1
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
2
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
3
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
4
|
Wilkinson MD, Ferreira JL, Beeby M, Baum J, Willison KR. The malaria parasite chaperonin containing TCP-1 (CCT) complex: Data integration with other CCT proteomes. Front Mol Biosci 2022; 9:1057232. [PMID: 36567946 PMCID: PMC9772883 DOI: 10.3389/fmolb.2022.1057232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The multi-subunit chaperonin containing TCP-1 (CCT) is an essential molecular chaperone that functions in the folding of key cellular proteins. This paper reviews the interactome of the eukaryotic chaperonin CCT and its primary clients, the ubiquitous cytoskeletal proteins, actin and tubulin. CCT interacts with other nascent proteins, especially the WD40 propeller proteins, and also assists in the assembly of several protein complexes. A new proteomic dataset is presented for CCT purified from the human malarial parasite, P. falciparum (PfCCT). The CCT8 subunit gene was C-terminally FLAG-tagged using Selection Linked Integration (SLI) and CCT complexes were extracted from infected human erythrocyte cultures synchronized for maximum expression levels of CCT at the trophozoite stage of the parasite's asexual life cycle. We analyze the new PfCCT proteome and incorporate it into our existing model of the CCT system, supported by accumulated data from biochemical and cell biological experiments in many eukaryotic species. Together with measurements of CCT mRNA, CCT protein subunit copy number and the post-translational and chemical modifications of the CCT subunits themselves, a cumulative picture is emerging of an essential molecular chaperone system sitting at the heart of eukaryotic cell growth control and cell cycle regulation.
Collapse
Affiliation(s)
- Mark D. Wilkinson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Josie L. Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Keith R. Willison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,*Correspondence: Keith R. Willison,
| |
Collapse
|
5
|
A first glimpse into the transcriptomic changes induced by the PaV1 infection in the gut of Caribbean spiny lobsters, Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae). Virus Res 2022; 311:198713. [PMID: 35176328 DOI: 10.1016/j.virusres.2022.198713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) supports important fisheries in the Caribbean region. This species is affected by a deadly virus, Panulirus argus Virus 1 (PaV1), the only known pathogenic virus for this species. As infection progresses, the effects of PaV1 on its host become systemic, with far reaching impacts on the host's physiology, including structural injuries to its gastrointestinal organs, such as the hepatopancreas and the gut. This last one becomes highly compromised in the last stages of infection. Since the gut is a key organ for the physiological stability of lobsters, we compared the transcriptomic changes in the gut of juvenile individuals of Panulirus argus naturally infected with PaV1. In the RNA-Seq analysis, we obtained a total of 485 × 106 raw reads. After cleaning, reads were de novo assembled into 68,842 transcripts and 50,257 unigenes. The length of unigenes ranged from 201 bp to 28,717 bp, with a N50 length of 2079, and a GC content of 40.61%. In the differential gene expression analysis, we identified a total of 3,405 non redundant differential transcripts, of which 1,920 were up-regulated and 1,485 were down-regulated. We found alterations in transcripts encoding for proteins involved in transcriptional regulation, splicing, postraductional regulation, protein signaling, transmembrane transport, cytoskeletal regulation, and proteolysis, among others. This is the first insight into the transcriptomic regulation of PaV1-P. argus interaction. The information generated can help to unravel the molecular mechanisms that may intervene in the gut during PaV1 infection.
Collapse
|
6
|
Machida K, Miyawaki S, Kanzawa K, Hakushi T, Nakai T, Imataka H. An in Vitro Reconstitution System Defines the Defective Step in the Biogenesis of Mutated β-Actin Proteins. ACS Synth Biol 2021; 10:3158-3166. [PMID: 34752068 DOI: 10.1021/acssynbio.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Collapse
Affiliation(s)
- Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Shoma Miyawaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kuru Kanzawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Taiki Hakushi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomonori Nakai
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
7
|
Dou L, Zhang X. Upregulation of CCT3 promotes cervical cancer progression through FN1. Mol Med Rep 2021; 24:856. [PMID: 34651664 PMCID: PMC8548953 DOI: 10.3892/mmr.2021.12496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/03/2021] [Indexed: 12/01/2022] Open
Abstract
The mechanisms underlying cervical cancer progression have not yet been fully elucidated; thus, further investigations are required. Chaperonin containing TCP1 subunit 3 (CCT3) expression was found to be upregulated in several types of human cancer. However, the roles of CCT3 in cervical cancer remain poorly understood. Thus, the present study aimed to determine the roles of CCT3 in the progression of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). For this purpose, the Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis databases were used to analyze the mRNA and protein expression levels of CCT3 in CESC samples. The effects of CCT3 on the proliferation and migration of CESC in vitro were determined using various experiments, including proliferation, Transwell and flow cytometric assays. The results revealed that CCT3 expression was significantly upregulated in CESC, which was associated with a poor prognosis. The silencing of CCT3 suppressed CESC cell proliferation, migration and invasiveness in vitro. Additionally, CCT3-knockdown promoted CESC cell apoptosis and cell cycle arrest, and suppressed fibronectin 1 (FN1) protein expression. Furthermore, rescue assays demonstrated that CCT3 promoted CESC proliferation and migration via FN1. In conclusion, the findings of the present study demonstrated that CCT3 is closely associated with the progression of CESC. Thus, CCT3 may be considered a novel, promising biomarker, and a possible therapeutic target for CESC.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinxin Zhang
- Department of Discipline Inspection Commission, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Chaperonin point mutation enhances cadmium endurance in Saccharomyces cerevisiae. Biotechnol Lett 2021; 43:1735-1745. [PMID: 34047865 DOI: 10.1007/s10529-021-03151-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the effect of the mutation in conserved G412E in Cct7p subunit of CCT complex on its cellular fate. RESULTS TriC/CCT is a dynamic multimeric protein that assists in protein folding in an energy-dependent manner. A point mutation in the ATP binding pocket in the equatorial domain of the Cct7p subunit delays the doubling time. The cell size was twice the wild type, and the formation of protein aggregates suggests disturbed folding of the proteins. Upon growing in stressful conditions of arsenous acid and cadmium chloride, the mutant was lethal in As3+ but grew well in Cd2+ with 10.5 µg cadmium uptake mg-1 compared to the wild type. The increased expression of vacuole transporters YCF1 and BPT1 by ten-fold and two-fold in mutant indicates the metal transportation to the vacuole. CONCLUSION CCT complex was vulnerable to the mutation in G412E in the Cct7p subunit of protein folding molecular machinery. Interestingly, already stressed cells provided robustness against oxidative stress and cadmium sequestration in the vacuole.
Collapse
|
9
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Schisa JA. Germ Cell Responses to Stress: The Role of RNP Granules. Front Cell Dev Biol 2019; 7:220. [PMID: 31632971 PMCID: PMC6780003 DOI: 10.3389/fcell.2019.00220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to respond to stress is critical to survival for animals. While stress responses have been studied at both organismal and cellular levels, less attention has been given to the effect of stress on the germ line. Effective germ line adaptations to stress are essential to the propagation of a species. Recent studies suggest that germ cells share some cellular responses to stress with somatic cells, including the assembly of RNP granules, but may also have unique requirements. One fundamental difference between oocytes and sperm, as well as most somatic cells, is the long lifespan of oocytes. Since women are born with all of their eggs, oocytes must maintain their cellular quality over decades prior to fertilization. This prolonged meiotic arrest is one type of stress that eventually contributes to decreased fertility in older women. Germ cell responses to nutritional stress and heat stress have also been well-characterized using model systems. Here we review our current understanding of how germ cells respond to stress, with an emphasis on the dynamic assembly of RNP granules that may be adaptive. We compare and contrast stress responses of male gametes with those of female gametes, and discuss how the dynamic cellular remodeling of the germ line can impact the regulation of gene expression. We also discuss the implications of recent in vitro studies of ribonucleoprotein granule assembly on our understanding of germ line responses to stress, and the gaps that remain in our understanding of the function of RNP granules during stress.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
11
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
12
|
Chuartzman SG, Schuldiner M. Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast. Yeast 2018; 35:477-483. [PMID: 29574976 PMCID: PMC6055851 DOI: 10.1002/yea.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice (‘hits’) are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen – all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community.
Collapse
Affiliation(s)
- Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
13
|
Pouchucq L, Lobos-Ruiz P, Araya G, Valpuesta JM, Monasterio O. The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:519-526. [PMID: 29339327 DOI: 10.1016/j.bbapap.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis.
Collapse
Affiliation(s)
- Luis Pouchucq
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Biotecnología Vegetal Ambiental, Departamento de Biotecnología, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Counts JT, Hester TM, Rouhana L. Genetic expansion of chaperonin-containing TCP-1 (CCT/TRiC) complex subunits yields testis-specific isoforms required for spermatogenesis in planarian flatworms. Mol Reprod Dev 2017; 84:1271-1284. [PMID: 29095551 DOI: 10.1002/mrd.22925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022]
Abstract
Chaperonin-containing Tail-less complex polypeptide 1 (CCT) is a highly conserved, hetero-oligomeric complex that ensures proper folding of actin, tubulin, and regulators of mitosis. Eight subunits (CCT1-8) make up this complex, and every subunit has a homolog expressed in the testes and somatic tissue of the planarian flatworm Schmidtea mediterranea. Gene duplications of four subunits in the genomes of S. mediterranea and other planarian flatworms created paralogs to CCT1, CCT3, CCT4, and CCT8 that are expressed exclusively in the testes. Functional analyses revealed that each CCT subunit expressed in the S. mediterranea soma is essential for homeostatic integrity and survival, whereas sperm elongation defects were observed upon knockdown of each individual testis-specific paralog (Smed-cct1B; Smed-cct3B; Smed-cct4A; and Smed-cct8B), regardless of potential redundancy with paralogs expressed in both testes and soma (Smed-cct1A; Smed-cct3A; Smed-cct4B; and Smed-cct8A). Yet, no detriment was observed in the number of adult somatic stem cells (neoblasts) that maintain differentiated tissue in planarians. Thus, expression of all eight CCT subunits is required to execute the essential functions of the CCT complex. Furthermore, expression of the somatic paralogs in planarian testes is not sufficient to complete spermatogenesis when testis-specific paralogs are knocked down, suggesting that the evolution of chaperonin subunits may drive changes in the development of sperm structure and that correct CCT subunit stoichiometry is crucial for spermiogenesis.
Collapse
Affiliation(s)
- Jenna T Counts
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Tasha M Hester
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
15
|
Melkani GC, Bhide S, Han A, Vyas J, Livelo C, Bodmer R, Bernstein SI. TRiC/CCT chaperonins are essential for maintaining myofibril organization, cardiac physiological rhythm, and lifespan. FEBS Lett 2017; 591:3447-3458. [PMID: 28963798 PMCID: PMC5683924 DOI: 10.1002/1873-3468.12860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023]
Abstract
We recently reported that CCT chaperonin subunits are upregulated in a cardiac-specific manner under time-restricted feeding (TRF) [Gill S et al. (2015) Science 347, 1265-1269], suggesting that TRiC/CCT has a heart-specific function. To understand the CCT chaperonin function in cardiomyocytes, we performed its cardiac-specific knock-down in the Drosophila melanogaster model. This resulted in disorganization of cardiac actin- and myosin-containing myofibrils and severe physiological dysfunction, including restricted heart diameters, elevated cardiac dysrhythmia and compromised cardiac performance. We also noted that cardiac-specific knock-down of CCT chaperonin significantly shortens lifespans. Additionally, disruption of circadian rhythm yields further deterioration of cardiac function of hypomorphic CCT mutants. Our analysis reveals that both the orchestration of protein folding and circadian rhythms mediated by CCT chaperonin are critical for maintaining heart contractility.
Collapse
Affiliation(s)
- Girish C. Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Jay Vyas
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Catherine Livelo
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| |
Collapse
|
16
|
Javidialesaadi A, Stan G. Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. J Phys Chem B 2017; 121:7108-7121. [DOI: 10.1021/acs.jpcb.7b05963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
17
|
Abstract
The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structural information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.
Collapse
|
18
|
CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun 2016; 7:13821. [PMID: 27929117 PMCID: PMC5155164 DOI: 10.1038/ncomms13821] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.
Collapse
|
19
|
Cell-free analysis of polyQ-dependent protein aggregation and its inhibition by chaperone proteins. J Biotechnol 2016; 239:1-8. [PMID: 27702574 DOI: 10.1016/j.jbiotec.2016.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022]
Abstract
Protein misfolding and aggregation is one of the major causes of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. So far protein aggregation related to these diseases has been studied using animals, cultured cells or purified proteins. In this study, we show that a newly synthesized polyglutamine protein implicated in Huntington's disease forms large aggregates in HeLa cells, and successfully recapitulate the process of this aggregation using a translation-based system derived from HeLa cell extracts. When the cell-free translation system was pre-incubated with recombinant human cytosolic chaperonin CCT, or the Hsc70 chaperone system (Hsc70s: Hsc70, Hsp40, and Hsp110), aggregate formation was inhibited in a dose-dependent manner. In contrast, when these chaperone proteins were added in a post-translational manner, aggregation was not prevented. These data led us to suggest that chaperonin CCT and Hsc70s interact with nascent polyglutamine proteins co-translationally or immediately after their synthesis in a fashion that prevents intra- and intermolecular interactions of aggregation-prone polyglutamine proteins. We conclude that the in vitro approach described here can be usefully employed to analyze the mechanisms that provoke polyglutamine-driven protein aggregation and to screen for molecules to prevent it.
Collapse
|
20
|
RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line. G3-GENES GENOMES GENETICS 2016; 6:2643-54. [PMID: 27317775 PMCID: PMC4978917 DOI: 10.1534/g3.116.031559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.
Collapse
|
21
|
Özdemir A, Machida K, Imataka H, Catling AD. Identification of the T-complex protein as a binding partner for newly synthesized cytoplasmic dynein intermediate chain 2. Biochem Biophys Res Commun 2016; 469:126-131. [DOI: 10.1016/j.bbrc.2015.11.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
|
22
|
Hubstenberger A, Cameron C, Noble SL, Keenan S, Evans TC. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. J Cell Biol 2015; 211:703-16. [PMID: 26527741 PMCID: PMC4639854 DOI: 10.1083/jcb.201504044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Modifiers of aberrant solid RNP granules suggest new insights into pathways that control dynamics of large-scale RNP bodies and mRNAs during C. elegans oogenesis. Ribonucleoproteins (RNPs) often coassemble into supramolecular bodies with regulated dynamics. The factors controlling RNP bodies and connections to RNA regulation are unclear. During Caenorhabditis elegans oogenesis, cytoplasmic RNPs can transition among diffuse, liquid, and solid states linked to mRNA regulation. Loss of CGH-1/Ddx6 RNA helicase generates solid granules that are sensitive to mRNA regulators. Here, we identified 66 modifiers of RNP solids induced by cgh-1 mutation. A majority of genes promote or suppress normal RNP body assembly, dynamics, or metabolism. Surprisingly, polyadenylation factors promote RNP coassembly in vivo, suggesting new functions of poly(A) tail regulation in RNP dynamics. Many genes carry polyglutatmine (polyQ) motifs or modulate polyQ aggregation, indicating possible connections with neurodegenerative disorders induced by CAG/polyQ expansion. Several RNP body regulators repress translation of mRNA subsets, suggesting that mRNAs are repressed by multiple mechanisms. Collectively, these findings suggest new pathways of RNP modification that control large-scale coassembly and mRNA activity during development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Pierre-and-Marie-Curie University, University Paris 06, 75005 Paris, France
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Graduate Program in Molecular Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean Keenan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
23
|
Cary GA, Vinh DBN, May P, Kuestner R, Dudley AM. Proteomic Analysis of Dhh1 Complexes Reveals a Role for Hsp40 Chaperone Ydj1 in Yeast P-Body Assembly. G3 (BETHESDA, MD.) 2015; 5:2497-511. [PMID: 26392412 PMCID: PMC4632068 DOI: 10.1534/g3.115.021444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
Abstract
P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. Although the conserved mRNA decay and translational repression machineries are known components of PB, how and why cells assemble RNP complexes into large foci remain unclear. Using mass spectrometry to analyze proteins immunoisolated with the core PB protein Dhh1, we show that a considerable number of proteins contain low-complexity sequences, similar to proteins highly represented in mammalian RNP granules. We also show that the Hsp40 chaperone Ydj1, which contains an low-complexity domain and controls prion protein aggregation, is required for the formation of Dhh1-GFP foci on glucose depletion. New classes of proteins that reproducibly coenrich with Dhh1-GFP during PB induction include proteins involved in nucleotide or amino acid metabolism, glycolysis, transfer RNA aminoacylation, and protein folding. Many of these proteins have been shown to form foci in response to other stresses. Finally, analysis of RNA associated with Dhh1-GFP shows enrichment of mRNA encoding the PB protein Pat1 and catalytic RNAs along with their associated mitochondrial RNA-binding proteins. Thus, global characterization of PB composition has uncovered proteins important for PB assembly and evidence suggesting an active role for RNA in PB function.
Collapse
Affiliation(s)
- Gregory A Cary
- Institute for Systems Biology, Seattle, Washington 98109 Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Dani B N Vinh
- Institute for Systems Biology, Seattle, Washington 98109
| | - Patrick May
- Institute for Systems Biology, Seattle, Washington 98109 Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg L-4362
| | - Rolf Kuestner
- Institute for Systems Biology, Seattle, Washington 98109
| | - Aimée M Dudley
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195 Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| |
Collapse
|
24
|
Zhang J, Ye C, Ruan X, Zan J, Xu Y, Liao M, Zhou J. The chaperonin CCTα is required for efficient transcription and replication of rabies virus. Microbiol Immunol 2015; 58:590-9. [PMID: 25082455 DOI: 10.1111/1348-0421.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/08/2014] [Accepted: 07/24/2014] [Indexed: 12/25/2022]
Abstract
Negri bodies (NBs) are formed in the cytoplasm of rabies virus (RABV)-infected cells and are accompanied by a number of host factors to NBs, in which replication and transcription occur. Here, it was found that chaperonin containing TCP-1 subunit alpha (CCTα) relocalizes to NBs in RABV-infected cells, and that cotransfection of nucleo- and phospho-proteins of RABV is sufficient to recruit CCTα to the NBs' structure. Inhibition of CCTα expression by specific short hairpin RNA knockdown inhibited the replication and transcription of RABV. Therefore, this study showed that the host factor CCTα is associated with RABV infection and is very likely required for efficient virus transcription and replication.
Collapse
Affiliation(s)
- Jinyang Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058; State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003; Research Center of Molecular Medicine of Yunnan Province, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Kasembeli M, Lau WCY, Roh SH, Eckols TK, Frydman J, Chiu W, Tweardy DJ. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol 2014; 12:e1001844. [PMID: 24756126 PMCID: PMC3995649 DOI: 10.1371/journal.pbio.1001844] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Levels, folding, and function of the infamous cancer and inflammatory disease-related signaling molecule Stat3 are regulated by interaction with the chaperonin TRiC; manipulation of this interaction is a therapeutic avenue for exploration. Signal transducer and activator of transcription 3 (Stat3) transduces signals of many peptide hormones from the cell surface to the nucleus and functions as an oncoprotein in many types of cancers, yet little is known about how it achieves its native folded state within the cell. Here we show that Stat3 is a novel substrate of the ring-shaped hetero-oligomeric eukaryotic chaperonin, TRiC/CCT, which contributes to its biosynthesis and activity in vitro and in vivo. TRiC binding to Stat3 was mediated, at least in part, by TRiC subunit CCT3. Stat3 binding to TRiC mapped predominantly to the β-strand rich, DNA-binding domain of Stat3. Notably, enhancing Stat3 binding to TRiC by engineering an additional TRiC-binding domain from the von Hippel-Lindau protein (vTBD), at the N-terminus of Stat3, further increased its affinity for TRiC as well as its function, as determined by Stat3's ability to bind to its phosphotyrosyl-peptide ligand, an interaction critical for Stat3 activation. Thus, Stat3 levels and function are regulated by TRiC and can be modulated by manipulating its interaction with TRiC. Stat3 is a multidomain transcription factor that contributes to many cellular functions by transmitting signals for over 40 peptide hormones from the cell surface to the nucleus. Understanding how multidomain proteins achieve their fully folded and functional state is of substantial biological interest. As Stat3 signaling is up-regulated in many pathological conditions, including cancer and inflammatory diseases, insight into what controls its folding may be useful for the identification of vulnerabilities that can be therapeutically exploited. We demonstrate that the major protein-folding machine or chaperonin within eukaryotic cells, TRiC/CCT, is required for Stat3 to fold during its synthesis and for Stat3 to be fully functional within the cell. We also find that TRiC can refold chemically denatured Stat3 and provide evidence that the CCT3 subunit of TRiC binds to the DNA-binding domain of Stat3. We also show that Stat3 activity is decreased by down-modulating levels of TRiC and can be increased by increasing Stat3's interaction with TRiC. TRiC therefore regulates both Stat3 protein levels and its function, making Stat3 modulation by manipulation of its interaction with TRiC a potential approach for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Moses Kasembeli
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wilson Chun Yu Lau
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - T. Kris Eckols
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Judith Frydman
- Department of Biology and the BioX Program, Stanford University, Stanford, California, United States of America
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David J. Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
27
|
Breker M, Gymrek M, Moldavski O, Schuldiner M. LoQAtE--Localization and Quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast. Nucleic Acids Res 2013; 42:D726-30. [PMID: 24150937 PMCID: PMC3965041 DOI: 10.1093/nar/gkt933] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Living organisms change their proteome dramatically to sustain a stable internal milieu in fluctuating environments. To study the dynamics of proteins during stress, we measured the localization and abundance of the Saccharomyces cerevisiae proteome under various growth conditions and genetic backgrounds using the GFP collection. We created a database (DB) called ‘LoQAtE’ (Localizaiton and Quantitation Atlas of the yeast proteomE), available online at http://www.weizmann.ac.il/molgen/loqate/, to provide easy access to these data. Using LoQAtE DB, users can get a profile of changes for proteins of interest as well as querying advanced intersections by either abundance changes, primary localization or localization shifts over the tested conditions. Currently, the DB hosts information on 5330 yeast proteins under three external perturbations (DTT, H2O2 and nitrogen starvation) and two genetic mutations [in the chaperonin containing TCP1 (CCT) complex and in the proteasome]. Additional conditions will be uploaded regularly. The data demonstrate hundreds of localization and abundance changes, many of which were not detected at the level of mRNA. LoQAtE is designed to allow easy navigation for non-experts in high-content microscopy and data are available for download. These data should open up new perspectives on the significant role of proteins while combating external and internal fluctuations.
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel and Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
28
|
Tompkins VS, Han SS, Olivier A, Syrbu S, Bair T, Button A, Jacobus L, Wang Z, Lifton S, Raychaudhuri P, Morse HC, Weiner G, Link B, Smith BJ, Janz S. Identification of candidate B-lymphoma genes by cross-species gene expression profiling. PLoS One 2013; 8:e76889. [PMID: 24130802 PMCID: PMC3793908 DOI: 10.1371/journal.pone.0076889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.
Collapse
Affiliation(s)
- Van S. Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seong-Su Han
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alicia Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sergei Syrbu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Bair
- Bioinformatics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Anna Button
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Laura Jacobus
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Samuel Lifton
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Statistics & Actuarial Science, University of Iowa College of Liberal Arts & Sciences, Iowa City, Iowa, United States of America
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - George Weiner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian Link
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian J. Smith
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
29
|
Cui S, Mano S, Yamada K, Hayashi M, Nishimura M. Novel proteins interacting with peroxisomal protein receptor PEX7 in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26829. [PMID: 24494243 PMCID: PMC4091122 DOI: 10.4161/psb.26829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/15/2013] [Indexed: 06/03/2023]
Abstract
Peroxisomal matrix protein transport relies on 2 cytosolic receptors, PEX5 and PEX7, which import peroxisomal targeting signal type 1 (PTS1) and PTS2-containing proteins, respectively. To better understand the transport mechanism of PEX7, we isolated PEX7 complexes using proteomics. We identified PEX5 as well as PTS1- and PTS2-containing proteins within the complex, thereby confirming the interaction between PEX5 and PEX7 during cargo transport that had been previously characterized by biochemical approaches. In addition, a chaperone T-complex and 2 small Rab GTPases were identified. We recently reported that the RabE1c is involved in the degradation of the PEX7 when abnormal PEX7 is accumulated on the peroxisomal membrane. This study expands our knowledge on the transport machinery via PEX7 by identifying both known and novel PEX7-interacting proteins and thus is helpful for further investigation of the regulation of the peroxisomal protein receptor during its translocation.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Japan
- Department of Basic Biology; School of Life Science; Graduate University for Advanced Studies; Okazaki, Japan
| | - Shoji Mano
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Japan
- Department of Basic Biology; School of Life Science; Graduate University for Advanced Studies; Okazaki, Japan
| | - Kenji Yamada
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Japan
- Department of Basic Biology; School of Life Science; Graduate University for Advanced Studies; Okazaki, Japan
| | - Makoto Hayashi
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Japan
- Department of Basic Biology; School of Life Science; Graduate University for Advanced Studies; Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Japan
- Department of Basic Biology; School of Life Science; Graduate University for Advanced Studies; Okazaki, Japan
| |
Collapse
|
30
|
Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. J Chem Phys 2013; 139:121921. [DOI: 10.1063/1.4817410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
31
|
Tonddast-Navaei S, Stan G. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. J Am Chem Soc 2013; 135:14627-36. [PMID: 24007343 DOI: 10.1021/ja404051b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ATPases associated with various cellular activities (AAA+) form a superfamily of ring-shaped motor proteins that utilize cyclical allosteric motions to remodel or translocate substrate proteins (SP) through a narrow central pore. The p97 ATPase is a homohexameric, double-ring member of this superfamily that encloses a central channel with nonuniform width. A narrow compartment is present within the D1 ring and a larger cavity within the D2 ring, separated by a constriction formed by six His amino acids. We use molecular dynamics simulations to probe the interaction between p97 and an extended peptide substrate. Mechanical pulling of the substrate through the p97 pore reveals that smaller work is required for translocation from the D1 toward the D2 compartment than in the opposite direction. These distinct energetic requirements originate in structural aspects and chemical properties of the pore lining. Whereas van der Waals interactions are dominant within the D1 pore, interaction within the D2 pore are strongly electrostatic. Two charged amino acids in the D2 pore, Arg599 and Glu554, provide the largest contribution to the interaction and hinder translocation from the D2 pore. SP threading requires smaller forces when the SP is pulled from the D1 side due to lower barrier to rotation of the His side chains in the direction of the D2 pore. Based on additional simulations of SP binding to two allosteric conformations of p97, we propose that transient binding and release of SP from the pore involves a lever mechanism. Binding to the open pore conformation of p97 occurs primarily at the Arg599 side chain, where the SP backbone is engaged through electrostatic interactions and hydrogen bonds. ATP-driven conformational transitions within the D2 ring alter the chemical environment inside the p97 cavity in the closed pore state. In this state, Glu554 side chains project further into the pore and interacts strongly through van der Waals contacts with the SP backbone. Based on mutations at the two sites in each of the states we identify a specific requirement of these side chains for interaction with the substrate.
Collapse
Affiliation(s)
- Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | |
Collapse
|
32
|
Kalisman N, Schröder GF, Levitt M. The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure 2013; 21:540-9. [PMID: 23478063 DOI: 10.1016/j.str.2013.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
In eukaryotes, CCT is essential for the correct and efficient folding of many cytosolic proteins, most notably actin and tubulin. Structural studies of CCT have been hindered by the failure of standard crystallographic analysis to resolve its eight different subunit types at low resolutions. Here, we exhaustively assess the R value fit of all possible CCT models to available crystallographic data of the closed and open forms with resolutions of 3.8 Å and 5.5 Å, respectively. This unbiased analysis finds the native subunit arrangements with overwhelming significance. The resulting structures provide independent crystallographic proof of the subunit arrangement of CCT and map major asymmetrical features of the particle onto specific subunits. The actin and tubulin substrates both bind around subunit CCT6, which shows other structural anomalies. CCT is thus clearly partitioned, both functionally and evolutionary, into a substrate-binding side that is opposite to the ATP-hydrolyzing side.
Collapse
Affiliation(s)
- Nir Kalisman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|