1
|
Wang Z, Song L, Che J, Li C. Insights into the role of legionella effectors on host metabolic perturbations. Front Cell Infect Microbiol 2024; 14:1458276. [PMID: 39324059 PMCID: PMC11422348 DOI: 10.3389/fcimb.2024.1458276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Legionella infection, the causative agent of Legionnaires' disease, represents a significant threat to human health. The pathogenesis of this infection is intricately linked to the complex interactions between the bacterium and its host, resulting in profound metabolic perturbations. Central to these metabolic shifts is the bacterium's modulation of lipid metabolism, with changes in lipid synthesis and breakdown modifying membrane composition and function. These alterations can influence cellular signaling and immune responses, further contributing to disease progression. It also disrupts glucose utilization and lipid metabolism, altering cellular energy production and immune responses. Additionally, Legionella infection perturbs amino acid and protein metabolism, affecting protein synthesis and degradation, leading to changes in cellular functions and immune responses. This mini-review underscores the complexity of metabolic perturbations in Legionella infection and their significance in host-pathogen interactions. Understanding these metabolic shifts provides valuable insights into the pathogenesis of Legionnaires' disease and could lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
| | - Jingai Che
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
| | - Chunxiuli Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
| |
Collapse
|
2
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
3
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
4
|
Vormittag S, Hüsler D, Haneburger I, Kroniger T, Anand A, Prantl M, Barisch C, Maaß S, Becher D, Letourneur F, Hilbi H. Legionella- and host-driven lipid flux at LCV-ER membrane contact sites promotes vacuole remodeling. EMBO Rep 2023; 24:e56007. [PMID: 36588479 PMCID: PMC9986823 DOI: 10.15252/embr.202256007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Legionella pneumophila replicates in macrophages and amoeba within a unique compartment, the Legionella-containing vacuole (LCV). Hallmarks of LCV formation are the phosphoinositide lipid conversion from PtdIns(3)P to PtdIns(4)P, fusion with ER-derived vesicles and a tight association with the ER. Proteomics of purified LCVs indicate the presence of membrane contact sites (MCS) proteins possibly implicated in lipid exchange. Using dually fluorescence-labeled Dictyostelium discoideum amoeba, we reveal that VAMP-associated protein (Vap) and the PtdIns(4)P 4-phosphatase Sac1 localize to the ER, and Vap also localizes to the LCV membrane. Furthermore, Vap as well as Sac1 promote intracellular replication of L. pneumophila and LCV remodeling. Oxysterol binding proteins (OSBPs) preferentially localize to the ER (OSBP8) or the LCV membrane (OSBP11), respectively, and restrict (OSBP8) or promote (OSBP11) bacterial replication and LCV expansion. The sterol probes GFP-D4H* and filipin indicate that sterols are rapidly depleted from LCVs, while PtdIns(4)P accumulates. In addition to Sac1, the PtdIns(4)P-subverting L. pneumophila effector proteins LepB and SidC also support LCV remodeling. Taken together, the Legionella- and host cell-driven PtdIns(4)P gradient at LCV-ER MCSs promotes Vap-, OSBP- and Sac1-dependent pathogen vacuole maturation.
Collapse
Affiliation(s)
- Simone Vormittag
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Dario Hüsler
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Ina Haneburger
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Tobias Kroniger
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Aby Anand
- Division of Molecular Infection Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückOsnabrückGermany
| | - Manuel Prantl
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Caroline Barisch
- Division of Molecular Infection Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückOsnabrückGermany
| | - Sandra Maaß
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - François Letourneur
- Laboratory of Pathogen Host InteractionsUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Hubert Hilbi
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
5
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
6
|
Mizutani N, Kawanabe A, Jinno Y, Narita H, Yonezawa T, Nakagawa A, Okamura Y. Interaction between S4 and the phosphatase domain mediates electrochemical coupling in voltage-sensing phosphatase (VSP). Proc Natl Acad Sci U S A 2022; 119:e2200364119. [PMID: 35733115 PMCID: PMC9245683 DOI: 10.1073/pnas.2200364119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.
Collapse
Affiliation(s)
- Natsuki Mizutani
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotaka Narita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Yonezawa
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
8
|
Luo J, Wang L, Song L, Luo ZQ. Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Front Microbiol 2022; 12:790442. [PMID: 35003021 PMCID: PMC8727461 DOI: 10.3389/fmicb.2021.790442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a commonly used post-translational modification (PTM) in eukaryotic cells, which regulates a wide variety of cellular processes, such as differentiation, apoptosis, cell cycle, and immunity. Because of its essential role in immunity, the ubiquitin network is a common target of infectious agents, which have evolved various effective strategies to hijack and co-opt ubiquitin signaling for their benefit. The intracellular pathogen Legionella pneumophila represents one such example; it utilizes a large cohort of virulence factors called effectors to modulate diverse cellular processes, resulting in the formation a compartment called the Legionella-containing vacuole (LCV) that supports its replication. Many of these effectors function to re-orchestrate ubiquitin signaling with distinct biochemical activities. In this review, we highlight recent progress in the mechanism of action of L. pneumophila effectors involved in ubiquitination and discuss their roles in bacterial virulence and host cell biology.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
10
|
The Legionella Effector SdjA Is a Bifunctional Enzyme That Distinctly Regulates Phosphoribosyl Ubiquitination. mBio 2021; 12:e0231621. [PMID: 34488448 PMCID: PMC8546864 DOI: 10.1128/mbio.02316-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila promotes its survival and replication in phagocytes by actively modulating cellular processes using effectors injected into host cells by its Dot/Icm type IV secretion system. Many of these effectors function to manipulate the ubiquitin network of infected cells, thus contributing to the biogenesis of the Legionella-containing vacuole (LCV), which is permissive for bacterial replication. Among these, members of the SidE effector family (SidEs) catalyze ubiquitination of functionally diverse host proteins by a mechanism that is chemically distinct from the canonical three-enzyme cascade. The activity of SidEs is regulated by two mechanisms: reversal of the phosphoribosyl ubiquitination by DupA and DupB and direct inactivation by SidJ, which is a calmodulin-dependent glutamylase. In many L. pneumophila strains, SidJ belongs to a two-member protein family. Its homolog SdjA appears to function differently from SidJ despite the high-level similarity in their primary sequences. Here, we found that SdjA is a bifunctional enzyme that exhibits distinct activities toward members of the SidE family. It inhibits the activity of SdeB and SdeC by glutamylation. Unexpectedly, it also functions as a deglutamylase that reverses SidJ-induced glutamylation on SdeA. Our results reveal that an enzyme can catalyze two completely opposite biochemical reactions, which highlights the distinct regulation of phosphoribosyl ubiquitination by the SidJ effector family. IMPORTANCE One unique feature of L. pneumophila Dot/Icm effectors is the existence of protein families with members of high-level similarity. Whereas members of some families are functionally redundant, as suggested by their primary sequences, the relationship between SidJ and SdjA, the two members of the SidJ family, has remained mysterious. Despite their sharing 57% identity, sdjA cannot complement the defects in virulence displayed by a mutant lacking sidJ. SidJ inhibits the activity of the SidE family by a calmodulin (CaM)-dependent glutamylase activity. Here, we found that SdjA is a dual function protein: it is a CaM-dependent glutamylase against SdeB and SdeC but exhibits deglutamylase activity toward SdeA that has been modified by SidJ, indicating that SdjA functions to fine-tune the activity of SidEs. These findings have paved the way for future structural and functional analysis of SdjA, which may reveal novel mechanism for isopeptide bond cleavage and provide insights into the study of protein evolution.
Collapse
|
11
|
Budowa IV systemu sekrecji Legionella pneumophilai jego znaczenie w patogenezie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Bakterie Legionella pneumophila w środowisku naturalnym pasożytują wewnątrz komórek wybranych gatunków pierwotniaków, a po przedostaniu się do sztucznych systemów dystrybucji wody stają się ważnym czynnikiem etiologicznym zapalenia płuc u ludzi. Główną cechą determinującą patogenność tych bakterii jest zdolność do życia i replikacji w makrofagach płucnych, czyli w komórkach wyspecjalizowanych do fagocytozy, zabijania i trawienia mikroorganizmów. Warunkiem wstępnym rozwoju infekcji jest przełamanie mechanizmów bójczych makrofagów i utworzenie wakuoli replikacyjnej LCV (Legionella containing vacuole). Biogeneza wakuoli LCV jest możliwa dzięki sprawnemu funkcjonowaniu IV systemu sekrecji Dot/Icm, który jest wielobiałkowym, złożonym kompleksem umiejscowionym w wewnętrznej i zewnętrznej membranie osłony komórkowej bakterii. System Dot/Icm liczy 27 elementów, na które składają się m.in. kompleks rdzeniowo-transmembranowy, tworzący strukturalny szkielet całego systemu oraz kompleks białek sprzęgających. Geny kodujące komponenty systemu Dot/Icm są zorganizowane na dwóch regionach chromosomu bak-teryjnego. System sekrecji Dot/Icm umożliwia L. pneumophila wprowadzenie do cytozolu komórki gospodarza ponad 300 białek efektorowych, których skoordynowane działanie powoduje utrzymanie integralności błony wakuoli replikacyjnej oraz pozwala na manipulowanie różnymi procesami komórki. Ważnym elementem strategii wewnątrzkomórkowego namnażania się L. pneumophila jest modulowanie transportu pęcherzykowego, interakcja z retikulum endoplazmatycznym oraz zakłócenie biosyntezy białek, procesów autofagii i apoptozy komórki gospodarza. Poznanie złożonych mechanizmów regulacji i funkcji białek efektorowych systemu Dot/Icm ma decydujące znaczenie w zapobieganiu i leczeniu choroby legionistów.
Collapse
|
12
|
Hsieh TS, Lopez VA, Black MH, Osinski A, Pawłowski K, Tomchick DR, Liou J, Tagliabracci VS. Dynamic remodeling of host membranes by self-organizing bacterial effectors. Science 2021; 372:935-941. [PMID: 33927055 PMCID: PMC8543759 DOI: 10.1126/science.aay8118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023]
Abstract
During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.
Collapse
Affiliation(s)
- Ting-Sung Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor A Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miles H Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Voss OH, Rahman MS. Rickettsia-host interaction: strategies of intracytosolic host colonization. Pathog Dis 2021; 79:ftab015. [PMID: 33705517 PMCID: PMC8023194 DOI: 10.1093/femspd/ftab015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Li G, Liu H, Luo ZQ, Qiu J. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase. EMBO Rep 2021; 22:e51163. [PMID: 33492731 DOI: 10.15252/embr.202051163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The phagosome harboring the bacterial pathogen Legionella pneumophila is known to be enriched with phosphatidylinositol 4-phosphate (PtdIns4P), which is important for anchoring a subset of its virulence factors and potentially for signaling events implicated in the biogenesis of the Legionella-containing vacuole (LCV) that supports intracellular bacterial growth. Here we demonstrate that the effector MavQ is a phosphoinositide 3-kinase that specifically catalyzes the conversion of phosphatidylinositol (PtdIns) into PtdIns3P. The product of MavQ is subsequently phosphorylated by the effector LepB to yield PtdIns(3,4)P2, whose 3-phosphate is then removed by another effector SidF to generate PtdIns4P. We also show that MavQ is associated with the LCV and the ∆mavQ mutant displays phenotypes in the anchoring of a PtdIns4P-binding effector similar to those of ∆lepB or ∆sidF mutants. Our results establish a mechanism of de novo PtdIns4P biosynthesis by L. pneumophila via a catalysis axis comprised of MavQ, LepB, and SidF on the surface of its phagosome.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
16
|
Liu S, Luo J, Zhen X, Qiu J, Ouyang S, Luo ZQ. Interplay between bacterial deubiquitinase and ubiquitin E3 ligase regulates ubiquitin dynamics on Legionella phagosomes. eLife 2020; 9:58114. [PMID: 33136002 PMCID: PMC7669269 DOI: 10.7554/elife.58114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila extensively modulates the host ubiquitin network to create the Legionella-containing vacuole (LCV) for its replication. Many of its virulence factors function as ubiquitin ligases or deubiquitinases (DUBs). Here, we identify Lem27 as a DUB that displays a preference for diubiquitin formed by K6, K11, or K48. Lem27 is associated with the LCV where it regulates Rab10 ubiquitination in concert with SidC and SdcA, two bacterial E3 ubiquitin ligases. Structural analysis of the complex formed by an active fragment of Lem27 and the substrate-based suicide inhibitor ubiquitin-propargylamide (PA) reveals that it harbors a fold resembling those in the OTU1 DUB subfamily with a Cys-His catalytic dyad and that it recognizes ubiquitin via extensive hydrogen bonding at six contact sites. Our results establish Lem27 as a DUB that functions to regulate protein ubiquitination on L. pneumophila phagosomes by counteracting the activity of bacterial ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Shuxin Liu
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Jiwei Luo
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhao-Qing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,Department of Biological Sciences, Purdue University, West Lafayette, United States
| |
Collapse
|
17
|
Tascón I, Li X, Lucas M, Nelson D, Vidaurrazaga A, Lin YH, Rojas AL, Hierro A, Machner MP. Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD. PLoS Pathog 2020; 16:e1008734. [PMID: 32853279 PMCID: PMC7480848 DOI: 10.1371/journal.ppat.1008734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/09/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.
Collapse
Affiliation(s)
- Igor Tascón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Xiao Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - María Lucas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - D’anna Nelson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ander Vidaurrazaga
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adriana L. Rojas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Aitor Hierro
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro, Bilbao, Spain
- * E-mail: (AH); (MPM)
| | - Matthias P. Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AH); (MPM)
| |
Collapse
|
18
|
Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front Mol Biosci 2020; 7:112. [PMID: 32656228 PMCID: PMC7325957 DOI: 10.3389/fmolb.2020.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires’ disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.
Collapse
Affiliation(s)
- Theo J Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarath C Dantu
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lee Sewell
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Katherine Richardson
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rosie Shaw
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
Mameri RM, Bodennec J, Bezin L, Demanèche S. Mitigation of Expression of Virulence Genes in Legionella pneumophila Internalized in the Free-Living Amoeba Willaertia magna C2c Maky. Pathogens 2020; 9:pathogens9060447. [PMID: 32517040 PMCID: PMC7350332 DOI: 10.3390/pathogens9060447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Legionella pneumophila is a human pathogen responsible for a severe form of pneumonia named Legionnaire disease. Its natural habitat is aquatic environments, being in a free state or intracellular parasites of free-living amoebae, such as Acanthamoeba castellanii. This pathogen is able to replicate within some amoebae. Willaertia magna C2c Maky, a non-pathogenic amoeba, was previously demonstrated to resist to L. pneumophila and even to be able to eliminate the L. pneumophila strains Philadelphia, Lens, and Paris. Here, we studied the induction of seven virulence genes of three L. pneumophila strains (Paris, Philadelphia, and Lens) within W. magna C2c Maky in comparison within A. castellanii and with the gene expression level of L. pneumophila strains alone used as controls. We defined a gene expression-based virulence index to compare easily and without bias the transcript levels in different conditions and demonstrated that W. magna C2c Maky did not increase the virulence of L. pneumophila strains in contrast to A. castellanii. These results confirmed the non-permissiveness of W. magna C2c Maky toward L. pneumophila strains.
Collapse
Affiliation(s)
| | - Jacques Bodennec
- Lyon Neuroscience Research Center CRNL UMR5292 U1028, University of Lyon, Univ Lyon 1, CNRS, Inserm, 69500 Bron, France; (J.B.); (L.B.)
| | - Laurent Bezin
- Lyon Neuroscience Research Center CRNL UMR5292 U1028, University of Lyon, Univ Lyon 1, CNRS, Inserm, 69500 Bron, France; (J.B.); (L.B.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France;
- Correspondence: ; Tel.: +33-(04)-2669-1600
| |
Collapse
|
20
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
21
|
Divergent Evolution of Legionella RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets. mBio 2020; 11:mBio.00405-20. [PMID: 32209684 PMCID: PMC7157520 DOI: 10.1128/mbio.00405-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection. Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.
Collapse
|
22
|
Swart AL, Hilbi H. Phosphoinositides and the Fate of Legionella in Phagocytes. Front Immunol 2020; 11:25. [PMID: 32117224 PMCID: PMC7025538 DOI: 10.3389/fimmu.2020.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.
Collapse
Affiliation(s)
- A Leoni Swart
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
23
|
Phan TK, Bindra GK, Williams SA, Poon IK, Hulett MD. Combating Human Pathogens and Cancer by Targeting Phosphoinositides and Their Metabolism. Trends Pharmacol Sci 2019; 40:866-882. [DOI: 10.1016/j.tips.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
|
24
|
Cash JN, Urata S, Li S, Ravala SK, Avramova LV, Shost MD, Gutkind JS, Tesmer JJG, Cianfrocco MA. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. SCIENCE ADVANCES 2019; 5:eaax8855. [PMID: 31663027 PMCID: PMC6795519 DOI: 10.1126/sciadv.aax8855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 05/29/2023]
Abstract
PIP3-dependent Rac exchanger 1 (P-Rex1) is activated downstream of G protein-coupled receptors to promote neutrophil migration and metastasis. The structure of more than half of the enzyme and its regulatory G protein binding site are unknown. Our 3.2 Å cryo-EM structure of the P-Rex1-Gβγ complex reveals that the carboxyl-terminal half of P-Rex1 adopts a complex fold most similar to those of Legionella phosphoinositide phosphatases. Although catalytically inert, the domain coalesces with a DEP domain and two PDZ domains to form an extensive docking site for Gβγ. Hydrogen-deuterium exchange mass spectrometry suggests that Gβγ binding induces allosteric changes in P-Rex1, but functional assays indicate that membrane localization is also required for full activation. Thus, a multidomain assembly is key to the regulation of P-Rex1 by Gβγ and the formation of a membrane-localized scaffold optimized for recruitment of other signaling proteins such as PKA and PTEN.
Collapse
Affiliation(s)
- Jennifer N. Cash
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Urata
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Sandeep K. Ravala
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Larisa V. Avramova
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael D. Shost
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael A. Cianfrocco
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019; 58:10951-10955. [DOI: 10.1002/anie.201904932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/24/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
26
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
27
|
Hilbi H, Nagai H, Kubori T, Roy CR. Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion System. Curr Top Microbiol Immunol 2019. [PMID: 29536361 DOI: 10.1007/978-3-319-75241-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legionella species are Gram-negative ubiquitous environmental bacteria, which thrive in biofilms and parasitize protozoa. Employing an evolutionarily conserved mechanism, the opportunistic pathogens also replicate intracellularly in mammalian macrophages. This feature is a prerequisite for the pathogenicity of Legionella pneumophila, which causes the vast majority of clinical cases of a severe pneumonia, termed "Legionnaires' disease." In macrophages as well as in amoeba, L. pneumophila grows in a distinct membrane-bound compartment, the Legionella-containing vacuole (LCV). Formation of this replication-permissive pathogen compartment requires the bacterial Dot/Icm type IV secretion system (T4SS). Through the T4SS as many as 300 different "effector" proteins are injected into host cells, where they presumably subvert pivotal processes. Less than 40 Dot/Icm substrates have been characterized in detail to date, a number of which show unprecedented biological activities. Some of these effector proteins target host cell small GTPases, phosphoinositide lipids, the chelator phytate, the ubiquitination machinery, the retromer complex, the actin cytoskeleton, or the autophagy pathway. A recently discovered class of L. pneumophila effectors modulates the activity of other effectors and is termed "metaeffectors." Here, we summarize recent insight into the cellular functions and biochemical activities of L. pneumophila effectors and metaeffectors targeting the host's endocytic, retrograde, or autophagic pathways.
Collapse
Affiliation(s)
- Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zurich, Switzerland.
| | - Hiroki Nagai
- School of Medicine, Gifu University, Yanagido 1-1, Gifu, 501-1194, Japan.
| | - Tomoko Kubori
- School of Medicine, Gifu University, Yanagido 1-1, Gifu, 501-1194, Japan.
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University, 295 Congress Avenue, BCMM 354B, New Haven, CT, 06536-0812, USA.
| |
Collapse
|
28
|
Martinez E, Siadous FA, Bonazzi M. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. FEMS Microbiol Rev 2018; 42:425-447. [PMID: 29596635 DOI: 10.1093/femsre/fuy013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Co-evolution of bacterial pathogens with their hosts led to the emergence of a stunning variety of strategies aiming at the evasion of host defences, colonisation of host cells and tissues and, ultimately, the establishment of a successful infection. Pathogenic bacteria are typically classified as extracellular and intracellular; however, intracellular lifestyle comes in many different flavours: some microbes rapidly escape to the cytosol whereas other microbes remain within vacuolar compartments and harness membrane trafficking pathways to generate their host-derived, pathogen-specific replicative niche. Here we review the current knowledge on a variety of vacuolar lifestyles, the effector proteins used by bacteria as tools to take control of the host cell and the main membrane trafficking signalling pathways targeted by vacuolar pathogens as source of membranes and nutrients. Finally, we will also discuss how host cells have developed countermeasures to sense the biogenesis of the aberrant organelles harbouring bacteria. Understanding the dialogue between bacterial and eukaryotic proteins is the key to unravel the molecular mechanisms of infection and in turn, this may lead to the identification of new targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Eric Martinez
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| | | | - Matteo Bonazzi
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
29
|
Abstract
Legionella pneumophila is the causative agent of a pneumonia termed Legionnaires' disease. The facultative intracellular bacterium employs the Icm/Dot type IV secretion system (T4SS) and a plethora of translocated "effector" proteins to interfere with host vesicle trafficking pathways and establish a replicative niche, the Legionella-containing vacuole (LCV). Internalization of the pathogen and the events immediately ensuing are accompanied by host cell-mediated phosphoinositide (PI) lipid changes and the Icm/Dot-controlled conversion of the LCV from a PtdIns(3)P-positive vacuole into a PtdIns(4)P-positive replication-permissive compartment, which tightly associates with the endoplasmic reticulum. The source and formation of PtdIns(4)P are ill-defined. Using dually labeled Dictyostelium discoideum amoebae and real-time high-resolution confocal laser scanning microscopy (CLSM), we show here that nascent LCVs continuously capture and accumulate PtdIns(4)P-positive vesicles from the host cell. Trafficking of these PtdIns(4)P-positive vesicles to LCVs occurs independently of the Icm/Dot system, but their sustained association requires a functional T4SS. During the infection, PtdIns(3)P-positive membranes become compacted and segregated from the LCV, and PtdIns(3)P-positive vesicles traffic to the LCV but do not fuse. Moreover, using eukaryotic and prokaryotic PtdIns(4)P probes (2×PHFAPP-green fluorescent protein [2×PHFAPP-GFP] and P4CSidC-GFP, respectively) along with Arf1-GFP, we show that PtdIns(4)P-rich membranes of the trans-Golgi network associate with the LCV. Intriguingly, the interaction dynamics of 2×PHFAPP-GFP and P4CSidC-GFP are spatially separable and reveal the specific PtdIns(4)P pool from which the LCV PI originates. These findings provide high-resolution real-time insights into how L. pneumophila exploits the cellular dynamics of membrane-bound PtdIns(4)P for LCV formation.IMPORTANCE The environmental bacterium Legionella pneumophila causes a life-threatening pneumonia termed Legionnaires' disease. The bacteria grow intracellularly in free-living amoebae as well as in respiratory tract macrophages. To this end, L. pneumophila forms a distinct membrane-bound compartment called the Legionella-containing vacuole (LCV). Phosphoinositide (PI) lipids are crucial regulators of the identity and dynamics of host cell organelles. The PI lipid PtdIns(4)P is a hallmark of the host cell secretory pathway, and decoration of LCVs with this PI is required for pathogen vacuole maturation. The source, dynamics, and mode of accumulation of PtdIns(4)P on LCVs are largely unknown. Using Dictyostelium amoebae producing different fluorescent probes as host cells, we show here that LCVs rapidly acquire PtdIns(4)P through the continuous interaction with PtdIns(4)P-positive host vesicles derived from the Golgi apparatus. Thus, the PI lipid pattern of the secretory pathway contributes to the formation of the replication-permissive pathogen compartment.
Collapse
|
30
|
Kawanabe A, Hashimoto M, Nishizawa M, Nishizawa K, Narita H, Yonezawa T, Jinno Y, Sakata S, Nakagawa A, Okamura Y. The hydrophobic nature of a novel membrane interface regulates the enzyme activity of a voltage-sensing phosphatase. eLife 2018; 7:41653. [PMID: 30484774 PMCID: PMC6298786 DOI: 10.7554/elife.41653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023] Open
Abstract
Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named ‘the hydrophobic spine’), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.
Collapse
Affiliation(s)
- Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | - Hirotaka Narita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tomoko Yonezawa
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Jinno
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | | | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 2018; 24:285-295.e8. [PMID: 30057173 DOI: 10.1016/j.chom.2018.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.
Collapse
|
32
|
Prashar A, Ortiz ME, Lucarelli S, Barker E, Tabatabeiyazdi Z, Shamoun F, Raju D, Antonescu C, Guyard C, Terebiznik MR. Small Rho GTPases and the Effector VipA Mediate the Invasion of Epithelial Cells by Filamentous Legionella pneumophila. Front Cell Infect Microbiol 2018; 8:133. [PMID: 29774203 PMCID: PMC5943596 DOI: 10.3389/fcimb.2018.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates β1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of β1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of β1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.
Collapse
Affiliation(s)
- Akriti Prashar
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - María Eugenia Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Elizabeth Barker
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zohreh Tabatabeiyazdi
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Cyril Guyard
- Bioaster, Lyon, France.,Molecular Microbiology, Public Health Ontario, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455-471. [PMID: 29235173 PMCID: PMC5796862 DOI: 10.1111/mmi.13896] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, D-13347 Berlin, Germany
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
34
|
Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiol Spectr 2018; 3. [PMID: 27337278 DOI: 10.1128/microbiolspec.vmbf-0003-2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of intracellular pathogens to subvert the host response, to facilitate invasion and subsequent infection, is the hallmark of microbial pathogenesis. Bacterial pathogens produce and secrete a variety of effector proteins, which are the primary means by which they exert control over the host cell. Secreted effectors work independently, yet in concert with each other, to facilitate microbial invasion, replication, and intracellular survival in host cells. In this review we focus on defined host cell processes targeted by bacterial pathogens. These include phagosome maturation and its subprocesses: phagosome-endosome and phagosome-lysosome fusion events, as well as phagosomal acidification, cytoskeleton remodeling, and lysis of the phagosomal membrane. We further describe the mode of action for selected effectors from six pathogens: the Gram-negative Legionella, Salmonella, Shigella, and Yersinia, the Gram-positive Listeria, and the acid-fast actinomycete Mycobacterium.
Collapse
|
35
|
Schroeder GN. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions. Front Cell Infect Microbiol 2018; 7:528. [PMID: 29354599 PMCID: PMC5760550 DOI: 10.3389/fcimb.2017.00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The defective in organelle trafficking/intracellular multiplication (Dot/Icm) Type IVb secretion system (T4SS) is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS) or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal.
Collapse
Affiliation(s)
- Gunnar N Schroeder
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
36
|
Steiner B, Weber S, Hilbi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 2018; 308:49-57. [DOI: 10.1016/j.ijmm.2017.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 11/28/2022] Open
|
37
|
Bärlocher K, Hutter CAJ, Swart AL, Steiner B, Welin A, Hohl M, Letourneur F, Seeger MA, Hilbi H. Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun 2017; 8:1543. [PMID: 29146912 PMCID: PMC5691146 DOI: 10.1038/s41467-017-01512-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila can cause Legionnaires’ disease and replicates intracellularly in a distinct Legionella-containing vacuole (LCV). LCV formation is a complex process that involves a plethora of type IV-secreted effector proteins. The effector RidL binds the Vps29 retromer subunit, blocks retrograde vesicle trafficking, and promotes intracellular bacterial replication. Here, we reveal that the 29-kDa N-terminal domain of RidL (RidL2–281) adopts a “foot-like” fold comprising a protruding β-hairpin at its “heel”. The deletion of the β-hairpin, the exchange to Glu of Ile170 in the β-hairpin, or Leu152 in Vps29 abolishes the interaction in eukaryotic cells and in vitro. RidL2–281 or RidL displace the Rab7 GTPase-activating protein (GAP) TBC1D5 from the retromer and LCVs, respectively, and TBC1D5 promotes the intracellular growth of L. pneumophila. Thus, the hydrophobic β-hairpin of RidL is critical for binding of the L. pneumophila effector to the Vps29 retromer subunit and displacement of the regulator TBC1D5. Legionella pneumophila replicates in a Legionella-containing vacuole (LCV). Here the authors present the structure of the Legionella effector RidL N-terminal domain and reveal how RidL contributes to the subversion of retrograde trafficking by binding to the retromer coat complex subunit Vps29, which leads to a displacement of the regulator TBC1D5.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - François Letourneur
- UMR5235, DIMNP, CNRS/Université Montpellier, Place Eugène Bataillon, Montpellier, 34095, cedex 5, France
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| |
Collapse
|
38
|
Qin K, Struewing I, Domingo JS, Lytle D, Lu J. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments. Pathogens 2017; 6:pathogens6040054. [PMID: 29072631 PMCID: PMC5715195 DOI: 10.3390/pathogens6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.
Collapse
Affiliation(s)
- Ke Qin
- ORISE, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | - Jorge Santo Domingo
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Darren Lytle
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Jingrang Lu
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
39
|
Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2017; 9:185-196. [PMID: 28873330 PMCID: PMC5955191 DOI: 10.1080/21505594.2017.1373925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is widely distributed throughout natural and artificial water systems and can replicate in macrophages and amoebae. Amoebae are the natural hosts of L. pneumophila, whereas macrophages are incidentally infected. The life cycle of L. pneumophila comprises a replicative phase within the Legionella-containing vacuole (LCV) and a transmissive phase during which bacterial cells become motile and are released via killing of the host. Although the host death mechanisms induced by L. pneumophila have been studied, the expression patterns of related L. pneumophila genes have not been reported. The present study compared the expression patterns of host cell death-associated genes in L. pneumophila grown in the human monocytic cell line THP-1 and Acanthamoeba castellanii. Notably, when L. pneumophila was grown in THP-1, expression of the gene flaA, which is involved in the induction of pyroptosis, was downregulated during the course of infection. In contrast, sdhA associated indirectly with host death, was upregulated. Expression of the genes vipD and sidF, which are involved in the induction and suppression of apoptosis, changed by less than 2-fold. Notably, a lower percentage of pyroptotic cells was observed among infected THP-1 cells relative to uninfected cells, and the latter exhibited stronger expression of caspase-1. A different pattern was observed when L. pneumophila was grown in A. castellanii: flaA and vipD were activated, whereas sdhA and sidF were downregulated during the later stage of replication. The percentage of non-viable (annexin-V+ PI+ or annexin-V+PI−) A. castellanii organisms increased with Legionella infection, and the expression of metacaspase-1, which is involved in encystation was up-regulated at late infection time. In summary, L. pneumophila can multiply intracellularly in both amoebae and macrophages to induce cell death and secondary infection, and this characteristic is essential for its survival in water and the lungs. The gene expression profiles observed in this study indicated the increased cytotoxicity of L. pneumophila in A. castellanii, suggesting an increased adaptation of Legionella to this host.
Collapse
Affiliation(s)
- Qianqian Mou
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Polly H M Leung
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| |
Collapse
|
40
|
Dobrowsky PH, Khan S, Khan W. Resistance of Legionella and Acanthamoeba mauritaniensis to heat treatment as determined by relative and quantitative polymerase chain reactions. ENVIRONMENTAL RESEARCH 2017; 158:82-93. [PMID: 28609649 DOI: 10.1016/j.envres.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Legionella and Acanthamoeba spp. persist in harvested rainwater pasteurized at high temperatures (> 72°C) and the interaction mechanisms exhibited between these organisms need to be elucidated. The resistance of two Legionella reference strains (Legionella pneumophila ATCC 33152 and Legionella longbeachae ATCC 33462), three environmental strains [Legionella longbeachae (env.), Legionella norrlandica (env.) and Legionella rowbothamii (env.)] and Acanthamoeba mauritaniensis ATCC 50676 to heat treatment (50-90°C) was determined by monitoring culturability and viability [ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR)]. The expression of metabolic and virulence genes of L. pneumophila ATCC 33152 (lolA, sidF, csrA) and L. longbeachae (env.) (lolA) in co-culture with A. mauritaniensis ATCC 50676 during heat treatment (50-90°C) was monitored using relative qPCR. While the culturability (CFU/mL) and viability (gene copies/mL) of the Legionella strains reduced significantly (p < 0.05) following heat treatment (60-90°C), L. longbeachae (env.) and L. pneumophila ATCC 33152 were culturable following heat treatment at 50-60°C. Metabolically active trophozoites and dormant cysts of A. mauritaniensis ATCC 50676 were detected at 50°C and 60-90°C, respectively. For L. pneumophila ATCC 33152, lolA expression remained constant, sidF expression increased and the expression of csrA decreased during co-culture with A. mauritaniensis ATCC 50676. For L. longbeachae (env.), while lolA was up-regulated at 50-70°C, expression was not detected at 80-90°C and in co-culture. In conclusion, while heat treatment may reduce the number of viable Legionella spp. in monoculture, results indicate that the presence of A. mauritaniensis increases the virulence of L. pneumophila during heat treatment. The virulence of Legionella spp. in co-culture with Acanthamoeba spp. should thus be monitored in water distribution systems where temperature (heat) is utilized for treatment.
Collapse
Affiliation(s)
- Penelope H Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | - Sehaam Khan
- Faculty of Health and Applied Sciences, Namibia University of Science and Technology,13 Storch Street, Private Bag 13388, Windhoek, Namibia.
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
41
|
Sherwood RK, Roy CR. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol 2017; 70:413-33. [PMID: 27607556 DOI: 10.1146/annurev-micro-102215-095557] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane transport processes that center on the involvement of the host ER.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| |
Collapse
|
42
|
|
43
|
Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES, Piehowski PD, Shaw JB, Puvar K, Das C, Liu X, Luo ZQ. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res 2017; 27:865-881. [PMID: 28497808 PMCID: PMC5518988 DOI: 10.1038/cr.2017.66] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies have revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attack several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. In this case, ubiquitin is first activated by ADP-ribosylation at Arg42 by a mono-ADP-ribosyltransferase activity; the intermediate is then cleaved by a phosphodiesterase activity also residing within SdeA, concomitant with the attachment of ubiquitin to serine residues of substrate proteins via a phosphoribosyl linker. Here we demonstrate that the effect of SidEs is antagonized by SidJ, an effector encoded by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ reverses ubiquitination of SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. SidJ also displays classical deubiquitinase activity but does not require catalytic cysteine residues. Further, these deubiquitinase activities of SidJ are essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a ubiquitin-deconjugating enzyme that functions to impose temporal regulation on the activity of SidE effectors. SidJ may be important in future studies of signaling cascades mediated by this unique ubiquitination, one that also potentially regulates cellular processes in eukaryotic cells.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, Jilin 130001, China.,Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaowen Fei
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan 571101, China
| | - Yao Liu
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kedar Puvar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhao-Qing Luo
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, Jilin 130001, China.,Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
44
|
Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017; 7:44795. [PMID: 28317932 PMCID: PMC5357938 DOI: 10.1038/srep44795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/14/2017] [Indexed: 01/17/2023] Open
Abstract
The evolutionarily conserved processes of endosome-lysosome maturation and macroautophagy are established mechanisms that limit survival of intracellular bacteria. Similarly, another emerging mechanism is LC3-associated phagocytosis (LAP). Here we report that an intracellular vacuolar pathogen, Legionella dumoffii, is specifically targeted by LAP over classical endocytic maturation and macroautophagy pathways. Upon infection, the majority of L. dumoffii resides in ER-like vacuoles and replicate within this niche, which involves inhibition of classical endosomal maturation. The establishment of the replicative niche requires the bacterial Dot/Icm type IV secretion system (T4SS). Intriguingly, the remaining subset of L. dumoffii transiently acquires LC3 to L. dumoffii-containing vacuoles in a Dot/Icm T4SS-dependent manner. The LC3-decorated vacuoles are bound by an apparently undamaged single membrane, and fail to associate with the molecules implicated in selective autophagy, such as ubiquitin or adaptors. The process requires toll-like receptor 2, Rubicon, diacylglycerol signaling and downstream NADPH oxidases, whereas ULK1 kinase is dispensable. Together, we have discovered an intracellular pathogen, the survival of which in infected cells is limited predominantly by LAP. The results suggest that L. dumoffii is a valuable model organism for examining the mechanistic details of LAP, particularly induced by bacterial infection.
Collapse
|
45
|
Affiliation(s)
- Elizabeth L Hartland
- Elizabeth L. Hartland is in the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| |
Collapse
|
46
|
Speir M, Vogrin A, Seidi A, Abraham G, Hunot S, Han Q, Dorn GW, Masters SL, Flavell RA, Vince JE, Naderer T. Legionella pneumophila Strain 130b Evades Macrophage Cell Death Independent of the Effector SidF in the Absence of Flagellin. Front Cell Infect Microbiol 2017; 7:35. [PMID: 28261564 PMCID: PMC5311068 DOI: 10.3389/fcimb.2017.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
The human pathogen Legionella pneumophila must evade host cell death signaling to enable replication in lung macrophages and to cause disease. After bacterial growth, however, L. pneumophila is thought to induce apoptosis during egress from macrophages. The bacterial effector protein, SidF, has been shown to control host cell survival and death by inhibiting pro-apoptotic BNIP3 and BCL-RAMBO signaling. Using live-cell imaging to follow the L. pneumophila-macrophage interaction, we now demonstrate that L. pneumophila evades host cell apoptosis independent of SidF. In the absence of SidF, L. pneumophila was able to replicate, cause loss of mitochondria membrane potential, kill macrophages, and establish infections in lungs of mice. Consistent with this, deletion of BNIP3 and BCL-RAMBO did not affect intracellular L. pneumophila replication, macrophage death rates, and in vivo bacterial virulence. Abrogating mitochondrial cell death by genetic deletion of the effectors of intrinsic apoptosis, BAX, and BAK, or the regulator of mitochondrial permeability transition pore formation, cyclophilin-D, did not affect bacterial growth or the initial killing of macrophages. Loss of BAX and BAK only marginally limited the ability of L. pneumophila to efficiently kill all macrophages over extended periods. L. pneumophila induced killing of macrophages was delayed in the absence of capsase-11 mediated pyroptosis. Together, our data demonstrate that L. pneumophila evades host cell death responses independently of SidF during replication and can induce pyroptosis to kill macrophages in a timely manner.
Collapse
Affiliation(s)
- Mary Speir
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Adam Vogrin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Azadeh Seidi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Stéphane Hunot
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of MedicineNew Haven, CT, USA
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et la Moelle - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, Sorbonne Universités, UPMC Univ Paris 06Paris, France
| | - Qingqing Han
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of MedicineNew Haven, CT, USA
| | - Gerald W. Dorn
- Department of Medicine, Center for Pharmacogenomics, Washington University School of MedicineSt. Louis, MO, USA
| | - Seth L. Masters
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
| | - Richard A. Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of MedicineNew Haven, CT, USA
| | - James E. Vince
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
47
|
Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2016; 2:16236. [PMID: 27941800 DOI: 10.1038/nmicrobiol.2016.236] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Legionella pneumophila, the causative bacterium for Legionnaires' disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.
Collapse
|
48
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
49
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
50
|
Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 2016; 9:e1174798. [PMID: 27489580 PMCID: PMC4951175 DOI: 10.1080/19420889.2016.1174798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.
Collapse
|