1
|
Zhang BB, Zhao YL, Lu YY, Shen JH, Li HY, Zhang HX, Yu XY, Zhang WC, Li G, Han ZY, Guo S, Zhang XT. TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression. Cell Commun Signal 2024; 22:438. [PMID: 39261825 PMCID: PMC11389234 DOI: 10.1186/s12964-024-01816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy. Functional investigations have shown that adeno-associated virus 9 (AAV9) mediated-TMEM100 overexpression mice attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis, and impaired heart structure and function. We subsequently demonstrated that adenoviral TMEM100 (AdTMEM100) mitigates phenylephrine (PE)-induced cardiomyocyte hypertrophy and downregulates the expression of cardiac hypertrophic markers in vitro, whereas TMEM100 knockdown exacerbates cardiomyocyte hypertrophy. The RNA sequences of the AdTMEM100 group and control group revealed that TMEM100 was involved in oxidative stress and the MAPK signaling pathway after PE stimulation. Mechanistically, we revealed that the transmembrane domain of TMEM100 (amino acids 53-75 and 85-107) directly interacts with the C-terminal region of TAK1 (amino acids 1-300) and inhibits the phosphorylation of TAK1 and its downstream molecules JNK and p38. TAK1-binding-defective TMEM100 failed to inhibit the activation of the TAK1-JNK/p38 pathway. Finally, the application of a TAK1 inhibitor (iTAK1) revealed that TAK1 is necessary for TMEM100-mediated cardiac hypertrophy. In summary, TMEM100 protects against pathological cardiac hypertrophy through the TAK1-JNK/p38 pathway and may serve as a promising target for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Yi-Lin Zhao
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yan-Yu Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Ji-Hong Shen
- Department of Electrocardiogram, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Yong Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Han-Xue Zhang
- Institute of Chronic Non-Communicable Diseases, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Xiao-Yue Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Gang Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Zhan-Ying Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| | - Xu-Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Declercq M, Treps L, Geldhof V, Conchinha NV, de Rooij LPMH, Subramanian A, Feyeux M, Cotinat M, Boeckx B, Vinckier S, Dupont L, Vermeulen F, Boon M, Proesmans M, Libbrecht L, Pirenne J, Monbaliu D, Jochmans I, Dewerchin M, Eelen G, Roskams T, Verleden S, Lambrechts D, Carmeliet P, Witters P. Single-cell RNA sequencing of cystic fibrosis liver disease explants reveals endothelial complement activation. Liver Int 2024; 44:2382-2395. [PMID: 38847551 DOI: 10.1111/liv.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Mathias Declercq
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Nadine V Conchinha
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Marine Cotinat
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Bram Boeckx
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lieven Dupont
- Department of Pneumology, UZ Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Francois Vermeulen
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Mieke Boon
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Marijke Proesmans
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Louis Libbrecht
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Department of Pathology, AZ Groeninge, Kortrijk, Belgium
- Laboratory of Hepatology, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Stijn Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
- Department of ASTARC, University of Antwerp, Wilrijk, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter Witters
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
4
|
Wang G, Wen B, Guo M, Li E, Zhang Y, Whitsett JA, Kalin TV, Kalinichenko VV. Identification of endothelial and mesenchymal FOXF1 enhancers involved in alveolar capillary dysplasia. Nat Commun 2024; 15:5233. [PMID: 38898031 PMCID: PMC11187179 DOI: 10.1038/s41467-024-49477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.
Collapse
Affiliation(s)
- Guolun Wang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Bingqiang Wen
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Enhong Li
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Yufang Zhang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA.
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Liu B, Yi D, Ma X, Ramirez K, Zhao H, Xia X, Fallon MB, Kalinichenko VV, Qiu S, Dai Z. A Novel Animal Model for Pulmonary Hypertension: Lung Endothelial-Specific Deletion of Egln1 in Mice. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10007. [PMID: 38974505 PMCID: PMC11225937 DOI: 10.35534/jrbtm.2024.10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by high blood pressure in the pulmonary arteries, which can potentially lead to heart failure over time. Previously, our lab found that endothelia-specific knockout of Egln1, encoding prolyl 4-hydroxylase-2 (PHD2), induced spontaneous pulmonary hypertension (PH). Recently, we elucidated that Tmem100 is a lung-specific endothelial gene using Tmem100-CreERT2 mice. We hypothesize that lung endothelial-specific deletion of Egln1 could lead to the development of PH without affecting Egln1 gene expression in other organs. Tmem100-CreERT2 mice were crossed with Egln1 flox/flox mice to generate Egln1 f/f ;Tmem100-CreERT2 (LiCKO) mice. Western blot and immunofluorescent staining were performed to verify the knockout efficacy of Egln1 in multiple organs of LiCKO mice. PH phenotypes, including hemodynamics, right heart size and function, pulmonary vascular remodeling, were evaluated by right heart catheterization and echocardiography measurements. Tamoxifen treatment induced Egln1 deletion in the lung endothelial cells (ECs) but not in other organs of adult LiCKO mice. LiCKO mice exhibited an increase in right ventricular systolic pressure (RVSP, ~35 mmHg) and right heart hypertrophy. Echocardiography measurements showed right heart hypertrophy, as well as cardiac and pulmonary arterial dysfunction. Pulmonary vascular remodeling, including increased pulmonary wall thickness and muscularization of distal pulmonary arterials, was enhanced in LiCKO mice compared to wild-type mice. Tmem100 promoter-mediated lung endothelial knockout of Egln1 in mice leads to development of spontaneous PH. LiCKO mice could serve as a novel mouse model for PH to study lung and other organ crosstalk.
Collapse
Affiliation(s)
- Bin Liu
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Dan Yi
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Hanqiu Zhao
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Vladimir V. Kalinichenko
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Phoenix Children’s Health Research Institute, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Wang X, Sun H, Yu H, Du B, Fan Q, Jia B, Zhang Z. Bone morphogenetic protein 10, a rising star in the field of diabetes and cardiovascular disease. J Cell Mol Med 2024; 28:e18324. [PMID: 38760897 PMCID: PMC11101671 DOI: 10.1111/jcmm.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024] Open
Abstract
Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xueyin Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Helin Sun
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Haomiao Yu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Bingyu Du
- Teaching and Research Section of Internal Medicine, College of MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qi Fan
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Baoxue Jia
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Zhongwen Zhang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
7
|
Szafranski P, Patrizi S, Gambin T, Afzal B, Schlotterbeck E, Karolak JA, Deutsch G, Roberts D, Stankiewicz P. Diminished TMEM100 Expression in a Newborn With Acinar Dysplasia and a Novel TBX4 Variant: A Case Report. Pediatr Dev Pathol 2024; 27:255-259. [PMID: 38044468 PMCID: PMC11087193 DOI: 10.1177/10935266231213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving TBX4, FGF10, or FGFR2. Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation. Genomic analyses revealed a novel deleterious heterozygous missense variant c.728A>C (p.Asn243Thr) in TBX4 that arose de novo on paternal chromosome 17. We also identified 6 candidate hypomorphic rare variants in the TBX4 enhancer in trans to TBX4 coding variant. Gene expression analyses of proband's lung tissue showed a significant reduction of TMEM100 expression with near absence of TMEM100 within the endothelium of arteries and capillaries by immunohistochemistry. These results support the pathogenicity of the detected TBX4 variant and provide further evidence that disrupted signaling between TBX4 and TMEM100 may contribute to severe lung phenotypes in humans, including AcDys.
Collapse
Affiliation(s)
| | - Silvia Patrizi
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Newton-Wellesley Hospital, Harvard Medical School, Boston, MA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Bushra Afzal
- Division of Neonatology, Department of Pediatrics, Harvard University School of Medicine, Boston, MA
| | - Emily Schlotterbeck
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Gail Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Bzdęga K, Biela M, Deutsch GH, Kitzmiller JA, Rydzanicz M, Płoski R, Whitsett JA, Śmigiel R, Karolak JA. A novel non-recurrent CNV deletion involving TBX4 and leaving TBX2 intact causes congenital alveolar dysplasia. Clin Genet 2024; 105:190-195. [PMID: 37821225 PMCID: PMC10842446 DOI: 10.1111/cge.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Congenital alveolar dysplasia (CAD) belongs to rare lethal lung developmental disorders (LLDDs) in neonates, manifesting with acute respiratory failure and pulmonary arterial hypertension refractory to treatment. The majority of CAD cases have been associated with copy-number variant (CNV) deletions at 17q23.1q23.2 or 5p12. Most CNV deletions at 17q23.1q23.2 were recurrent and encompassed two closely located genes, TBX4 and TBX2. In a few CAD cases, intragenic frameshifting deletions or single-nucleotide variants (SNVs) involved TBX4 but not TBX2. Here, we describe a male neonate who died at 27 days of life from acute respiratory failure caused by lung growth arrest along the spectrum of CAD confirmed by histopathological assessment. Trio-based genome sequencing revealed in the proband a novel non-recurrent ~1.07 Mb heterozygous CNV deletion at 17q23.2, encompassing TBX4 that arose de novo on the paternal chromosome. This is the first report of a larger-sized CNV deletion in a CAD patient involving TBX4 and leaving TBX2 intact. Our results, together with previous reports, indicate that perturbations of TBX4, rather than TBX2, cause severe lung phenotypes in humans.
Collapse
Affiliation(s)
- Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Biela
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Gail H Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joseph A Kitzmiller
- Cincinnati Childrens Hospital Medical Center, Neonatology and Pulmonary Biology, Cincinnati, Ohio, USA
| | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert Śmigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Aghagolzadeh P, Plaisance I, Bernasconi R, Treibel TA, Pulido Quetglas C, Wyss T, Wigger L, Nemir M, Sarre A, Chouvardas P, Johnson R, González A, Pedrazzini T. Assessment of the Cardiac Noncoding Transcriptome by Single-Cell RNA Sequencing Identifies FIXER, a Conserved Profibrogenic Long Noncoding RNA. Circulation 2023; 148:778-797. [PMID: 37427428 DOI: 10.1161/circulationaha.122.062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Parisa Aghagolzadeh
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Riccardo Bernasconi
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, United Kingdom (T.A.T.)
| | - Carlos Pulido Quetglas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Tania Wyss
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland (T.W.)
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Leonore Wigger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Mohamed Nemir
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Switzerland (A.S.)
| | - Panagiotis Chouvardas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Rory Johnson
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain (A.G.)
- CIBERCV, Madrid, Spain (A.G.)
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| |
Collapse
|
10
|
Cui H, Guo Z, Guo Z, Fan Z, Shen N, Qi X, Ma Y, Zhu Y, Wu X, Chen B, Xiang H. TMEM100 Regulates Neuropathic Pain by Reducing the Expression of Inflammatory Factors. Mediators Inflamm 2023; 2023:9151967. [PMID: 37469758 PMCID: PMC10352538 DOI: 10.1155/2023/9151967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
There is no effective treatment for peripheral nerve injury-induced chronic neuropathic pain (NP), which profoundly impacts the quality of life of those affected. Transmembraneprotein100 (TMEM100) is considered to be a pain regulatory protein and is expressed in the dorsal root ganglion (DRG) of rats. However, the mechanism of pain regulation and the expression of TMEM100 following various peripheral nerve injuries are unclear. In this study, we constructed two pain models of peripheral nerve injury: tibial nerve injury (TNI) and chronic constriction injury (CCI). This study found that the Paw Withdrawal Mechanical Threshold (PWMT) and Paw Withdraw Thermal Latency (PWTL) of the rats in the two pain models decreased significantly, and the expression of TMEM100 in the DRG of two groups also decreased significantly. Furthermore, the decrease in the CCI group was more obvious than in the TNI group. There was no significant statistical significance (P > 0.05). We constructed an adeno-associated virus 6 (AAV6) vector expressing recombinant fluorescent TMEM100 protein and injected it into the sciatic nerve (SN) of two pain models: CCI and TNI. PWMT and PWTL were significantly increased in the two groups, along with the expression of TMEM100 in the spinal cord and DRG. It also significantly inhibited the activation of microglia, astrocytes, and several inflammatory mediators (TNF- α, IL-1 β, and IL-6). In summary, the results of this study suggested that TMEM100 might be a promising molecular strategy for the treatment of NP, and its anti-inflammatory effects might play an important role in pain relief.
Collapse
Affiliation(s)
- Huifei Cui
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhaoyang Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zuoran Fan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Nana Shen
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoying Qi
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuanye Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youfu Zhu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
11
|
Li T, Conroy KL, Kim AM, Halmai J, Gao K, Moreno E, Wang A, Passerini AG, Nolta JA, Zhou P. Role of MEF2C in the Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cells 2023; 41:341-353. [PMID: 36639926 PMCID: PMC10128960 DOI: 10.1093/stmcls/sxad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) not only provide an abundant source of vascular cells for potential therapeutic applications in vascular disease but also constitute an excellent model for understanding the mechanisms that regulate the differentiation and the functionality of vascular cells. Here, we reported that myocyte enhancer factor 2C (MEF2C) transcription factor, but not any other members of the MEF2 family, was robustly upregulated during the differentiation of vascular progenitors and endothelial cells (ECs) from hiPSCs. Vascular endothelial growth factors (VEGF) strongly induced MEF2C expression in endothelial lineage cells. The specific upregulation of MEF2C during the commitment of endothelial lineage was dependent on the extracellular signal regulated kinase (ERK). Moreover, knockdown of MEF2C with shRNA in hiPSCs did not affect the differentiation of ECs from these hiPSCs, but greatly reduced the migration and tube formation capacity of the hiPSC-derived ECs. Through a chromatin immunoprecipitation-sequencing, genome-wide RNA-sequencing, quantitative RT-PCR, and immunostaining analyses of the hiPSC-derived endothelial lineage cells with MEF2C inhibition or knockdown compared to control hiPSC-derived ECs, we identified TNF-related apoptosis inducing ligand (TRAIL) and transmembrane protein 100 (TMEM100) as novel targets of MEF2C. This study demonstrates an important role for MEF2C in regulating human EC functions and highlights MEF2C and its downstream effectors as potential targets to treat vascular malfunction-associated diseases.
Collapse
Affiliation(s)
- Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Kelsey L Conroy
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Amy M Kim
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Julian Halmai
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Kewa Gao
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Emily Moreno
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jan A Nolta
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Ping Zhou
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| |
Collapse
|
12
|
Guo X, Niu Y, Han W, Han X, Chen Q, Tian S, Zhu Y, Bai D, Li K. The ALK1‑Smad1/5‑ID1 pathway participates in tumour angiogenesis induced by low‑dose photodynamic therapy. Int J Oncol 2023; 62:55. [PMID: 36928315 PMCID: PMC10019755 DOI: 10.3892/ijo.2023.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and low‑invasive tumour therapy. However, it can induce tumour angiogenesis, which is a main factor leading to tumour recurrence and metastasis. Activin receptor‑like kinase‑1 (ALK1) is a key factor regulating angiogenesis. However, it remains unclear whether ALK1 plays an unusual role in low‑dose PDT‑induced tumour angiogenesis. In the present study, human umbilical vein endothelial cells (HUVECs) co‑cultured with breast cancer MDA‑MB‑231 cells (termed HU‑231 cells) were used to construct an experimental model of tumour angiogenesis induced by low‑dose PDT. The viability, and the proliferative, invasive, migratory, as well as the tube‑forming ability of the HU‑231 cells were evaluated following low‑dose PDT. In particular, ALK1 inhibitor and and an adenovirus against ALK1 were used to further verify the role of ALK1 in low‑dose PDT‑induced tumour angiogenesis. Moreover, the expression of ALK1, inhibitor of DNA binding 1 (ID1), Smad 1, p‑Smad1/5, AKT and PI3K were detected in order to verify the underlying mechanisms. The findings indicated that low‑dose PDT enhanced the proliferative ability of the HU‑231 cells and reinforced their migratory, invasive and tube formation capacity. However, these effects were reversed with the addition of an ALK1 inhibitor or by the knockdown of ALK1 using adenovirus. These results indicated that ALK1 was involved and played a critical role in tumour angiogenesis induced by low‑dose PDT. Furthermore, ALK1 was found to participate in PDT‑induced tumour angiogenesis by activating the Smad1/5‑ID1 pathway, as opposed to the PI3K/AKT pathway. On the whole, the present study, for the first time, to the best of our knowledge, demonstrates that ALK1 is involved in PDT‑induced tumour angiogenesis. The inhibition of ALK1 can suppress PDT‑induced tumour angiogenesis, which can enhance the effects of PDT and may thus provide a novel treatment strategy for PDT.
Collapse
Affiliation(s)
- Xiya Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yajuan Niu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wang Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Si Tian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| |
Collapse
|
13
|
Pan J, Liu B, Dai Z. The Role of a Lung Vascular Endothelium Enriched Gene TMEM100. Biomedicines 2023; 11:937. [PMID: 36979916 PMCID: PMC10045937 DOI: 10.3390/biomedicines11030937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Transmembrane protein 100 (TMEM100) is a crucial factor in the development and maintenance of the vascular system. The protein is involved in several processes such as angiogenesis, vascular morphogenesis, and integrity. Furthermore, TMEM100 is a downstream target of the BMP9/10 and BMPR2/ALK1 signaling pathways, which are key regulators of vascular development. Our recent studies have shown that TMEM100 is a lung endothelium enriched gene and plays a significant role in lung vascular repair and regeneration. The importance of TMEM100 in endothelial cells' regeneration was demonstrated when Tmem100 was specifically deleted in endothelial cells, causing an impairment in their regenerative ability. However, the role of TMEM100 in various conditions and diseases is still largely unknown, making it an interesting area of research. This review summarizes the current knowledge of TMEM100, including its expression pattern, function, molecular signaling, and clinical implications, which could be valuable in the development of novel therapies for the treatment of cardiovascular and pulmonary diseases.
Collapse
Affiliation(s)
- Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Sarver Heart Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Ye Z, Xia Y, Li L, Li B, Chen W, Han S, Zhou X, Chen L, Yu W, Ruan Y, Cheng F. Effect of transmembrane protein 100 on prostate cancer progression by regulating SCNN1D through the FAK/PI3K/AKT pathway. Transl Oncol 2022; 27:101578. [PMID: 36375375 PMCID: PMC9661392 DOI: 10.1016/j.tranon.2022.101578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of transmembrane (TMEM) proteins in the progression of prostate cancer (PCa) remain unknown. This study aims to explore the functions of TMEM100 in PCa. To explore the expression, regulation, and effects of TMEM100 in PCa, two PCa cell lines and 30 PCa tissue samples with adjacent control tissues were examined. Online databases, immunohistochemistry, immunofluorescence, western blot, flow cytometry, colony formation, wound healing, transwell assays, and xenograft mouse models were used to explore effects of TMEM100 relevant to PCa. TMEM100 expression was shown to decrease in PCa patients, and low TMEM100 expression was associated with tumor stage and metastasis. Overexpression of TMEM100 suppressed PCa progression by inhibiting the FAK/PI3K/AKT signaling pathway. Tumor size was smaller in TMEM100 overexpressing PCa cells in xenograft mice than in control mice. We also found that TMEM100 could regulate SCNN1D by inhibiting FAK/PI3K/AKT signaling in PCa cell lines. Taken together, our findings indicate that TMEM100 is a tumor suppressor that plays a vital role in preventing PCa proliferation, migration, and invasion through inhibition of FAK/PI3K/AKT signaling. These studies suggest that TMEM100 can be used as a predictive biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zehua Ye
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Yuqi Xia
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Lei Li
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | | | | | | | | | | | | | - Yuan Ruan
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Fan Cheng
- Corresponding author at: Department of Urology, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
15
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
16
|
Zheng Y, Zhao Y, Jiang J, Zou B, Dong L. Transmembrane Protein 100 Inhibits the Progression of Colorectal Cancer by Promoting the Ubiquitin/Proteasome Degradation of HIF-1α. Front Oncol 2022; 12:899385. [PMID: 35928881 PMCID: PMC9343598 DOI: 10.3389/fonc.2022.899385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Transmembrane protein 100 (TMEM100) is involved in embryonic cardiovascular system development. However, the biological role of TMEM100 in human cancers, particularly colorectal cancer (CRC), is unclear. In this study, tissue microarrays were stained using immunohistochemistry methods to evaluate the association between TMEM100 levels and clinic-pathological features for CRC. Kaplan–Meier and log-rank tests revealed that decreased levels of TMEM100 correlated with shorter overall survival. Cox regression revealed that reduced levels of TMEM100 was an independent prognostic factor for detrimental survival in CRC. A lentiviral vector was used to overexpress TMEM100 in HCT116 cells, and small interfering RNA was used to knockdown TMEM100 in SW480 cells. The CCK-8 assay, colony formation analysis, cell cycle analysis, cell migration assay, mouse xenograft model and mouse lung metastasis model showed that TMEM100 suppressed CRC cell proliferation and migration in vitro and in vivo. IHC scores of TMEM100 and HIF-1α were significantly negatively correlated. A half-time determination analysis in which cells were treated with cycloheximide revealed that TMEM100 shortened the HIF-1α half-life. Further immunoprecipitation experimental results showed that TMEM100 promoted the ubiquitination of HIF-1α, which caused HIF-1α degradation via the 26S proteasome pathway. Angiogenesis assay and migration assay results revealed that TMEM100 suppressed the migration and angiogenesis induction capacities of HCT116 cells, but this inhibitory effect was abolished when HIF-1α degradation was blocked by MG132 treatment. These results indicated that TMEM100 inhibited the migration and the angiogenesis induction capacities of CRC cells by enhancing HIF-1α degradation via ubiquitination/proteasome pathway.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ying Zheng, ; Lei Dong,
| | - Yitong Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiong Jiang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Baicang Zou
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ying Zheng, ; Lei Dong,
| |
Collapse
|
17
|
Karolak JA, Deutsch G, Gambin T, Szafranski P, Popek E, Stankiewicz P. Transcriptome and Immunohistochemical Analyses in TBX4- and FGF10-Deficient Lungs Imply TMEM100 as a Mediator of Human Lung Development. Am J Respir Cell Mol Biol 2022; 66:694-697. [PMID: 35648090 PMCID: PMC9163642 DOI: 10.1165/rcmb.2021-0470le] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Gail Deutsch
- University of Washington School of MedicineSeattle, Washington
| | - Tomasz Gambin
- Baylor College of MedicineHouston, Texas
- Warsaw University of TechnologyWarsaw, Poland
| | | | | | | |
Collapse
|
18
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
19
|
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 2022; 13:2080. [PMID: 35440116 PMCID: PMC9019054 DOI: 10.1038/s41467-022-29746-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.
Collapse
Affiliation(s)
- Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Liu J, Lin F, Wang X, Li C, Qi Q. GATA binding protein 5-mediated transcriptional activation of transmembrane protein 100 suppresses cell proliferation, migration and epithelial-to-mesenchymal transition in prostate cancer DU145 cells. Bioengineered 2022; 13:7972-7983. [PMID: 35358005 PMCID: PMC9162018 DOI: 10.1080/21655979.2021.2018979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been reported that transmembrane protein 100 (TMEM100) acts as a tumor regulator in several types of cancers. However, whether the expression of TMEM100 is associated with the development and prognosis of prostate cancer (PCa) remains elusive. Therefore, the present study aimed to uncover the role of GATA binding protein 5 (GATA5)-mediated activation of TMEM100 in the proliferation, migration and epithelial-to-mesenchymal transition (EMT) of PCa cells. The expressions of TMEM100 and GATA5 in PCa patients were analyzed by the GEPIA database. The binding site of GATA5 and TMEM100 promoter was predicted by the JASPAR database. Expressions of TMEM100 and GATA5 in PCa cells were detected by qRT-PCR and Western blot analysis. Cell Counting Kit 8 and colony formation assays were performed to measure cell proliferation. In addition, cell migration, invasion and the expression of EMT-associated proteins were evaluated using wound healing, transwell assay and Western blotting assays, respectively. The bioinformatics analysis revealed that TMEM100 was downregulated in PCa and was associated with overall survival of PCa. In addition, TMEM10 overexpression attenuated cell proliferation, migration, invasion and EMT in PCa cells. The interaction between TMEM100 and GATA5 was verified using dual luciferase reporter and chromatin immunoprecipitation assays. Furthermore, the results showed that GATA5 was downregulated and GATA5 silencing reversed the inhibitory effects of TMEM10 on PCa cells. Overall, the current study suggested that the GATA5-mediated transcriptional activation of TMEM100 could affect the behavior of PCa cells and was associated with poor prognosis in PCa.
Collapse
Affiliation(s)
- Jiaolin Liu
- Department of Urology, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Fanlu Lin
- Department of Urology, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Xin Wang
- Department of Urology, Linyi People's Hospital, Linyi, Shandong, China
| | - Chaopeng Li
- Department of Urology, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Qiangyuan Qi
- Department of Urology, The Central Hospital of Linyi, Linyi, Shandong, China
| |
Collapse
|
21
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
22
|
Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module. Nat Commun 2021; 12:6562. [PMID: 34772946 PMCID: PMC8589987 DOI: 10.1038/s41467-021-26605-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. Yet, how slow cell cycle can cause the establishment of adult NSCs remains largely unknown. Here, we demonstrate that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate. Adult neural stem cells are derived from an embryonic population of slowcycling progenitor cells, though how reduced cycling speed leads to establishment of the adult population has remained elusive. Here they show that non-oscillatory Notch-Hey signaling induced by slow-cycling contributes to long term maintenance of neural stem cells.
Collapse
|
23
|
Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, Peng LH. Plant Exosomes As Novel Nanoplatforms for MicroRNA Transfer Stimulate Neural Differentiation of Stem Cells In Vitro and In Vivo. NANO LETTERS 2021; 21:8151-8159. [PMID: 34586821 DOI: 10.1021/acs.nanolett.1c02530] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into functional neural cells has been widely investigated for treating neural diseases. However, the limited neural differentiation of BMSCs remains a big challenge to overcome. Herein, for the first time, ginseng-derived exosomes (G-Exos) were demonstrated to have excellent efficiency in stimulating the neural differentiation of BMSCs by transferring the incorporated miRNAs to BMSCs efficiently. In vivo, a photo-cross-linkable hydrogel with chemokine and G-Exos loaded shows strong efficacy in recruiting and directing the neural differentiation of BMSCs in the program. G-Exos were demonstrated to be promising nanoplatforms in transferring plant-derived miRNAs to mammalian stem cells for neural differentiation both in vitro and in vivo, possessing great potential in neural regenerative medicine.
Collapse
Affiliation(s)
- Xue-Han Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tie-Jun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mu-Yang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yi-Yu Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| |
Collapse
|
24
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
25
|
Karolak JA, Gambin T, Szafranski P, Maywald RL, Popek E, Heaney JD, Stankiewicz P. Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respir Res 2021; 22:212. [PMID: 34315444 PMCID: PMC8314029 DOI: 10.1186/s12931-021-01797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznań, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Ma J, Yan T, Bai Y, Ye M, Ma C, Ma X, Zhang L. TMEM100 negatively regulated by microRNA‑106b facilitates cellular apoptosis by suppressing survivin expression in NSCLC. Oncol Rep 2021; 46:185. [PMID: 34278505 DOI: 10.3892/or.2021.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) is a common malignant tumour. Nevertheless, the 5‑year survival rate of NSCLC patients remains poor. Thus, identifying critical factors involved in regulating the progression of NSCLC is important for providing potential treatment targets. In the present study, it was observed that transmembrane protein 100 (TMEM100) was significantly downregulated in NSCLC tissues compared with paired peritumoral tissues. Decreased TMEM100 expression was associated with poor clinical outcomes in NSCLC patients. Moreover, TMEM100 overexpression inhibited colony formation and facilitated apoptosis by suppressing survivin expression in NSCLC cells, whereas TMEM100 knockdown had the opposite effect. In addition, microRNA (miR)‑106b, a miR with controversial roles in different human cancers, was upregulated in NSCLC and directly downregulated TMEM100 expression. The roles of miR‑106b in cell survival were mitigated by the restoration of TMEM100. The aforementioned results indicated that TMEM100 induced cell apoptosis and inhibited cell survival by serving as a tumour suppressor and that miR‑106b‑mitigatedTMEM100 expression defined a potentially oncogenic pathway in NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, P.R. China
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ming Ye
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
27
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
28
|
Vesprey A, Suh ES, Aytürk DG, Yang X, Rogers M, Sosa B, Niu Y, Kalajzic I, Ivashkiv LB, Bostrom MPG, Ayturk UM. Tmem100- and Acta2-Lineage Cells Contribute to Implant Osseointegration in a Mouse Model. J Bone Miner Res 2021; 36:1000-1011. [PMID: 33528844 PMCID: PMC8715516 DOI: 10.1002/jbmr.4264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/11/2022]
Abstract
Metal implants are commonly used in orthopedic surgery. The mechanical stability and longevity of implants depend on adequate bone deposition along the implant surface. The cellular and molecular mechanisms underlying peri-implant bone formation (ie, osseointegration) are incompletely understood. Herein, our goal was to determine the specific bone marrow stromal cell populations that contribute to bone formation around metal implants. To do this, we utilized a mouse tibial implant model that is clinically representative of human joint replacement procedures. Using a lineage-tracing approach, we found that both Acta2.creERT2 and Tmem100.creERT2 lineage cells are involved in peri-implant bone formation, and Pdgfra- and Ly6a/Sca1-expressing stromal cells (PαS cells) are highly enriched in both lineages. Single-cell RNA-seq analysis indicated that PαS cells are quiescent in uninjured bone tissue; however, they express markers of proliferation and osteogenic differentiation shortly after implantation surgery. Our findings indicate that PαS cells are mobilized to repair bone tissue and participate in implant osseointegration after surgery. Biologic therapies targeting PαS cells might improve osseointegration in patients undergoing orthopedic procedures. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York, NY, USA
| | | | | | - Yingzhen Niu
- Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Ivo Kalajzic
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Lionel B Ivashkiv
- Hospital for Special Surgery, New York, NY, USA
- Departments of Medicine and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Mathias PG Bostrom
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Ugur M Ayturk
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
29
|
Du J, He H, Li Z, He J, Bai Z, Liu B, Lan Y. Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution. Biochem Biophys Res Commun 2021; 558:161-167. [PMID: 33930817 DOI: 10.1016/j.bbrc.2021.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Current understanding of hematopoietic stem cell (HSC) development comes from mouse models is considered to be evolutionarily conserved in human. However, the cross-species comparison of the transcriptomic profiles of developmental HSCs at single-cell level is still lacking. Here, we performed integrative transcriptomic analysis of a series of key cell populations during HSC development in human and mouse, including HSC-primed hemogenic endothelial cells and pre-HSCs in mid-gestational aorta-gonad-mesonephros (AGM) region, and mature HSCs in fetal liver and adult bone marrow. We demonstrated the general similarity of transcriptomic characteristics between corresponding cell populations of the two species. Of note, one of the previously transcriptomically defined hematopoietic stem progenitor cell (HSPC) populations with certain arterial characteristics in AGM region of human embryos showed close transcriptomic similarity to pre-HSCs in mouse embryos. On the other hand, the other two HSPC populations in human AGM region displayed molecular similarity with fetal liver HSPCs, suggesting the maturation in AGM before HSCs colonizing the fetal liver in human, which was different to that in mouse. Finally, we re-clustered cells based on the integrated dataset and illustrated the evolutionarily conserved molecular signatures of major cell populations. Our results revealed transcriptomic conservation of critical cell populations and molecular characteristics during HSC development between human and mouse, providing a resource and theoretic basis for future studies on mammalian HSC development and regeneration by using mouse models.
Collapse
Affiliation(s)
- Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Han He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China; State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
30
|
Zhuang J, Huang Y, Zheng W, Yang S, Zhu G, Wang J, Lin X, Ye J. TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer. Biol Chem 2021; 401:285-296. [PMID: 31188741 DOI: 10.1515/hsz-2019-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
The gene encoding transmembrane protein 100 (TMEM100) was first discovered to be transcribed by the murine genome. It has been recently proven that TMEM100 contributes to hepatocellular carcinoma and non-small-cell lung carcinoma (NSCLC). This study investigates the impact of TMEM100 expression on gastric cancer (GC). TMEM100 expression was remarkably downregulated in GC samples compared to the surrounding non-malignant tissues (p < 0.01). Excessive TMEM100 expression prohibited the migration and invasion of GC cells without influencing their growth. However, TMEM100 knockdown restored their migration and invasion potential. Additionally, TMEM100 expression restored the sensitivity of GC cells to chemotherapeutic drugs such as 5-fluouracil (5-FU) and cisplatin. In terms of TMEM100 modulation, it was revealed that BMP9 rather than BMP10, is the upstream modulator of TM3M100. HIF1α downregulation modulated the impact of TMEM100 on cell migration, chemotherapy sensitivity and invasion in GC cells. Eventually, the in vivo examination of TMEM100 activity revealed that its upregulation prohibits the pulmonary metastasis of GC cells and increases the sensitivity of xenograft tumors to 5-FU treatment. In conclusion, TMEM100 serves as a tumor suppressor in GC and could be used as a promising target for the treatment of GC and as a predictor of GC clinical outcome.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Xiaohan Lin
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| |
Collapse
|
31
|
Xu Z, Liu M, Gao C, Kuang W, Chen X, Liu F, Ge B, Yan X, Zhou T, Xie S. Centrosomal protein FOR20 knockout mice display embryonic lethality and left-right patterning defects. FEBS Lett 2021; 595:1462-1472. [PMID: 33686659 DOI: 10.1002/1873-3468.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Centrosomal protein FOR20 has been reported to be crucial for essential cellular processes, including ciliogenesis, cell migration, and cell cycle in vertebrates. However, the function of FOR20 during mammalian embryonic development remains unknown. To investigate the in vivo function of the For20 gene in mammals, we generated For20 homozygous knockout mice by gene targeting. Our data reveal that homozygous knockout of For20 results in significant embryonic growth arrest and lethality during gestation, while the heterozygotes show no obvious defects. The absence of For20 leads to impaired left-right patterning of embryos and reduced cilia in the embryonic node. Deletion of For20 also disrupts angiogenesis in yolk sacs and embryos. These results highlight a critical role of For20 in early mammalian embryogenesis.
Collapse
Affiliation(s)
- Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Gao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Kuang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Bai Ge
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Yan
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, Canada
| | - Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Kinugasa-Katayama Y, Watanabe Y, Hisamitsu T, Arima Y, Liu NM, Tomimatsu A, Harada Y, Arai Y, Urasaki A, Kawamura T, Saito Y, Nakagawa O. Tmem100-BAC-EGFP mice to selectively mark and purify embryonic endothelial cells of large caliber arteries in mid-gestational vascular formation. Genesis 2021; 59:e23416. [PMID: 33651473 DOI: 10.1002/dvg.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/10/2022]
Abstract
Embryonic vascular development is achieved through the complex arrays of differentiation, proliferation, migration and mutual interaction of different cell types, and visualization as well as purification of unique cell populations are fundamental in studying its detailed mechanisms using in vivo experimental models. We previously demonstrated that Tmem100 was a novel endothelial gene encoding a small transmembrane protein, and that Tmem100 null mice showed embryonic lethality due to severe impairment of vascular formation. In the present study, we generated an EGFP reporter mouse line using a 216 kb genomic region containing mouse Tmem100 gene. A novel line designated as Tmem100-BAC-EGFP mice precisely recapitulated the Tmem100 expression profile at the mid-gestational stage, which was highly enriched in endothelial cells of large caliber arteries in mouse embryos. FACS experiments demonstrated that Tmem100-BAC-EGFP mice served to selectively purify a specific population of arterial endothelial cells, indicating their usefulness not only for the research concerning Tmem100 expression and function but also for comparative analysis of multiple endothelial cell subgroups in embryonic vascular development.
Collapse
Affiliation(s)
- Yumi Kinugasa-Katayama
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Hisamitsu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yuichiro Arima
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Norika M Liu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ayaka Tomimatsu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Yukihiro Harada
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuji Arai
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Akihiro Urasaki
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoshihiko Saito
- Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan.,Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
33
|
Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. BMP10 Signaling Promotes the Development of Endocardial Cells from Human Pluripotent Stem Cell-Derived Cardiovascular Progenitors. Cell Stem Cell 2020; 28:96-111.e7. [PMID: 33142114 DOI: 10.1016/j.stem.2020.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/03/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
The embryonic endocardium is essential for early heart development as it functions to induce trabecular myocardium, the first heart tissue to form, and is the source of the cells that make up the valves and a portion of the coronary vasculature. With this potential, human endocardial cells could provide unique therapeutic opportunities that include engineering biological valves and cell-based therapy strategies to replace coronary vasculature in damaged hearts. To access human endocardial cells, we generated a human pluripotent stem cell (hPSC)-derived endothelial population that displays many characteristics of endocardium, including expression of the cohort of genes that identifies this lineage in vivo, the capacity to induce a trabecular fate in immature cardiomyocytes in vitro, and the ability to undergo an endothelial-to-mesenchymal transition. Analyses of the signaling pathways required for development of the hPSC-derived endocardial cells identified a novel role for BMP10 in the specification of this lineage from cardiovascular mesoderm.
Collapse
Affiliation(s)
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Bei Wei
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Yifei Miao
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
34
|
Tang N, Rao S, Ying Y, Huang Y. New insights into BMP9 signaling in organ fibrosis. Eur J Pharmacol 2020; 882:173291. [DOI: 10.1016/j.ejphar.2020.173291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|
35
|
Cell Fate Determination of Lymphatic Endothelial Cells. Int J Mol Sci 2020; 21:ijms21134790. [PMID: 32640757 PMCID: PMC7370169 DOI: 10.3390/ijms21134790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic vasculature, along with the blood vasculature, is a vascular system in our body that plays important functions in fluid homeostasis, dietary fat uptake, and immune responses. Defects in the lymphatic system are associated with various diseases such as lymphedema, atherosclerosis, fibrosis, obesity, and inflammation. The first step in lymphangiogenesis is determining the cell fate of lymphatic endothelial cells. Several genes involved in this commitment step have been identified using animal models, including genetically modified mice. This review provides an overview of these genes in the mammalian system and related human diseases.
Collapse
|
36
|
Ihara D, Watanabe Y, Seya D, Arai Y, Isomoto Y, Nakano A, Kubo A, Ogura T, Kawamura T, Nakagawa O. Expression of Hey2 transcription factor in the early embryonic ventricles is controlled through a distal enhancer by Tbx20 and Gata transcription factors. Dev Biol 2020; 461:124-131. [DOI: 10.1016/j.ydbio.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
|
37
|
Li Y, Cho H, Wang F, Canela-Xandri O, Luo C, Rawlik K, Archacki S, Xu C, Tenesa A, Chen Q, Wang QK. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies. J Am Heart Assoc 2020; 9:e014146. [PMID: 32237974 PMCID: PMC7428625 DOI: 10.1161/jaha.119.014146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Epistasis describes how gene‐gene interactions affect phenotypes, and could have a profound impact on human diseases such as coronary artery disease (CAD). The goal of this study was to identify gene‐gene interactions in CAD using an easily generalizable multi‐stage approach. Methods and Results Our forward genetic approach consists of multiple steps that combine statistical and functional approaches, and analyze information from global gene expression profiling, functional interactions, and genetic interactions to robustly identify gene‐gene interactions. Global gene expression profiling shows that knockdown of ANRIL (DQ485454) at 9p21.3 GWAS (genome‐wide association studies) CAD locus upregulates TMEM100 and TMEM106B. Functional studies indicate that the increased monocyte adhesion to endothelial cells and transendothelial migration of monocytes, 2 critical processes in the initiation of CAD, by ANRIL knockdown are reversed by knockdown of TMEM106B, but not of TMEM100. Furthermore, the decreased monocyte adhesion to endothelial cells and transendothelial migration of monocytes induced by ANRIL overexpression was reversed by overexpressing TMEM106B. TMEM106B expression was upregulated by >2‐fold in CAD coronary arteries. A significant association was found between variants in TMEM106B (but not in TMEM100) and CAD (P=1.9×10−8). Significant gene‐gene interaction was detected between ANRIL variant rs2383207 and TMEM106B variant rs3807865 (P=0.009). A similar approach also identifies significant interaction between rs6903956 in ADTRP and rs17465637 in MIA3 (P=0.005). Conclusions We demonstrate 2 pairs of epistatic interactions between GWAS loci for CAD and offer important insights into the genetic architecture and molecular mechanisms for the pathogenesis of CAD. Our strategy has broad applicability to the identification of epistasis in other human diseases.
Collapse
Affiliation(s)
- Yabo Li
- College of Life Sciences Lanzhou University Lanzhou Gansu Province P. R. China.,Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Hyosuk Cho
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH.,Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland OH
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit at the MRC IGMM Western General Hospital University of Edinburgh United Kingdom.,The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Chunyan Luo
- Key Laboratory of Molecular Biophysics College of Life Science and Technology Huazhong University of Science and Technology Wuhan Hubei China
| | - Konrad Rawlik
- The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Stephen Archacki
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics College of Life Science and Technology Huazhong University of Science and Technology Wuhan Hubei China
| | - Albert Tenesa
- MRC Human Genetics Unit at the MRC IGMM Western General Hospital University of Edinburgh United Kingdom.,The Roslin Institute Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Campus Midlothian Edinburgh Scotland
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH
| | - Qing Kenneth Wang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland OH.,Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland OH
| |
Collapse
|
38
|
Peacock HM, Tabibian A, Criem N, Caolo V, Hamard L, Deryckere A, Haefliger JA, Kwak BR, Zwijsen A, Jones EAV. Impaired SMAD1/5 Mechanotransduction and Cx37 (Connexin37) Expression Enable Pathological Vessel Enlargement and Shunting. Arterioscler Thromb Vasc Biol 2020; 40:e87-e104. [PMID: 32078368 DOI: 10.1161/atvbaha.119.313122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Impaired ALK1 (activin receptor-like kinase-1)/Endoglin/BMP9 (bone morphogenetic protein 9) signaling predisposes to arteriovenous malformations (AVMs). Activation of SMAD1/5 signaling can be enhanced by shear stress. In the genetic disease hereditary hemorrhagic telangiectasia, which is characterized by arteriovenous malformations, the affected receptors are those involved in the activation of mechanosensitive SMAD1/5 signaling. To elucidate how genetic and mechanical signals interact in AVM development, we sought to identify targets differentially regulated by BMP9 and shear stress. Approach and Results: We identify Cx37 (Connexin37) as a differentially regulated target of ligand-induced and mechanotransduced SMAD1/5 signaling. We show that stimulation of endothelial cells with BMP9 upregulated Cx37, whereas shear stress inhibited this expression. This signaling was SMAD1/5-dependent, and in the absence of SMAD1/5, there was an inversion of the expression pattern. Ablated SMAD1/5 signaling alone caused AVM-like vascular malformations directly connecting the dorsal aorta to the inlet of the heart. In yolk sacs of mouse embryos with an endothelial-specific compound heterozygosity for SMAD1/5, addition of TNFα (tumor necrosis factor-α), which downregulates Cx37, induced development of these direct connections bypassing the yolk sac capillary bed. In wild-type embryos undergoing vascular remodeling, Cx37 was globally expressed by endothelial cells but was absent in regions of enlarging vessels. TNFα and endothelial-specific compound heterozygosity for SMAD1/5 caused ectopic regions lacking Cx37 expression, which correlated to areas of vascular malformations. Mechanistically, loss of Cx37 impairs correct directional migration under flow conditions. CONCLUSIONS Our data demonstrate that Cx37 expression is differentially regulated by shear stress and SMAD1/5 signaling, and that reduced Cx37 expression is permissive for capillary enlargement into shunts.
Collapse
Affiliation(s)
- Hanna M Peacock
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology (H.M.P., A.T., N.C., A.Z., E.A.V.J.), KU Leuven, Belgium
| | - Ashkan Tabibian
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology (H.M.P., A.T., N.C., A.Z., E.A.V.J.), KU Leuven, Belgium
| | - Nathan Criem
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology (H.M.P., A.T., N.C., A.Z., E.A.V.J.), KU Leuven, Belgium
| | - Vincenza Caolo
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (V.C.)
| | - Lauriane Hamard
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland (L.H., J.-A.H.)
| | | | - Jacques-Antoine Haefliger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland (L.H., J.-A.H.)
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Switzerland (B.R.K.)
| | - An Zwijsen
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology (H.M.P., A.T., N.C., A.Z., E.A.V.J.), KU Leuven, Belgium
| | - Elizabeth A V Jones
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology (H.M.P., A.T., N.C., A.Z., E.A.V.J.), KU Leuven, Belgium
| |
Collapse
|
39
|
TMEM100 is a key factor for specification of lymphatic endothelial progenitors. Angiogenesis 2020; 23:339-355. [PMID: 32112176 DOI: 10.1007/s10456-020-09713-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND TMEM100 is identified as a downstream gene of bone morphogenetic protein 9 (BMP9) signaling via activin receptor-like kinase 1 (ALK1), which is known to participate in lymphangiogenesis as well as angiogenesis. TMEM100 has been shown to be important for blood vessel formation and maintenance, but its role in the development of lymphatic vasculature remains unknown. The objective is to investigate the role of TMEM100 in development of the lymphatic system. METHODS AND RESULTS Global Tmem100 gene deletion was induced by tamoxifen on 10.5 days post-coitus. Tmem100-inducible knockout (iKO) embryos in embryonic days (E)14.5-16.5 exhibited edema and blood-filled enlarged lymphatics with misconnections between veins and lymphatic vessels. For a reciprocal approach, we have generated a novel mouse line in which TMEM100 overexpression (OE) can be induced in endothelial cells by intercrossing with Tie2-Cre driver. TMEM100-OE embryos at E12.5-14.5 exhibited edema with small size and number of lymphatic vessels, the exact opposite phenotypes of Tmem100-iKOs. In Tmem100-iKO embryos, the number of progenitors of lymphatic endothelial cells (LECs) in the cardinal vein was increased, while it was decreased in TMEM100-OE embryos. The activity of NOTCH signaling, which limits the number of progenitors of LECs in the cardinal vein, was decreased in Tmem100-iKO embryos, whereas it was increased in TMEM100-OE embryos. CONCLUSION TMEM100 plays an important role in the specification of LECs in the cardinal veins, at least in part, by regulating the NOTCH signaling.
Collapse
|
40
|
Moravčíková N, Kasarda R, Kadlečík O, Trakovická A, Halo M, Candrák J. Runs of Homozygosity as Footprints of Selection in the Norik of Muran Horse Genome. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967051165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
41
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
42
|
Qu X, Harmelink C, Baldwin HS. Tie2 regulates endocardial sprouting and myocardial trabeculation. JCI Insight 2019; 5:96002. [PMID: 31112136 DOI: 10.1172/jci.insight.96002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ang1-Tie2 pathway is required for normal vascular development, but its molecular effectors are not well-defined during cardiac ontogeny. Here we show that endocardial specific attenuation of Tie2 results in mid-gestation lethality due to heart defects associated with a hyperplastic but simplified trabecular meshwork (fewer but thicker trabeculae). Reduced proliferation and production of endocardial cells (ECs) following endocardial loss of Tie2 results in decreased endocardial sprouting required for trabecular assembly and extension. The hyperplastic trabeculae result from enhanced proliferation of trabecular cardiomyocyte (CMs), which is associated with upregulation of Bmp10, increased retinoic acid (RA) signaling, and Erk1/2 hyperphosphorylation in the myocardium. Intriguingly, myocardial phenotypes in Tie2-cko hearts could be partially rescued by inhibiting in utero RA signaling with pan-retinoic acid receptor antagonist BMS493. These findings reveal two complimentary functions of endocardial Tie2 during ventricular chamber formation: ensuring normal trabeculation by supporting EC proliferation and sprouting, and preventing hypertrabeculation via suppression of RA signaling in trabecular CMs.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology) and
| | | | - H Scott Baldwin
- Department of Pediatrics (Cardiology) and.,Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Cho E, Kang H, Kang DK, Lee Y. Myocardial-specific ablation of Jumonji and AT-rich interaction domain-containing 2 ( Jarid2) leads to dilated cardiomyopathy in mice. J Biol Chem 2019; 294:4981-4996. [PMID: 30700554 DOI: 10.1074/jbc.ra118.005634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiomyopathy is a common myocardial disease that can lead to sudden death. However, molecular mechanisms underlying cardiomyopathy remain unclear. Jumonji and AT-rich interaction domain-containing 2 (Jarid2) is necessary for embryonic heart development, but functions of Jarid2 after birth remain to be elucidated. Here, we report that myocardial-specific deletion of Jarid2 using αMHC::Cre mice (Jarid2 αMHC) causes dilated cardiomyopathy (DCM) and premature death 6-9 months after birth. To determine functions of Jarid2 in the adult heart and DCM, we analyzed gene expression in the heart at postnatal day (p)10 (neonatal) and 7 months (DCM). Pathway analyses revealed that dysregulated genes in Jarid2 αMHC hearts at p10, prior to cardiomyopathy, represented heart development and muscle contraction pathways. At 7 months, down-regulated genes in Jarid2 αMHC hearts were enriched in metabolic process and ion channel activity pathways and up-regulated genes in extracellular matrix components. In normal hearts, expression levels of contractile genes were increased from p10 to 7 months but were not sufficiently increased in Jarid2 αMHC hearts. Moreover, Jarid2 was also necessary to repress fetal contractile genes such as TroponinI1, slow skeletal type (Tnni1) and Actin alpha 2, smooth muscle (Acta2) in neonatal stages through ErbB2-receptor tyrosine kinase 4 (ErbB4) signaling. Interestingly, Ankyrin repeat domain 1 (Ankrd1) and Neuregulin 1 (Nrg1), whose expression levels are known to be increased in the failing heart, were already elevated in Jarid2 αMHC hearts within 1 month of birth. Thus, we demonstrate that ablation of Jarid2 in cardiomyocytes results in DCM and suggest that Jarid2 plays important roles in cardiomyocyte maturation during neonatal stages.
Collapse
Affiliation(s)
- Eunjin Cho
- From the Department of Cell and Regenerative Biology.,the Molecular and Cellular Pharmacology Graduate Program, and
| | - HyunJun Kang
- the National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53705 and
| | - Dae-Ki Kang
- the Department of Computer Engineering, Dongseo University, Busan 47011, South Korea
| | - Youngsook Lee
- From the Department of Cell and Regenerative Biology, .,the Molecular and Cellular Pharmacology Graduate Program, and
| |
Collapse
|
44
|
Pan LX, Li LY, Zhou H, Cheng SQ, Liu YM, Lian PP, Li L, Wang LL, Rong SJ, Shen CP, Li J, Xu T. TMEM100 mediates inflammatory cytokines secretion in hepatic stellate cells and its mechanism research. Toxicol Lett 2019; 317:82-91. [PMID: 30639579 DOI: 10.1016/j.toxlet.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that Transmembrane protein 100 (TMEM100) is a gene at locus 17q32 encoding a 134-amino acid protein with two hypothetical transmembrane domainsa, and first identified as a transcript from the mouse genome. As a downstream target gene of bone morphogenetic protein (BMP)-activin receptor-like kinase 1 (ALK1) signaling, it was activated to participate in inducing arterial endothelium differentiation, maintaining vascular integrity, promoting cell apoptosis, inhibiting metastasis and proliferation of cancer cells. However, evidence for the function of TMEM100 in inflammation is still limited. In this study, we explore the role of TMEM100 in inflammatory cytokine secretion and the role of MAPK signaling pathways in tumor necrosis factor-alpha (TNF-α)-induced TMEM100 expression in LX-2 cells. We found that the expression of TMEM100 was decreased markedly in human liver fibrosis tissues, and its expression was also inhibited in LX-2 cells induced by TNF-α, suggesting that it might be associated with the development of inflammation. Therefore, we demonstrated that overexpression of TMEM100 by transfecting pEGFP-C2-TMEM100 could lead to the down-regulation of IL-1β and IL-6 secretion. Moreover, we found that expression changes of TMEM100 could be involved in inhibition or activation of MAPK signaling pathways accompanied with regulating phosphorylation levels of ERK and JNK protein in response to TNF-α. These results suggested that TMEM100 might play an important role in the secretion of inflammatory cytokines (IL-1β and IL-6) of LX-2 cells induced by TNF-α, and MAPK (ERK and JNK) signaling pathways might participate in its induction of expression.
Collapse
Affiliation(s)
- Lin-Xin Pan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang-Yun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Hong Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Shu-Qi Cheng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yu-Min Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Pan-Pan Lian
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Li Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China; Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Le-le Wang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shan-Jie Rong
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Chuan-Pu Shen
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
45
|
Yu H, Shin SM, Wang F, Xu H, Xiang H, Cai Y, Itson-Zoske B, Hogan QH. Transmembrane protein 100 is expressed in neurons and glia of dorsal root ganglia and is reduced after painful nerve injury. Pain Rep 2018; 4:e703. [PMID: 30801043 PMCID: PMC6370145 DOI: 10.1097/pr9.0000000000000703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Tmem100 modulates interactions between TRPA1 and TRPV1. The cell specificity of Tmem100 expression in dorsal root ganglia (DRGs) is not well defined, nor is the effect of peripheral nerve injury on Tmem100 expression. Objective This study was designed to determine the cell specificity of Tmem100 expression in DRG and its subcellular localization, and to examine how Tmem100 expression may be altered in painful conditions. Methods Dorsal root ganglion Tmem100 expression was determined by immunohistochemistry, immunoblot, and quantitative real-time PCR, and compared between various experimental rat pain models and controls. Results Tmem100 is expressed in both neurons and perineuronal glial cells in the rat DRG. The plasma membrane and intracellular localization of Tmem100 are identified in 83% ± 6% of IB4-positive and 48% ± 6% of calcitonin gene-related peptide-positive neurons, as well as in medium- and large-sized neurons, with its immunopositivity colocalized to TRPV1 (94% ± 5%) and TRPA1 (96% ± 3%). Tmem100 is also detected in the perineuronal satellite glial cells and in some microglia. Tmem100 protein is significantly increased in the lumbar DRGs in the complete Freund adjuvant inflammatory pain. By contrast, peripheral nerve injury by spinal nerve ligation diminishes Tmem100 expression in the injured DRG, with immunoblot and immunohistochemistry experiments showing reduced Tmem100 protein levels in both neurons and satellite glial cells of DRGs proximal to injury, whereas Tmem100 is unchanged in adjacent DRGs. The spared nerve injury model also reduces Tmem100 protein in the injured DRGs. Conclusion Our data demonstrate a pain pathology-dependent alteration of DRG Tmem100 protein expression, upregulated during CFA inflammatory pain but downregulated during neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR of China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR of China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR of China
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR of China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
46
|
Zhu L, Deng C, Zhao X, Ding J, Huang H, Zhu S, Wang Z, Qin S, Ding Y, Lu G, Yang Z. Endangered Père David's deer genome provides insights into population recovering. Evol Appl 2018; 11:2040-2053. [PMID: 30459847 PMCID: PMC6231465 DOI: 10.1111/eva.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 12/30/2022] Open
Abstract
The Milu (Père David's deer, Elaphurus davidianus) were once widely distributed in the swamps (coastal areas to inland areas) of East Asia. The dramatic recovery of the Milu population is now deemed a classic example of how highly endangered animal species can be rescued. However, the molecular mechanisms that underpinned this population recovery remain largely unknown. Here, different approaches (genome sequencing, resequencing, and salinity analysis) were utilized to elucidate the aforementioned molecular mechanisms. The comparative genomic analyses revealed that the largest recovered Milu population carries extensive genetic diversity despite an extreme population bottleneck. And the protracted inbreeding history might have facilitated the purging of deleterious recessive alleles. Seventeen genes that are putatively related to reproduction, embryonic (fatal) development, and immune response were under high selective pressure. Besides, SCNN1A, a gene involved in controlling reabsorption of sodium in the body, was positively selected. An additional 29 genes were also observed to be positively selected, which are involved in blood pressure regulation, cardiovascular development, cholesterol regulation, glycemic control, and thyroid hormone synthesis. It is possible that these genetic adaptations were required to buffer the negative effects commonly associated with a high-salt diet. The associated genetic adaptions are likely to have enabled increased breeding success and fetal survival. The future success of Milu population management might depend on the successful reintroduction of the animal to historically important distribution regions.
Collapse
Affiliation(s)
- Lifeng Zhu
- College of life SciencesNanjing Normal UniversityNanjingChina
- University of Nebraska at OmahaOmaha
| | - Cao Deng
- DNA Stories Bioinformatics CenterChengduChina
| | - Xiang Zhao
- PubBio‐Tech Services CorporationWuhanChina
| | | | - Huasheng Huang
- Shanghai Majorbio Bio‐pharm Biotechnology Co. Ltd.ShanghaiChina
| | - Shilin Zhu
- PubBio‐Tech Services CorporationWuhanChina
| | | | | | - Yuhua Ding
- Jiangsu Dafeng Milu National Nature ReserveDafengChina
| | | | - Zhisong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education)China West Normal UniversityNanchongChina
| |
Collapse
|
47
|
Kuboyama A, Sasaki T, Shimizu M, Inoue J, Sato R. The expression of Transmembrane Protein 100 is regulated by alterations in calcium signaling rather than endoplasmic reticulum stress. Biosci Biotechnol Biochem 2018; 82:1377-1383. [PMID: 29690857 DOI: 10.1080/09168451.2018.1464899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transmembrane protein 100 (TMEM100) comprises 134 amino acid residues and is highly conserved among vertebrates. Tmem100 has been recently reported as a key factor in angiogenesis, pain transmission, and tumor suppression. Although the importance of TMEM100 function is well supported, few studies have elucidated its expression mechanism. In the current study, we found that activating transcription factor 6α, a transcription factor activated by endoplasmic reticulum (ER) stress, enhanced Tmem100 promoter activity. Two ER stress response element-like motifs were identified in the mouse Tmem100 promoter region. However, additional experiments using another type of ER stress inducer demonstrated that calcium signaling was more important than ER stress in the regulation of TMEM100 expression. Intracellular calcium signaling controls biological processes such as cell proliferation and embryonic development. This study suggested that TMEM100 performs various functions in response to alterations in calcium signaling in addition to those in response to ER stress.
Collapse
Affiliation(s)
- Ayane Kuboyama
- a Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Takashi Sasaki
- a Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Makoto Shimizu
- a Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Jun Inoue
- a Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Ryuichiro Sato
- a Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan.,b Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduated School of Agricultural and Lice Sciences , University of Tokyo , Tokyo , Japan.,c AMED-CREST, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
48
|
Serum/glucocorticoid-regulated kinase 1 as a novel transcriptional target of bone morphogenetic protein-ALK1 receptor signaling in vascular endothelial cells. Angiogenesis 2018; 21:415-423. [DOI: 10.1007/s10456-018-9605-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
|
49
|
Alsina-Sanchís E, García-Ibáñez Y, Figueiredo AM, Riera-Domingo C, Figueras A, Matias-Guiu X, Casanovas O, Botella LM, Pujana MA, Riera-Mestre A, Graupera M, Viñals F. ALK1 Loss Results in Vascular Hyperplasia in Mice and Humans Through PI3K Activation. Arterioscler Thromb Vasc Biol 2018; 38:1216-1229. [PMID: 29449337 DOI: 10.1161/atvbaha.118.310760] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE ALK1 (activin-receptor like kinase 1) is an endothelial cell-restricted receptor with high affinity for BMP (bone morphogenetic protein) 9 TGF-β (transforming growth factor-β) family member. Loss-of-function mutations in ALK1 cause a subtype of hereditary hemorrhagic telangiectasia-a rare disease characterized by vasculature malformations. Therapeutic strategies are aimed at reducing potential complications because of vascular malformations, but currently, there is no curative treatment for hereditary hemorrhagic telangiectasia. APPROACH AND RESULTS In this work, we report that a reduction in ALK1 gene dosage (heterozygous ALK1+/- mice) results in enhanced retinal endothelial cell proliferation and vascular hyperplasia at the sprouting front. We found that BMP9/ALK1 represses VEGF (vascular endothelial growth factor)-mediated PI3K (phosphatidylinositol 3-kinase) by promoting the activity of the PTEN (phosphatase and tensin homolog). Consequently, loss of ALK1 function in endothelial cells results in increased activity of the PI3K pathway. These results were confirmed in cutaneous telangiectasia biopsies of patients with hereditary hemorrhagic telangiectasia 2, in which we also detected an increase in endothelial cell proliferation linked to an increase on the PI3K pathway. In mice, genetic and pharmacological inhibition of PI3K is sufficient to abolish the vascular hyperplasia of ALK1+/- retinas and in turn normalize the vasculature. CONCLUSIONS Overall, our results indicate that the BMP9/ALK1 hub critically mediates vascular quiescence by limiting PI3K signaling and suggest that PI3K inhibitors could be used as novel therapeutic agents to treat hereditary hemorrhagic telangiectasia.
Collapse
Affiliation(s)
- Elisenda Alsina-Sanchís
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Yaiza García-Ibáñez
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Ana M Figueiredo
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (A.M.F., M.G.), L'Hospitalet de Llobregat, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Carla Riera-Domingo
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Agnès Figueras
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Xavier Matias-Guiu
- Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.).,Servei d'Anatomia Patològica (X.M.-G.).,Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Spain; Hospital Universitari Arnau de Vilanova, Lleida, Spain (X.M.-G.).,Universitat de Lleida, Spain (X.M.-G.)
| | - Oriol Casanovas
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (L.M.B.)
| | - Miquel A Pujana
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.).,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.)
| | - Antoni Riera-Mestre
- HHT Unit, Internal Medicine Department (A.R.-M.).,Departament de Ciències Clíniques, Universitat de Barcelona, Spain (A.R.-M.)
| | - Mariona Graupera
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.) .,Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (A.M.F., M.G.), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Madrid, Spain (M.G.)
| | - Francesc Viñals
- From the Program Against Cancer Therapeutic Resistance, Institut Català d'Oncologia, Hospital Duran i Reynals (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., O.C., M.A.P., M.G., F.V.) .,Institut d'Investigació Biomèdica de Bellvitge, Spain (E.A.-S., Y.G.-I., A.M.F., C.R.-D., A.F., X.M.-G., O.C., M.A.P., F.V.).,Departament de Ciències Fisiològiques, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain (F.V.)
| |
Collapse
|
50
|
Cardiovascular Disease: An Introduction. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123129 DOI: 10.1007/978-3-319-89315-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) is a collective term designating all types of affliction affecting the blood circulatory system, including the heart and vasculature, which, respectively, displaces and conveys the blood.
Collapse
|