/and nuclear localization signal (NLS) peptides, this study is the first attempt to improve the transformation rate of foreign gene with trans-activating transcriptional (TAT) protein or/and NLS peptides. METHODS AND RESULTS Using salt gradient method, exogenous plasmids were transferred into D. salina cells with TAT or TAT/NLS complexes simultaneously. The β-glucuronidase gene expression was identified by means of histochemical stain and RT-qPCR detection. Through observation with light microscope, TAT-mediating cells exhibit an apparent cytotoxicity even at ratios of 0.5, no significant toxicity was noted in the TAT/plasmid/NLS complex group. It is obvious that with the addition of peptides the toxicity decreases significantly. Histochemical staining showed that the transformants presented blue color under light microscope, but the negative control and blank control are not. Furthermore, based on a TAT/plasmids ratio of 4 with 10 µg NLS peptides mediation, RT-qPCR results demonstrated that the transcripts of target gene were increased by 269 times than that of control group. CONCLUSIONS This study demonstrated that combination of TAT and NLS peptides can significantly improve the transformation rate and expression level of foreign gene in D. salina system. It offers a promising way for promoting the application and development of D. salina bioreactor.
Collapse
|
7
|
Zhang F, Li Z, Duan Y, Luan H, Yin L, Guo Z, Chen C, Xu M, Gao W, Fang RH, Zhang L, Wang J. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. SCIENCE ADVANCES 2022; 8:eade6455. [PMID: 36563149 PMCID: PMC9788783 DOI: 10.1126/sciadv.ade6455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
The function of robots in extreme environments is regarded as one of the major challenges facing robotics. Here, we demonstrate that acidophilic microalgae biomotors can maintain their swimming behavior over long periods of time in the harsh acidic environment of the stomach, thus enabling them to be applied for gastrointestinal (GI) delivery applications. The biomotors can also be functionalized with a wide range of cargos, ranging from small molecules to nanoparticles, without compromising their ability to self-propel under extreme conditions. Successful GI delivery of model payloads after oral administration of the acidophilic algae motors is confirmed using a murine model. By tuning the surface properties of cargos, it is possible to modulate their precise GI localization. Overall, our findings indicate that multifunctional acidophilic algae-based biomotors offer distinct advantages compared to traditional biohybrid platforms and hold great potential for GI-related biomedical applications.
Collapse
|
8
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
9
|
Liu WB, Gao RT, Zhou L, Liu N, Chen Z, Wu ZQ. Combination of vancomycin and guanidinium-functionalized helical polymers for synergistic antibacterial activity and biofilm ablation. Chem Sci 2022; 13:10375-10382. [PMID: 36277626 PMCID: PMC9473644 DOI: 10.1039/d2sc03419k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of various resistant bacteria and overuse of antibiotics have led to severe side effects. Therefore, developing efficient and safe antibacterial systems is important. Herein, well-defined antimicrobial material–helical poly(phenyl guanidinium isocyanide) block copolymers with different conformations (l-P3-van, d-P3-van, and dl-P3-van) that connect vancomycin (van) to the polymer through a disulfide bond were synthesized. The prepared antimicrobial materials exhibit broad-spectrum antimicrobial activity, low bacterial resistance, and good proteolytic stability. They also overcome the intrinsic resistance of Gram-negative bacteria to van with a 100-fold increase in antimicrobial activity. Interestingly, the conformation of the material promotes its antimicrobial activity. The left-handed helix conformation shows five-fold more antimicrobial activity than the right-handed helical conformation, thereby opening a path for the application of nanochirality in the field of antibiotics. Helical poly(phenyl isocyanide)-based antibacterial materials have been developed, which have a broad antibacterial spectrum and high antibacterial activity and can effectively destroy preformed biofilms.![]()
Collapse
Affiliation(s)
- Wen-Bin Liu
- Department of Polymer Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Yoshitomi T, Karita H, Mori-Moriyama N, Sato N, Yoshimoto K. Reduced cytotoxicity of polyethyleneimine by covalent modification of antioxidant and its application to microalgal transformation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:864-874. [PMID: 34658670 PMCID: PMC8519552 DOI: 10.1080/14686996.2021.1978273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The conversion of carbon dioxide into valuable chemicals is an effective strategy for combating augmented concentrations of carbon dioxide in the environment. Microalgae photosynthetically produce valuable chemicals that are used as biofuels, sources for industrial materials, medicinal leads, and food additives. Thus, improvements in microalgal technology via genetic engineering may prove to be promising for the tailored production of novel metabolites. For the transformation of microalgae, nucleic acids such as plasmid DNA (pDNA) are delivered into the cells using physical and mechanical techniques, such as electroporation, bombardment with DNA-coated microprojectiles, and vortexing with glass beads. However, owing to the electrostatic repulsion between negatively charged cell walls and nucleic acids, the delivery of nucleic acids into the microalgal cells is challenging. To solve this issue, in this study, we investigated microalgal transformation via electroporation using polyplexes with linear polyethyleneimine (LPEI) and pDNA. However, the high toxicity of LPEI decreased the transformation efficiency in Chlamydomonas reinhardtii cells. We revealed that the toxicity of LPEI was due to oxidative stress resulting from the cellular uptake of LPEI. To suppress the toxicity of LPEI, an antioxidant, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was covalently conjugated with LPEI; the conjugate was named as TEMPO-LPEI. Interestingly, with a cellular uptake tendency similar to that of LPEI, TEMPO-LPEI dramatically decreased oxidative stress and cytotoxicity. Electroporation using polyplexes of TEMPO-LPEI and pDNA enhanced the transformation efficiency, compared to those treated with bare pDNA and polyplexes of LPEI/pDNA. This result indicates that polycations conjugated with antioxidants could be useful in facilitating microalgal transformation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Haruka Karita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
12
|
Kang S, Jeon S, Kim S, Chang YK, Kim YC. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep 2020; 10:22158. [PMID: 33335164 PMCID: PMC7747696 DOI: 10.1038/s41598-020-78968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii. Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Seongsu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungcheol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
13
|
Cheng Q, Parvin B. Rapid identification of a subset of foodborne bacteria in live-cell assays. Appl Microbiol Biotechnol 2020; 104:10571-10584. [PMID: 33185701 DOI: 10.1007/s00253-020-10970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/06/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
The detection and identification of microbial pathogens in meat and fresh produce play an essential role in food safety for reducing foodborne illnesses every year. A new approach based on targeting a specific sequence of the 16S rRNA region for each bacterium is proposed and validated. The probe complex consists of a C60, a conjugated RNA detector which targets a specific 16S rRNA sequence, and a complementary fluorescent reporter. The RNA detectors were designed by integrating NIH nucleotide and Vienna RNA Webservice databases, and their specificities were validated by the RDP database. Probe complexes were synthesized for identifying E. coli K12, E. coli O157: H7, S. enterica, Y. enterocolitica, C. perfringens, and L. monocytogenes. First, under controlled conditions of known bacterial mixtures, the efficiency and crosstalk for identifying the foodborne bacteria were quantified to be above 94% and below 5%, respectively. Second, experiments were designed by inoculating meat products by known numbers of bacteria and measuring the limit of detection. In one experiment, 225 g of autoclaved ground chicken was inoculated with 9 E. coli O157:H7, where 6.8 ± 1.2 bacteria with 95% confidence interval were recovered. Third, by positionally printing probe complexes in microwells, specific microorganisms were identified with only one fluorophore. The proposed protocol is a cell-based system, can identify live bacteria in 15 min, requires no amplification, and has the potential to open new surveillance opportunities.Key points• The identification of foodborne bacteria is enabled in live-cell assays.• The limit of detection for 100 g of fresh chicken breast inoculated with 4 bacteria is 2.7 ± 1.4 with 95% confidence interval.• The identification of five bacteria in a coded microwell chip is enabled with only one fluorophore.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N. Virginia St., NV, 89557, Reno, USA.,Department of Cell and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Bahram Parvin
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N. Virginia St., NV, 89557, Reno, USA. .,Department of Cell and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Miyamoto T, Tsuchiya K, Numata K. Dual Peptide-Based Gene Delivery System for the Efficient Transfection of Plant Callus Cells. Biomacromolecules 2020; 21:2735-2744. [PMID: 32432860 DOI: 10.1021/acs.biomac.0c00481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their diverse functions and tunable physicochemical properties, peptides are promising alternatives to the conventional gene delivery tools that are available for plant systems. However, peptide-mediated gene delivery is limited by low transfection efficiency in plants because of the insufficient cytosolic translocation of DNA cargo. Here, we report a dual peptide-based gene delivery system for the efficient transfection of plant callus cells. This system is based on the combination of an artificial peptide composed of cationic cell-penetrating and hydrophobic endosomal escape domains with a gene carrier peptide composed of amphiphilic cell-penetrating and cationic DNA-binding domains. Cellular internalization and transfection studies revealed that this dual peptide-based system enables more efficient transfection of callus cells than does a carrier peptide alone by enhancing the endocytic uptake and subsequent cytosolic translocation of a carrier peptide/DNA complex. The present strategy will expand the utility of peptide-mediated plant gene delivery for a wide range of applications and basic research.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019; 121:170149. [PMID: 31491454 DOI: 10.1016/j.peptides.2019.170149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
Cell penetrating peptides (CPPs) play a crucial role in the transportation of bioactive molecules. Although CPPs have been used widely in various delivery systems, further applications of CPPs are hampered by several drawbacks, such as high toxicity, low delivery efficiency, proteolytic instability and poor specificity. To design CPPs with great cell-penetrating ability, physicochemical properties and safety, researchers have tried to develop new methods to overcome the defects of CPPs. Briefly, (1) the side chain of arginine containing the guanidinium group is essential for the facilitation of cellular uptake; (2) the hydrophobic counterion complex around the guanidinium-rich backbone can "coat" the highly cationic structure with lipophilic moieties and act as an activator; (3) the conformation-constrained strategy was pursued to shield the peptide, thereby impeding access of the proteolytic enzyme; (4) targeting strategies can increase cell-type specificity of CPPs. In this review, the above four aspects were discussed in detail.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China; Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
17
|
Gadamchetty P, Mullapudi PLV, Sanagala R, Markandan M, Polumetla AK. Genetic transformation of Chlorella vulgaris mediated by HIV-TAT peptide. 3 Biotech 2019; 9:139. [PMID: 30944786 DOI: 10.1007/s13205-019-1671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Scientific interest in microalgal species is growing and, genetic transformation has definitely opened more avenues, in the ongoing research on microphytes. In the present study, we have attempted to transform Chlorella vulgaris by mobilizing double-stranded linear Transfer DNA (T-DNA) comprised of green fluorescent protein (egfp) gene cassette and hygromycin phosphotransferase II (hptII) gene cassette non-covalently bound to TAT peptide, into C. vulgaris cells treated with Triton X-100. The transformed C. vulgaris cells when examined under fluorescent microscope, exhibited green fluorescence in comparison to the untransformed cells. The transformed cells were further screened, and the surviving colonies were sub-cultured, on BG11 medium fortified with Hygromycin. The surviving colonies were confirmed for the presence of integrated T-DNA by Polymerase Chain Reaction with egfp and hptII gene-specific primers. This methodology has potential to substitute the existing tedious transformation methodologies and ease the future studies in microalgae.
Collapse
Affiliation(s)
- Pavan Gadamchetty
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Phanindra Lakshmi Venkata Mullapudi
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Visargha Agri Sciences Private Limited, Bhubaneswar, 751023 India
| | - Raghavendrarao Sanagala
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Ganga Kaveri Seeds Private Limited, Hyderabad, 500001 India
| | - Manickavasagam Markandan
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Ananda Kumar Polumetla
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 5Indian Institute of Rice Research, Hyderabad, 500030 India
| |
Collapse
|
18
|
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. J Am Chem Soc 2018; 140:16140-16151. [PMID: 30388366 PMCID: PMC6430714 DOI: 10.1021/jacs.8b08711] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.
Collapse
Affiliation(s)
- Alexandra Antonoplis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Huttner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553
| | - Yu B. Lee
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julia Y. Co
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
- Department of Microbiology & Immunology, Stanford University, Stanford, California 94305, United States
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Mukaibo H. Template‐Synthesized Vertical Needle Array as Injection Platform for Microalgae. CHEM REC 2018; 19:859-872. [DOI: 10.1002/tcr.201800099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Hitomi Mukaibo
- Department of Chemical EngineeringUniversity of Rochester 4510 Wegmans Hall, Rochester, NY 14627 USA
| |
Collapse
|
20
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
21
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
22
|
Velmurugan N, Deka D. Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects. Appl Microbiol Biotechnol 2018; 102:4255-4267. [DOI: 10.1007/s00253-018-8925-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022]
|
23
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711651] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
24
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018; 57:1532-1536. [DOI: 10.1002/anie.201711651] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
25
|
Kang S, Suresh A, Kim YC. A highly efficient cell penetrating peptide pVEC-mediated protein delivery system into microalgae. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Yamashita H, Misawa T, Oba M, Tanaka M, Naito M, Kurihara M, Demizu Y. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Bioorg Med Chem 2017; 25:1846-1851. [DOI: 10.1016/j.bmc.2017.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
|
27
|
Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017; 110-111:112-126. [PMID: 27370248 PMCID: PMC5199637 DOI: 10.1016/j.addr.2016.06.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Peptide-drug conjugates (PDCs) represent an important class of therapeutic agents that combine one or more drug molecules with a short peptide through a biodegradable linker. This prodrug strategy uniquely and specifically exploits the biological activities and self-assembling potential of small-molecule peptides to improve the treatment efficacy of medicinal compounds. We review here the recent progress in the design and synthesis of peptide-drug conjugates in the context of targeted drug delivery and cancer chemotherapy. We analyze carefully the key design features in choosing the peptide sequence and linker chemistry for the drug of interest, as well as the strategies to optimize the conjugate design. We highlight the recent progress in the design and synthesis of self-assembling peptide-drug amphiphiles to construct supramolecular nanomedicine and nanofiber hydrogels for both systemic and topical delivery of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Garren Angacian
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lisi Xie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
28
|
Benner NL, Zang X, Buehler DC, Kickhoefer VA, Rome ME, Rome LH, Wender PA. Vault Nanoparticles: Chemical Modifications for Imaging and Enhanced Delivery. ACS NANO 2017; 11:872-881. [PMID: 28029784 PMCID: PMC5372831 DOI: 10.1021/acsnano.6b07440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vault nanoparticles represent promising vehicles for drug and probe delivery. Innately found within human cells, vaults are stable, biocompatible nanocapsules possessing an internal volume that can encapsulate hundreds to thousands of molecules. They can also be targeted. Unlike most nanoparticles, vaults are nonimmunogenic and monodispersed and can be rapidly produced in insect cells. Efforts to create vaults with modified properties have been, to date, almost entirely limited to recombinant bioengineering approaches. Here we report a systematic chemical study of covalent vault modifications, directed at tuning vault properties for research and clinical applications, such as imaging, targeted delivery, and enhanced cellular uptake. As supra-macromolecular structures, vaults contain thousands of derivatizable amino acid side chains. This study is focused on establishing the comparative selectivity and efficiency of chemically modifying vault lysine and cysteine residues, using Michael additions, nucleophilic substitutions, and disulfide exchange reactions. We also report a strategy that converts the more abundant vault lysine residues to readily functionalizable thiol terminated side chains through treatment with 2-iminothiolane (Traut's reagent). These studies provide a method to doubly modify vaults with cell penetrating peptides and imaging agents, allowing for in vitro studies on their enhanced uptake into cells.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Daniel C. Buehler
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Valerie A. Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael E. Rome
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Zheng N, Song Z, Liu Y, Yin L, Cheng J. Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1612-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhao Y, Wang W, Guo S, Wang Y, Miao L, Xiong Y, Huang L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat Commun 2016; 7:11822. [PMID: 27264609 PMCID: PMC4897747 DOI: 10.1038/ncomms11822] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023] Open
Abstract
Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy.
Collapse
Affiliation(s)
- Yi Zhao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei Wang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Shutao Guo
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yuhua Wang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lei Miao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yang Xiong
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
31
|
Hamill KM, McCoy LS, Wexselblatt E, Esko JD, Tor Y. Polymyxins Facilitate Entry into Mammalian Cells. Chem Sci 2016; 7:5059-5068. [PMID: 28044098 PMCID: PMC5201209 DOI: 10.1039/c6sc00488a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymyxin and guanidinylated polymyxin effectively deliver large biomolecules and liposomal assemblies into mammalian cells.
Polymyxin B is an antibiotic used against multi-resistant Gram negative infections, despite observed nephrotoxicity. Here we report the synthesis of functionalized derivatives of polymyxin B and its per-guanidinylated derivative in order to further explore the structural requirements necessary to facilitate uptake of the antibiotic into mammalian cells. We also investigate the possibility of using these novel scaffolds as molecular transporters. At nanomolar concentrations, both are capable of delivering large cargo (>300 kDa) into living cells. Their uptake depends exclusively on cell surface heparan sulfate. Mechanistic studies indicate these novel transporters are internalized through caveolae-mediated pathways and confocal microscopy show colocalization with lysosomes. The polymyxin-based transporters demonstrate cytosolic delivery through the delivery of a ribosome-inactivating protein. Furthermore, the natural polymyxin scaffold can be incorporated into liposomes and enhance their intracellular uptake. In addition to demonstrating the ability of the polymyxin scaffold to facilitate internalization into mammalian cells, these observations suggest the potential use of polymyxin and guanidinopolymyxin for intracellular delivery.
Collapse
Affiliation(s)
- Kristina M Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Lisa S McCoy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Jeffrey D Esko
- Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093-0687, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
32
|
Wu X, Giridhar Babu A, Kim BL, Kim JO, Shin JH, Kim DP. Ultrasound-mediated intracellular delivery of fluorescent dyes and DNA into microalgal cells. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
McKinlay CJ, Waymouth RM, Wender PA. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery. J Am Chem Soc 2016; 138:3510-7. [PMID: 26900771 DOI: 10.1021/jacs.5b13452] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters.
Collapse
Affiliation(s)
- Colin J McKinlay
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
34
|
Zheng Y, Xiao R, Roberts M. Polymer-enhanced enzymatic microalgal cell disruption for lipid and sugar recovery. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Yamashita H, Oba M, Misawa T, Tanaka M, Hattori T, Naito M, Kurihara M, Demizu Y. A Helix-Stabilized Cell-Penetrating Peptide as an Intracellular Delivery Tool. Chembiochem 2015; 17:137-40. [DOI: 10.1002/cbic.201500468] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroko Yamashita
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama 226-8501 Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki 852-8521 Japan
| | - Takashi Misawa
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki 852-8521 Japan
| | - Takayuki Hattori
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Mikihiko Naito
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Masaaki Kurihara
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama 226-8501 Japan
| | - Yosuke Demizu
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| |
Collapse
|
36
|
Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments. Sci Rep 2015; 5:13685. [PMID: 26347365 PMCID: PMC4561912 DOI: 10.1038/srep13685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/03/2015] [Indexed: 12/04/2022] Open
Abstract
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.
Collapse
|
37
|
Wei Y, Niu J, Huan L, Huang A, He L, Wang G. Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wender PA, Huttner MA, Staveness D, Vargas JR, Xu AF. Guanidinium-Rich, Glycerol-Derived Oligocarbonates: A New Class of Cell-Penetrating Molecular Transporters That Complex, Deliver, and Release siRNA. Mol Pharm 2015; 12:742-50. [DOI: 10.1021/mp500581r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Huttner
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Jessica R. Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adele F. Xu
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Demizu Y, Oba M, Okitsu K, Yamashita H, Misawa T, Tanaka M, Kurihara M, Gellman SH. A preorganized β-amino acid bearing a guanidinium side chain and its use in cell-penetrating peptides. Org Biomol Chem 2015; 13:5617-20. [DOI: 10.1039/c5ob00389j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cyclic β-amino acid (APCGu) bearing a side-chain guanidinium group has been developed.
Collapse
Affiliation(s)
- Yosuke Demizu
- Department of Chemistry
- University of Wisconsin
- Madison
- USA
- National Institute of Health Sciences Setagaya
| | - Makoto Oba
- Graduate School of Biomedical Sciences
- Nagasaki University Bunkyo-machi
- Nagasaki 8528521
- Japan
| | - Koyo Okitsu
- National Institute of Health Sciences Setagaya
- Tokyo 1588501
- Japan
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
| | - Hiroko Yamashita
- National Institute of Health Sciences Setagaya
- Tokyo 1588501
- Japan
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
| | - Takashi Misawa
- National Institute of Health Sciences Setagaya
- Tokyo 1588501
- Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences
- Nagasaki University Bunkyo-machi
- Nagasaki 8528521
- Japan
| | - Masaaki Kurihara
- National Institute of Health Sciences Setagaya
- Tokyo 1588501
- Japan
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
| | | |
Collapse
|
40
|
Yamashita H, Demizu Y, Shoda T, Sato Y, Oba M, Tanaka M, Kurihara M. Amphipathic short helix-stabilized peptides with cell-membrane penetrating ability. Bioorg Med Chem 2014; 22:2403-8. [DOI: 10.1016/j.bmc.2014.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
41
|
Wender PA. Toward the ideal synthesis and molecular function through synthesis-informed design. Nat Prod Rep 2014; 31:433-40. [PMID: 24589860 DOI: 10.1039/c4np00013g] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Highlight describes factors that contribute to an ideal synthesis, including economies (step, time, atom, solvent, energy) and orientations (target, diversity, safety, function), and the role of synthesis-informed design directed at function in advancing synthesis and its impact on science.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, CA 94305, USA.
| |
Collapse
|
42
|
Demizu Y, Misawa T, Kurihara M. Development of Stabilized Short Helical Peptides and Their Functionalization. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences
| | | | - Masaaki Kurihara
- Division of Organic Chemistry, National Institute of Health Sciences
| |
Collapse
|
43
|
Stanzl EG, Trantow BM, Vargas JR, Wender PA. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc Chem Res 2013; 46:2944-54. [PMID: 23697862 DOI: 10.1021/ar4000554] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All living systems require biochemical barriers. As a consequence, all drugs, imaging agents, and probes have targets that are either on, in, or inside of these barriers. Fifteen years ago, we initiated research directed at more fully understanding these barriers and at developing tools and strategies for breaching them that could be of use in basic research, imaging, diagnostics, and medicine. At the outset of this research and now to a lesser extent, the "rules" for drug design biased the selection of drug candidates mainly to those with an intermediate and narrow log P. At the same time, it was becoming increasingly apparent that Nature had long ago developed clever strategies to circumvent these "rules." In 1988, for example, independent reports documented the otherwise uncommon passage of a protein (HIV-Tat) across a membrane. A subsequent study implicated a highly basic domain in this protein (Tat49-57) in its cellular entry. This conspicuously contradictory behavior of a polar, highly charged peptide passing through a nonpolar membrane set the stage for learning how Nature had gotten around the current "rules" of transport. As elaborated in our studies and discussed in this Account, the key strategy used in Nature rests in part on the ability of a molecule to change its properties as a function of microenvironment; such molecules need to be polarity chameleons, polar in a polar milieu and relatively nonpolar in a nonpolar environment. Because this research originated in part with the protein Tat and its basic peptide domain, Tat49-57, the field focused heavily on peptides, even limiting its nomenclature to names such as "cell-penetrating peptides," "cell-permeating peptides," "protein transduction domains," and "membrane translocating peptides." Starting in 1997, through a systematic reverse engineering approach, we established that the ability of Tat49-57 to enter cells is not a function of its peptide backbone, but rather a function of the number and spatial array of its guanidinium groups. These function-oriented studies enabled us and others to design more effective peptidic agents and to think beyond the confines of peptidic systems to new and even more effective nonpeptidic agents. Because the function of passage across a cell membrane is not limited to or even best achieved with the peptide backbone, we referred to these agents by their shared function, "cell-penetrating molecular transporters." The scope of this molecular approach to breaching biochemical barriers has expanded remarkably in the past 15 years: enabling or enhancing the delivery of a wide range of cargos into cells and across other biochemical barriers, creating new tools for research, imaging, and diagnostics, and introducing new therapies into clinical trials.
Collapse
Affiliation(s)
- Erika Geihe Stanzl
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian M. Trantow
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Jessica R. Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
44
|
Wender PA. Toward the Ideal Synthesis and Transformative Therapies: The Roles of Step Economy and Function Oriented Synthesis. Tetrahedron 2013; 69:7529-7550. [PMID: 23956471 PMCID: PMC3743450 DOI: 10.1016/j.tet.2013.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford CA 94305-5080 USA
| |
Collapse
|
45
|
Suresh A, Kim YC. Translocation of cell penetrating peptides onChlamydomonas reinhardtii. Biotechnol Bioeng 2013; 110:2795-801. [DOI: 10.1002/bit.24935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/05/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Arumuganainar Suresh
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology; 291 Daehak-ro, Yuseong-gu; Daejeon; 305-701; Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology; 291 Daehak-ro, Yuseong-gu; Daejeon; 305-701; Republic of Korea
| |
Collapse
|
46
|
Dentler W. A role for the membrane in regulating Chlamydomonas flagellar length. PLoS One 2013; 8:e53366. [PMID: 23359798 PMCID: PMC3554728 DOI: 10.1371/journal.pone.0053366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/30/2012] [Indexed: 12/21/2022] Open
Abstract
Flagellar assembly requires coordination between the assembly of axonemal proteins and the assembly of the flagellar membrane and membrane proteins. Fully grown steady-state Chlamydomonas flagella release flagellar vesicles from their tips and failure to resupply membrane should affect flagellar length. To study vesicle release, plasma and flagellar membrane surface proteins were vectorially pulse-labeled and flagella and vesicles were analyzed for biotinylated proteins. Based on the quantity of biotinylated proteins in purified vesicles, steady-state flagella appeared to shed a minimum of 16% of their surface membrane per hour, equivalent to a complete flagellar membrane being released every 6 hrs or less. Brefeldin-A destroyed Chlamydomonas Golgi, inhibited the secretory pathway, inhibited flagellar regeneration, and induced full-length flagella to disassemble within 6 hrs, consistent with flagellar disassembly being induced by a failure to resupply membrane. In contrast to membrane lipids, a pool of biotinylatable membrane proteins was identified that was sufficient to resupply flagella as they released vesicles for 6 hrs in the absence of protein synthesis and to support one and nearly two regenerations of flagella following amputation. These studies reveal the importance of the secretory pathway to assemble and maintain full-length flagella.
Collapse
Affiliation(s)
- William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|