1
|
Zeng Y, Verstraeten I, Trinh HK, Lardon R, Schotte S, Olatunji D, Heugebaert T, Stevens C, Quareshy M, Napier R, Nastasi SP, Costa A, De Rybel B, Bellini C, Beeckman T, Vanneste S, Geelen D. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. THE NEW PHYTOLOGIST 2023; 240:1883-1899. [PMID: 37787103 DOI: 10.1111/nph.19292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Collapse
Affiliation(s)
- Yinwei Zeng
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Inge Verstraeten
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, 900000, Can Tho City, Vietnam
| | - Robin Lardon
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sebastien Schotte
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damilola Olatunji
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Paola Nastasi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133, Milan, Italy
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90736, Umeå, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Danny Geelen
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
2
|
Moghadam A, Foroozan E, Tahmasebi A, Taghizadeh MS, Bolhassani M, Jafari M. System network analysis of Rosmarinus officinalis transcriptome and metabolome-Key genes in biosynthesis of secondary metabolites. PLoS One 2023; 18:e0282316. [PMID: 36862714 PMCID: PMC9980811 DOI: 10.1371/journal.pone.0282316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Medicinal plants contain valuable compounds that have attracted worldwide interest for their use in the production of natural drugs. The presence of compounds such as rosmarinic acid, carnosic acid, and carnosol in Rosmarinus officinalis has made it a plant with unique therapeutic effects. The identification and regulation of the biosynthetic pathways and genes will enable the large-scale production of these compounds. Hence, we studied the correlation between the genes involved in biosynthesis of the secondary metabolites in R. officinalis using proteomics and metabolomics data by WGCNA. We identified three modules as having the highest potential for the metabolite engineering. Moreover, the hub genes highly connected to particular modules, TFs, PKs, and transporters were identified. The TFs of MYB, C3H, HB, and C2H2 were the most likely candidates associated with the target metabolic pathways. The results indicated that the hub genes including Copalyl diphosphate synthase (CDS), Phenylalanine ammonia lyase (PAL), Cineole synthase (CIN), Rosmarinic acid synthase (RAS), Tyrosine aminotransferase (TAT), Cinnamate 4-hydroxylase (C4H), and MYB58 are responsible for biosynthesis of important secondary metabolites. Thus, we confirmed these results using qRT-PCR after treating R. officinalis seedlings with methyl jasmonate. These candidate genes may be employed for genetic and metabolic engineering research to increase R. officinalis metabolite production.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Eisa Foroozan
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | | | - Morteza Jafari
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Bai J, Song MJ, Gao J, Li G. Whole genome duplication and dispersed duplication characterize the evolution of the plant PINOID gene family across plant species. Gene 2022; 829:146494. [PMID: 35447241 DOI: 10.1016/j.gene.2022.146494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
PINOID is a kinase belonging to the AGCVIII family, which regulates the polar distribution of PIN proteins and plays an important role in plant geotropism. However, the origin and evolutionary history of this gene family is not fully known. In this study, we identified 79 similar sequences across 17 plant species genomes (PINOID, D6PK, PINOID2, "hypothetical kinase"). Our results show that the AGCVIII kinase family may have originated from related "Hypothetical Kinases" that come out sister to the rest of the gene family members. These kinases differentiated their functions are found in different plant classes: D6PK in moss and PINOID and PINOID2 evolving in angiosperms including the pioneer plant Amborella trichopoda. Our study investigates the evolution of PINOID kinases from a phylogenetic perspective giving us insight into how this important plant signal transduction network switch evolved to play a fundamental and important function in plant growth and development. We highlight the importance of whole genome duplications and dispersed duplications as opposed to tandem duplications in the evolution of this gene family.
Collapse
Affiliation(s)
- Jiangshan Bai
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Michael J Song
- Department of Biology, California State University East Bay, Hayward, CA, United States of America
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guiting Li
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Lanassa Bassukas AE, Xiao Y, Schwechheimer C. Phosphorylation control of PIN auxin transporters. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102146. [PMID: 34974229 DOI: 10.1016/j.pbi.2021.102146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
The directional transport of the phytohormone auxin is required for proper plant development and tropic growth. Auxin cell-to-cell transport gains directionality through the polar distribution of 'canonical' long PIN-FORMED (PIN) auxin efflux carriers. In recent years, AGC kinases, MAP kinases, Ca2+/CALMODULIN-DEPENDENT PROTEIN KINASE-RELATED KINASEs and receptor kinases have been implicated in the control of PIN activity, polarity and trafficking. In this review, we summarize the current knowledge in understanding the posttranslational regulation of PINs by these different protein kinase families. The proposed regulation of PINs by AGC kinases after salt stress and by the stress-activated MAP kinases suggest that abiotic and biotic stress factors may modulate auxin transport and thereby plant growth.
Collapse
Affiliation(s)
- Alkistis E Lanassa Bassukas
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany.
| |
Collapse
|
5
|
Zumajo-Cardona C, Little DP, Stevenson D, Ambrose BA. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. Sci Rep 2021; 11:21995. [PMID: 34754044 PMCID: PMC8578549 DOI: 10.1038/s41598-021-01483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Although the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Damon P Little
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Dennis Stevenson
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- New York Botanical Garden, Bronx, NY, USA. .,The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
6
|
Zumajo-Cardona C, Ambrose BA. Deciphering the evolution of the ovule genetic network through expression analyses in Gnetum gnemon. ANNALS OF BOTANY 2021; 128:217-230. [PMID: 33959756 PMCID: PMC8324035 DOI: 10.1093/aob/mcab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The ovule is a synapomorphy of all seed plants (gymnosperms and angiosperms); however, there are some striking differences in ovules among the major seed plant lineages, such as the number of integuments or the orientation of the ovule. The genetics involved in ovule development have been well studied in the model species Arabidopsis thaliana, which has two integuments and anatropous orientation. This study is approached from what is known in arabidopsis, focusing on the expression patterns of homologues of four genes known to be key for the proper development of the integuments in arabidopsis: AINTEGUMENTA (ANT), BELL1, (BEL1), KANADIs (KANs) and UNICORN (UCN). METHODS We used histology to describe the morphoanatomical development from ovules to seeds in Gnetum gnemon. We carried out spatiotemporal expression analyses in G. gnemon, a gymnosperm, which has a unique ovule morphology with an integument covering the nucellus, two additional envelopes where the outermost becomes fleshy as the seed matures, and an orthotropous orientation. KEY RESULTS Our anatomical and developmental descriptions provide a framework for expression analyses in the ovule of G. gnemon. Our expression results show that although ANT, KAN and UCN homologues are expressed in the inner integument, their spatiotemporal patterns differ from those found in angiosperms. Furthermore, all homologues studied here are expressed in the nucellus, revealing major differences in seed plants. Finally, no expression of the studied homologues was detected in the outer envelopes. CONCLUSIONS Altogether, these analyses provide significant comparative data that allows us to better understand the functional evolution of these gene lineages, providing a compelling framework for evolutionary and developmental studies of seeds. Our findings suggest that these genes were most likely recruited from the sporangium development network and became restricted to the integuments of angiosperm ovules.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- The Graduate Center, City University of New York, New York, NY, USA
- For correspondence. E-mail
| |
Collapse
|
7
|
Chaudhary A, Chen X, Leśniewska B, Boikine R, Gao J, Wolf S, Schneitz K. Cell wall damage attenuates root hair patterning and tissue morphogenesis mediated by the receptor kinase STRUBBELIG. Development 2021; 148:270854. [PMID: 34251020 DOI: 10.1242/dev.199425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Cell wall remodeling is essential for the control of growth and development as well as the regulation of stress responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. Regulation of root hair fate and flower development in Arabidopsis thaliana requires signaling mediated by the atypical receptor kinase STRUBBELIG (SUB). Furthermore, SUB is involved in cell wall integrity signaling and regulates the cellular response to reduced levels of cellulose, a central component of the cell wall. Here, we show that continuous exposure to sub-lethal doses of the cellulose biosynthesis inhibitor isoxaben results in altered root hair patterning and floral morphogenesis. Genetically impairing cellulose biosynthesis also results in root hair patterning defects. We further show that isoxaben exerts its developmental effects through the attenuation of SUB signaling. Our evidence indicates that downregulation of SUB is a multi-step process and involves changes in SUB complex architecture at the plasma membrane, enhanced removal of SUB from the cell surface, and downregulation of SUB transcript levels. The results provide molecular insight into how the cell wall regulates cell fate and tissue morphogenesis.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xia Chen
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Barbara Leśniewska
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rodion Boikine
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jin Gao
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Sebastian Wolf
- Cell wall signaling group, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020; 579:409-414. [PMID: 32188942 DOI: 10.1038/s41586-020-2094-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023]
Abstract
Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.
Collapse
|
9
|
Zumajo-Cardona C, Ambrose BA. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol 2020; 147:106778. [PMID: 32165160 DOI: 10.1016/j.ympev.2020.106778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Gene duplication plays a decisive role in organismal diversification and in the appearance of novel structures. In plants the megagametophyte covered by the integuments, which after fertilization becomes the seed constitutes a novel structure: the ovule. In Arabidopsis thaliana, genetic mechanisms regulating ovule development, including the genetics underlying ovule initiation, ovule patterning and integument development, have been identified. Among seed plants, integuments are not only a novelty in evolution, but integuments also present an enormous morphological variation. This study is focused on the evolution of gene families that play a role in the proper morphological development of the integuments, BELL1 (BEL1), KANADIs (KAN1, KAN2, and KAN4/ATS), UNICORN (UCN) and SHORT INTEGUMENTS1 (SIN1). In Arabidopsis, BEL1 establishes the initiation of integument development. KAN1 and 2 act in the proper development of the outer integument. While ABERRANT TESTA SHAPE (ATS), is involved in the correct separation of both integuments. UCN acts in planar growth of the outer integument repressing ATS. SIN1 is involved in cell elongation in the integuments. The results of our analyses show that each of these genes has a different evolutionary history and that while gymnosperms appear to have a simpler ovule morphology, they have more homologues of these candidate genes than angiosperms. In addition, we present the conserved and novel motifs for each of these genes among seed plants and their selection constraints, which may be related to functional changes and to the diversity of ovule morphologies.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, USA; The Graduate Center, City University of New York, New York, NY 10016, USA
| | | |
Collapse
|
10
|
Chaudhary A, Chen X, Gao J, Leśniewska B, Hammerl R, Dawid C, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genet 2020; 16:e1008433. [PMID: 31961852 PMCID: PMC6994178 DOI: 10.1371/journal.pgen.1008433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/31/2020] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Plant cells are encased in a semi-rigid cell wall of complex build. As a consequence, cell wall remodeling is essential for the control of growth and development as well as the regulation of abiotic and biotic stress responses. Plant cells actively sense physico-chemical changes in the cell wall and initiate corresponding cellular responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. In Arabidopsis the atypical receptor kinase STRUBBELIG (SUB) mediates tissue morphogenesis. Here, we show that SUB-mediated signal transduction also regulates the cellular response to a reduction in the biosynthesis of cellulose, a central carbohydrate component of the cell wall. SUB signaling affects early increase of intracellular reactive oxygen species, stress gene induction as well as ectopic lignin and callose accumulation upon exogenous application of the cellulose biosynthesis inhibitor isoxaben. Moreover, our data reveal that SUB signaling is required for maintaining cell size and shape of root epidermal cells and the recovery of root growth after transient exposure to isoxaben. SUB is also required for root growth arrest in mutants with defective cellulose biosynthesis. Genetic data further indicate that SUB controls the isoxaben-induced cell wall stress response independently from other known receptor kinase genes mediating this response, such as THESEUS1 or MIK2. We propose that SUB functions in a least two distinct biological processes: the control of tissue morphogenesis and the response to cell wall damage. Taken together, our results reveal a novel signal transduction pathway that contributes to the molecular framework underlying cell wall integrity signaling. Plant cells are encapsulated by a semi-rigid and biochemically complex cell wall. This particular feature has consequences for multiple biologically important processes, such as cell and organ growth or various stress responses. For a plant cell to grow the cell wall has to be modified to allow cell expansion, which is driven by outward-directed turgor pressure generated inside the cell. In return, changes in cell wall architecture need to be monitored by individual cells, and to be coordinated across cells in a growing tissue, for an organ to attain its regular size and shape. Cell wall surveillance also comes into play in the reaction against certain stresses, including for example infection by plant pathogens, many of which break through the cell wall during infection, thereby generating wall-derived factors that can induce defense responses. There is only limited knowledge regarding the molecular system that monitors the composition and status of the cell wall. Here we provide further insight into the mechanism. We show that the cell surface receptor STRUBBELIG, previously known to control organ development in Arabidopsis, also promotes the cell’s response to reduced amounts of cellulose, a main component of the cell wall.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Xia Chen
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jin Gao
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Barbara Leśniewska
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- * E-mail:
| |
Collapse
|
11
|
Yue X, Guo Z, Shi T, Song L, Cheng Y. Arabidopsis AGC protein kinases IREH1 and IRE3 control root skewing. J Genet Genomics 2019; 46:259-267. [PMID: 30979587 DOI: 10.1016/j.jgg.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 11/19/2022]
Abstract
AGC protein kinases play important roles in plant growth and development. Several AGC kinases in Arabidopsis have been functionally characterized. However, the "AGC Other" subfamily, including IRE, IREH1, IRE3 and IRE4, has not been well understood. Here, we reported that ireh1 mutants displayed a root skewing phenotype, which can be enhanced by ire3 mutation. IREH1 and IRE3 were expressed in roots, consistent with their function in controlling root skewing. The fluorescence intensities of the microtubule marker KNpro:EGFP-MBD were decreased in ireh1, ire3 and ireh1 ire3 mutants compared to wild type. The microtubule arrangements in ireh1 and ireh1 ire3 mutants were also altered. IREH1 physically interacted with IRE3 in vitro and in planta. Thus, our findings demonstrate that IREH1 and IRE3 protein kinases play important roles in controlling root skewing, and maintaining microtubule network in Arabidopsis.
Collapse
Affiliation(s)
- Xiaozhen Yue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiai Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Teng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Scholz S, Pleßmann J, Enugutti B, Hüttl R, Wassmer K, Schneitz K. The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007927. [PMID: 30742613 PMCID: PMC6386418 DOI: 10.1371/journal.pgen.1007927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood. We have previously identified the Arabidopsis AGCVIII-class protein kinase UNICORN (UCN) as a central regulator of this process. Plants lacking UCN activity show spontaneous formation of ectopic multicellular protrusions in integuments and malformed petals indicating that UCN suppresses uncontrolled growth in those tissues. In the current model UCN regulates planar growth of integuments in part by directly repressing the putative transcription factor ABERRANT TESTA SHAPE (ATS). Here we report on the identification of 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) as a novel factor involved in UCN-mediated growth control. PDK1 constitutes a basic component of signaling mediated by AGC protein kinases throughout eukaryotes. Arabidopsis PDK1 is implied in stress responses and growth promotion. Here we show that loss-of-function mutations in PDK1 suppress aberrant growth in integuments and petals of ucn mutants. Additional genetic, in vitro, and cell biological data support the view that UCN functions by repressing PDK1. Furthermore, our data indicate that PDK1 is indirectly required for deregulated growth caused by ATS overexpression. Our findings support a model proposing that UCN suppresses ectopic growth in integuments through two independent processes: the attenuation of the protein kinase PDK1 in the cytoplasm and the repression of the transcription factor ATS in the nucleus.
Collapse
Affiliation(s)
- Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Janys Pleßmann
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regina Hüttl
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
13
|
Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. PLANT METHODS 2019; 15:120. [PMID: 31673277 PMCID: PMC6814113 DOI: 10.1186/s13007-019-0505-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. RESULTS We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. CONCLUSIONS The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.
Collapse
Affiliation(s)
- Rachele Tofanelli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Athul Vijayan
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Present Address: EU Research Lab, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
14
|
Coen O, Magnani E. Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci 2018; 75:2509-2518. [PMID: 29730767 PMCID: PMC6003975 DOI: 10.1007/s00018-018-2816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/26/2022]
Abstract
The seed habit represents a remarkable evolutionary advance in plant sexual reproduction. Since the Paleozoic, seeds carry a seed coat that protects, nourishes and facilitates the dispersal of the fertilization product(s). The seed coat architecture evolved to adapt to different environments and reproductive strategies in part by modifying its thickness. Here, we review the great natural diversity observed in seed coat thickness among angiosperms and its molecular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
15
|
Silveira SR, Dornelas MC, Martinelli AP. Perspectives for a Framework to Understand Aril Initiation and Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1919. [PMID: 28066474 PMCID: PMC5167701 DOI: 10.3389/fpls.2016.01919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
A differentiated structure called "aril" has been described in seeds of several plant species during the course of evolution and might be considered as a supernumerary integument. Besides its ecological function in seed dispersal, the structure also represents a relevant character for systematic classification and exhibits important properties that impart agronomic value in certain species. Little is known about the molecular pathways underlying this morphological innovation because it is absent in currently used model species. A remarkable feature of the seeds of Passiflora species is the presence of a conspicuous aril. This genus is known for the ornamental, medicinal, and food values of its species. In view of the molecular resources and tools available for some Passiflora species, we highlight the potential of these species as models for developmental studies of the aril.
Collapse
Affiliation(s)
- Sylvia R. Silveira
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicaba, Brazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| | - Adriana P. Martinelli
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicaba, Brazil
| |
Collapse
|
16
|
Barbosa ICR, Shikata H, Zourelidou M, Heilmann M, Heilmann I, Schwechheimer C. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development 2016; 143:4687-4700. [PMID: 27836964 DOI: 10.1242/dev.137117] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023]
Abstract
Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases.
Collapse
Affiliation(s)
- Inês C R Barbosa
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Melina Zourelidou
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Cellular Biochemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, Halle 06120, Germany
| | - Ingo Heilmann
- Institute for Biochemistry and Biotechnology, Cellular Biochemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, Halle 06120, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| |
Collapse
|
17
|
Lora J, Hormaza JI, Herrero M. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). THE NEW PHYTOLOGIST 2015; 208:584-95. [PMID: 25991552 DOI: 10.1111/nph.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/15/2015] [Indexed: 05/05/2023]
Abstract
While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| | - Maria Herrero
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, 50080, Zaragoza, Spain
| |
Collapse
|
18
|
Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A 2015; 112:12211-6. [PMID: 26378127 DOI: 10.1073/pnas.1512375112] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growing plant cells need to rigorously coordinate external signals with internal processes. For instance, the maintenance of cell wall (CW) integrity requires the coordination of CW sensing with CW remodeling and biosynthesis to avoid growth arrest or integrity loss. Despite the involvement of receptor-like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) subfamily and the reactive oxygen species-producing NADPH oxidases, it remains largely unknown how this coordination is achieved. ANXUR1 (ANX1) and ANX2, two redundant members of the CrRLK1L subfamily, are required for tip growth of the pollen tube (PT), and their closest homolog, FERONIA, controls root-hair tip growth. Previously, we showed that ANX1 overexpression mildly inhibits PT growth by oversecretion of CW material, whereas pollen tubes of anx1 anx2 double mutants burst spontaneously after germination. Here, we report the identification of suppressor mutants with improved fertility caused by the rescue of anx1 anx2 pollen tube bursting. Mapping of one these mutants revealed an R240C nonsynonymous substitution in the activation loop of a receptor-like cytoplasmic kinase (RLCK), which we named MARIS (MRI). We show that MRI is a plasma membrane-localized member of the RLCK-VIII subfamily and is preferentially expressed in both PTs and root hairs. Interestingly, mri-knockout mutants display spontaneous PT and root-hair bursting. Moreover, expression of the MRI(R240C) mutant, but not its wild-type form, partially rescues the bursting phenotypes of anx1 anx2 PTs and fer root hairs but strongly inhibits wild-type tip growth. Thus, our findings identify a novel positive component of the CrRLK1L-dependent signaling cascade that coordinates CW integrity and tip growth.
Collapse
|
19
|
Humphrey TV, Haasen KE, Aldea-Brydges MG, Sun H, Zayed Y, Indriolo E, Goring DR. PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:71-83. [PMID: 25262228 PMCID: PMC4265151 DOI: 10.1093/jxb/eru390] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered.
Collapse
Affiliation(s)
- Tania V Humphrey
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Katrina E Haasen
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - He Sun
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Yara Zayed
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Emily Indriolo
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| |
Collapse
|
20
|
Zourelidou M, Absmanner B, Weller B, Barbosa ICR, Willige BC, Fastner A, Streit V, Port SA, Colcombet J, de la Fuente van Bentem S, Hirt H, Kuster B, Schulze WX, Hammes UZ, Schwechheimer C. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife 2014; 3. [PMID: 24948515 DOI: 10.7554/elife.02860.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/17/2014] [Indexed: 05/27/2023] Open
Abstract
The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.
Collapse
Affiliation(s)
- Melina Zourelidou
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Birgit Absmanner
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Benjamin Weller
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Inês C R Barbosa
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Björn C Willige
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Astrid Fastner
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Verena Streit
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Sarah A Port
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale, Université Evry, Evry, France
| | | | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Université Evry, Evry, France
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | | | - Ulrich Z Hammes
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| |
Collapse
|
21
|
Zourelidou M, Absmanner B, Weller B, Barbosa ICR, Willige BC, Fastner A, Streit V, Port SA, Colcombet J, de la Fuente van Bentem S, Hirt H, Kuster B, Schulze WX, Hammes UZ, Schwechheimer C. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife 2014; 3. [PMID: 24948515 PMCID: PMC4091124 DOI: 10.7554/elife.02860] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/17/2014] [Indexed: 12/20/2022] Open
Abstract
The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the—in many cells—asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. DOI:http://dx.doi.org/10.7554/eLife.02860.001 In plants, a hormone called auxin controls the growth of the stems and roots. This chemical is transported from cell to cell, and its flow though the plant is redirected continuously as the plant is developing. Auxin is pumped out of cells by proteins in the cell membrane called ‘auxin efflux carriers’. These proteins are usually found on one side of each cell and this is what gives the direction to auxin transport. Zourelidou, Absmanner et al. now report that being positioned on the correct side of a plant cell is not enough to enable an efflux carrier to do its job—it must also be turned on by kinases before it can pump auxin out of cells. Kinases are enzymes that add phosphate groups to specific sites on other proteins, and plants without certain kinases are unable to transport auxin. When Zourelidou, Absmanner et al. produced the efflux carrier and a plant kinase—which turns the efflux carrier on—in immature egg cells from frogs, auxin was rapidly pumped out of the cells. However, cells that contained the efflux carrier but not the kinase could not transport the hormone. Importantly egg cells from frogs do not normally transport auxin, but these cells are commonly used in experiments because they are large, which makes them easier to work with in the lab. One of at least two kinases must tag a number of sites on the efflux carrier to ensure that it is switched on. It was already known that some of these sites are involved in making sure that the efflux carrier is located on the correct side of the cell. Zourelidou, Absmanner et al. also found that auxin itself encourages the addition of phosphate groups onto the efflux carrier. Though it was thought that knowing where the auxin transporters are was enough to explain the direction of auxin transport in plants, it is now clear that activation by the kinases needs to be taken into account too. And since these kinases may activate the transporters to different extents, identifying how these proteins are controlled, for example by auxin itself, will be the next challenge in the field. DOI:http://dx.doi.org/10.7554/eLife.02860.002
Collapse
Affiliation(s)
- Melina Zourelidou
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Birgit Absmanner
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Benjamin Weller
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Inês C R Barbosa
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Björn C Willige
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Astrid Fastner
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Verena Streit
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Sarah A Port
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale, Université Evry, Evry, France
| | | | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Université Evry, Evry, France
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | | | - Ulrich Z Hammes
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg, Germany
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Technische Universität München, Freising, Germany
| |
Collapse
|
22
|
Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 2014; 111:2830-5. [PMID: 24497510 DOI: 10.1073/pnas.1320457111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.
Collapse
|
23
|
Enugutti B, Kirchhelle C, Schneitz K. On the genetic control of planar growth during tissue morphogenesis in plants. PROTOPLASMA 2013; 250:651-61. [PMID: 22983223 DOI: 10.1007/s00709-012-0452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/15/2023]
Abstract
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
Collapse
Affiliation(s)
- Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany.
| | | | | |
Collapse
|
24
|
Enugutti B, Schneitz K. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC PLANT BIOLOGY 2013; 13:2. [PMID: 23281875 PMCID: PMC3560232 DOI: 10.1186/1471-2229-13-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/17/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth), thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN) maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS) protein, a member of the KANADI (KAN) family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. RESULTS Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. CONCLUSIONS These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS independently of an ATS/ETT complex required for integument initiation and they further emphasize the necessity to balance UCN and ATS proteins during maintenance of planar growth in integuments.
Collapse
Affiliation(s)
- Balaji Enugutti
- Present address: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3-5, 1030, Vienna, Austria
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany
| |
Collapse
|
25
|
Rademacher EH, Offringa R. Evolutionary Adaptations of Plant AGC Kinases: From Light Signaling to Cell Polarity Regulation. FRONTIERS IN PLANT SCIENCE 2012; 3:250. [PMID: 23162562 PMCID: PMC3499706 DOI: 10.3389/fpls.2012.00250] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/22/2012] [Indexed: 05/19/2023]
Abstract
Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues, internal stimuli can modify the activity or abundance of these proteins at the plasma membrane (PM). One such regulatory mechanism is protein phosphorylation by membrane-associated kinases, several of which are AGC kinases. The AGC kinase family is one of seven kinase families that are conserved in all eukaryotic genomes. In plants evolutionary adaptations introduced specific structural changes within the AGC kinases that most likely allow modulation of kinase activity by external stimuli (e.g., light). Starting from the well-defined structural basis common to all AGC kinases we review the current knowledge on the structure-function relationship in plant AGC kinases. Nine of the 39 Arabidopsis AGC kinases have now been shown to be involved in the regulation of auxin transport. In particular, AGC kinase-mediated phosphorylation of the auxin transporters ABCB1 and ABCB19 has been shown to regulate their activity, while auxin transporters of the PIN family are located to different positions at the PM depending on their phosphorylation status, which is a result of counteracting AGC kinase and PP6 phosphatase activities. We therefore focus on regulation of AGC kinase activity in this context. Identified structural adaptations of the involved AGC kinases may provide new insight into AGC kinase functionality and demonstrate their position as central hubs in the cellular network controlling plant development and growth.
Collapse
Affiliation(s)
- Eike H. Rademacher
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
- *Correspondence: Remko Offringa, Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, Netherlands. e-mail:
| |
Collapse
|