1
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Ochmann MT, Ivics Z. Jumping Ahead with Sleeping Beauty: Mechanistic Insights into Cut-and-Paste Transposition. Viruses 2021; 13:76. [PMID: 33429848 PMCID: PMC7827188 DOI: 10.3390/v13010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure-function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials.
Collapse
Affiliation(s)
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany;
| |
Collapse
|
3
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Rotiroti MC, Buracchi C, Arcangeli S, Galimberti S, Valsecchi MG, Perriello VM, Rasko T, Alberti G, Magnani CF, Cappuzzello C, Lundberg F, Pande A, Dastoli G, Introna M, Serafini M, Biagi E, Izsvák Z, Biondi A, Tettamanti S. Targeting CD33 in Chemoresistant AML Patient-Derived Xenografts by CAR-CIK Cells Modified with an Improved SB Transposon System. Mol Ther 2020; 28:1974-1986. [PMID: 32526203 DOI: 10.1016/j.ymthe.2020.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
The successful implementation of chimeric antigen receptor (CAR)-T cell therapy in the clinical context of B cell malignancies has paved the way for further development in the more critical setting of acute myeloid leukemia (AML). Among the potentially targetable AML antigens, CD33 is insofar one of the main validated molecules. Here, we describe the feasibility of engineering cytokine-induced killer (CIK) cells with a CD33.CAR by using the latest optimized version of the non-viral Sleeping Beauty (SB) transposon system "SB100X-pT4." This offers the advantage of improving CAR expression on CIK cells, while reducing the amount of DNA transposase as compared to the previously employed "SB11-pT" version. SB-modified CD33.CAR-CIK cells exhibited significant antileukemic activity in vitro and in vivo in patient-derived AML xenograft models, reducing AML development when administered as an "early treatment" and delaying AML progression in mice with established disease. Notably, by exploiting an already optimized xenograft chemotherapy model that mimics human induction therapy in mice, we demonstrated for the first time that CD33.CAR-CIK cells are also effective toward chemotherapy resistant/residual AML cells, further supporting its future clinical development and implementation within the current standard regimens.
Collapse
Affiliation(s)
- Maria Caterina Rotiroti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Chiara Buracchi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Silvia Arcangeli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano - Bicocca, 20900 Monza, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano - Bicocca, 20900 Monza, Italy
| | - Vincenzo Maria Perriello
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy; Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Tamas Rasko
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Gaia Alberti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Chiara Francesca Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Claudia Cappuzzello
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Felix Lundberg
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany; The Milner Centre for Evolution, University of Bath, BA2 7AY Bath, UK
| | - Amit Pande
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Giuseppe Dastoli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani," USC Ematologia ASST Papa Giovanni XXIII, 24124 Bergamo, Italy
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Ettore Biagi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Zsuzsanna Izsvák
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy.
| | - Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| |
Collapse
|
5
|
Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Res 2020; 48:316-331. [PMID: 31777924 PMCID: PMC6943129 DOI: 10.1093/nar/gkz1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int− transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int− transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.
Collapse
Affiliation(s)
- Lisa Kesselring
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Vladimir Kapitonov
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Anita Fehér
- BioTalentum Ltd, Gödöllő, 2100 Gödöllő, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari 'Aldo Moro', Italy
| | - Tanja Diem
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Janna Lustig
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Attila Sebe
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Yongming Wang
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
6
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
8
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
9
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Yum SY, Lee SJ, Park SG, Shin IG, Hahn SE, Choi WJ, Kim HS, Kim HJ, Bae SH, Lee JH, Moon JY, Lee WS, Lee JH, Lee CI, Kim SJ, Jang G. Long-term health and germline transmission in transgenic cattle following transposon-mediated gene transfer. BMC Genomics 2018; 19:387. [PMID: 29792157 PMCID: PMC5966871 DOI: 10.1186/s12864-018-4760-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. Results Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf’s genome. Conclusions Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models. Electronic supplementary material The online version of this article (10.1186/s12864-018-4760-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soo-Young Yum
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Song-Jeon Lee
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Sin-Gi Park
- Bioinformatics Team, Theragen Etex Bio Institute, Advanced Institutes of Convergence Technology, Kwanggyo Technovalley, Suwon, 16229, Republic of Korea
| | - In-Gang Shin
- Bioinformatics Team, Theragen Etex Bio Institute, Advanced Institutes of Convergence Technology, Kwanggyo Technovalley, Suwon, 16229, Republic of Korea
| | - Sang-Eun Hahn
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woo-Jae Choi
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hee-Soo Kim
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Hyeong-Jong Kim
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Seong-Hun Bae
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Je-Hyeong Lee
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Joo-Yeong Moon
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Woo-Sung Lee
- Embryo Research Center, Seoul Milk Coop, Gyeonggi-do, 12528, Republic of Korea
| | - Ji-Hyun Lee
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Choong-Il Lee
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong-Jin Kim
- Bioinformatics Team, Theragen Etex Bio Institute, Advanced Institutes of Convergence Technology, Kwanggyo Technovalley, Suwon, 16229, Republic of Korea
| | - Goo Jang
- Department of Theriogenology, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, #631 Building 85, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. .,Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
11
|
Changes in Skeletal Muscle and Body Weight on Sleeping Beauty Transposon-Mediated Transgenic Mice Overexpressing Pig mIGF-1. Biochem Genet 2018; 56:341-355. [PMID: 29470680 PMCID: PMC6028850 DOI: 10.1007/s10528-018-9848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/10/2018] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor (IGF-I) is an important growth factor in mammals, but the functions of the local muscle-specific isoform of insulin-like growth factor 1 (mIGF-1) to skeletal muscle development have rarely been reported. To determine the effect of pig mIGF-1 on body development and muscle deposition in vivo and to investigate the molecular mechanisms, the transgenic mouse model was generated which can also provide experimental data for making transgenic pigs with pig endogenous IGF1 gene. We constructed a skeletal muscle-specific expression vector using 5′- and 3′-regulatory regions of porcine skeletal α-actin gene. The expression cassette was flanked with Sleeping Beauty transposon (SB)-inverted terminal repeats. The recombinant vector could strongly drive enhanced green fluorescence protein (EGFP) reporter gene expression specifically in mouse myoblast cells and porcine fetal fibroblast cells, but not in porcine kidney cells. The EGFP level driven by α-actin regulators was significantly stronger than that driven by cytomegalovirus promoters. These results indicated that the cloned α-actin regulators could effectively drive specific expression of foreign genes in myoblasts, and the skeletal muscle-specific expression vector mediated with SB transposon was successfully constructed. To validate the effect of pig mIGF-1 on skeletal muscle growth, transgenic mice were generated by pronuclear microinjection of SB-mediated mIGF-1 skeletal expression vector and SB transposase-expressing plasmid. The transgene-positive rates of founder mice and the next-generation F1 mice were 30% (54/180) and 90.1% (64/71), respectively. The mIGF-1 gene could be expressed in skeletal muscle specifically. The levels of mRNA and protein in transgenic mice were 15 and 3.5 times higher, respectively, than in wild-type mice. The body weights of F1 transgenic mice were significantly heavier than wild-type mice from the age of 8 weeks onwards. The paraffin-embedded sections of gastrocnemius from 16-week-old transgenic male mice showed that the numbers of myofibers per unit were increased in comparison with those in the wild-type mice. mIGF-1 overexpression in mice skeletal muscle may promote myofibers hypertrophy and muscle production, and increased the average body weight of adult mice. Transgenic mice models can be generated by the mediation of SB transposon with high transgene efficiency.
Collapse
|
12
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
13
|
Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR. Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 2017; 35:832-844. [PMID: 28602961 DOI: 10.1016/j.biotechadv.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia C P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Renato de França
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil.
| | - Rodrigo R Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil.
| |
Collapse
|
14
|
Friedrich MJ, Rad L, Bronner IF, Strong A, Wang W, Weber J, Mayho M, Ponstingl H, Engleitner T, Grove C, Pfaus A, Saur D, Cadiñanos J, Quail MA, Vassiliou GS, Liu P, Bradley A, Rad R. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 2017; 12:289-309. [PMID: 28079877 DOI: 10.1038/nprot.2016.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.
Collapse
Affiliation(s)
| | - Lena Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iraad F Bronner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Wei Wang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Julia Weber
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Thomas Engleitner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carolyn Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Anja Pfaus
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
15
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
16
|
Li L, Liu P, Sun L, Bin Zhou, Fei J. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci Rep 2016; 6:27788. [PMID: 27292714 PMCID: PMC4904408 DOI: 10.1038/srep27788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
We designed a new type of polyadenylation-signal (PAS) trap vector system in living mice, the piggyBac (PB) (PAS-trapping (EGFP)) gene trapping vector, which takes advantage of the efficient transposition ability of PB and efficient gene trap and insertional mutagenesis of PAS-trapping. The reporter gene of PB(PAS-trapping (EGFP)) is an EGFP gene with its own promoter, but lacking a poly(A) signal. Transgenic mouse lines carrying PB(PAS-trapping (EGFP)) and protamine 1 (Prm1) promoter-driven PB transposase transgenes (Prm1-PBase) were generated by microinjection. Male mice doubly positive for PB(PAS-trapping (EGFP)) and Prm1-PBase were crossed with WT females, generating offspring with various insertion mutations. We found that 44.8% (26/58) of pups were transposon-positive progenies. New transposon integrations comprised 26.9% (7/26) of the transposon-positive progenies. We found that 100% (5/5) of the EGFP fluorescence-positive mice had new trap insertions mediated by a PB transposon in transcriptional units. The direction of the EGFP gene in the vector was consistent with the direction of the endogenous gene reading frame. Furthermore, mice that were EGFP-PCR positive, but EGFP fluorescent negative, did not show successful gene trapping. Thus, the novel PB(PAS-trapping (EGFP)) system is an efficient genome-wide gene-trap mutagenesis in mice.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China
| | - Bin Zhou
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Fei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Metastasis research institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| |
Collapse
|
17
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
18
|
A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun 2016; 7:10716. [PMID: 26931494 PMCID: PMC4778049 DOI: 10.1038/ncomms10716] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/14/2016] [Indexed: 02/08/2023] Open
Abstract
Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3′-end of the transposon functions as a transposition terminator. However, the 3′-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling. Helitron elements are proposed rolling-circle transposons in eukaryotic genomes, but experimental evidence for their transposition has been lacking. Here, Grabundzija et al. reconstruct an active Helitron from bats which they name Helraiser, and characterize its mechanism of transposition in cell-free reactions and in human cell cultures in vitro.
Collapse
|
19
|
Clark CR, Starr TK. Mouse models for the discovery of colorectal cancer driver genes. World J Gastroenterol 2016; 22:815-822. [PMID: 26811627 PMCID: PMC4716079 DOI: 10.3748/wjg.v22.i2.815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) constitutes a major public health problem as the third most commonly diagnosed and third most lethal malignancy worldwide. The prevalence and the physical accessibility to colorectal tumors have made CRC an ideal model for the study of tumor genetics. Early research efforts using patient derived CRC samples led to the discovery of several highly penetrant mutations (e.g., APC, KRAS, MMR genes) in both hereditary and sporadic CRC tumors. This knowledge has enabled researchers to develop genetically engineered and chemically induced tumor models of CRC, both of which have had a substantial impact on our understanding of the molecular basis of CRC. Despite these advances, the morbidity and mortality of CRC remains a cause for concern and highlight the need to uncover novel genetic drivers of CRC. This review focuses on mouse models of CRC with particular emphasis on a newly developed cancer gene discovery tool, the Sleeping Beauty transposon-based mutagenesis model of CRC.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/genetics
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms, Hereditary Nonpolyposis/genetics
- Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism
- Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Humans
- Mice
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phenotype
- Transposases/genetics
- Transposases/metabolism
Collapse
|
20
|
Hou X, Du Y, Deng Y, Wu J, Cao G. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers. Cancer Biol Ther 2015; 16:8-16. [PMID: 25455252 DOI: 10.4161/15384047.2014.986944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.
Collapse
Key Words
- 7, 12-dimethylbenzanthracene/12-O-tetradecanoylphorbol-13-acetate
- Alb-Cre, Albumin promoter-Cre
- CAG promoter, CMV enhancer/chicken β-actin promoter
- CAR, chimeric antigen receptor
- CIS, common insertion site
- CMV, chimeric cytomegalovirus
- CRC, colorectal cancer
- Cre, cyclization recombination enzyme
- DDE, Asp, Asp, Glu
- DMBA/TPA
- DR, direct orientation
- Fah, fumarylacetoacetate hydrolase gene
- GWAS, gnome wide analysis study
- HBV, Hepatitis B Virus
- HBx, HBV X protein
- HCC, hepatocellular carcinoma
- IRs, inverted repeat sequences
- LsL, loxP-stop-loxP
- MPNSTs, malignant peripheral nerve sheath tumor
- MSCV, murine stem cell virus
- PAI, Pro, Ala, Ile
- PBMCs, peripheral blood mononuclear cells
- RED, Arg, Glu, Asp
- RosaSBaseLsL, Cre-inducible SBase allele
- Rtl1, Retrotransposon-like 1
- SB, Sleeping Beauty
- SBase, Sleeping Beauty transposase
- Sleeping Beauty transposon system
- StatinAE, angiostatin-endostatin fusion gene
- Trp53, transformation related protein 53
- animal model
- driver
- gene function
- gene therapy
- malignant diseases
- sgRNA, single guide RNA
- shp53, short hairpin RNA against the Trp53 gene
- somatic mutation
Collapse
Affiliation(s)
- Xiaomei Hou
- a Department of Epidemiology ; Second Military Medical University ; Shanghai , China
| | | | | | | | | |
Collapse
|
21
|
Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes. G3-GENES GENOMES GENETICS 2015; 5:2903-11. [PMID: 26438296 PMCID: PMC4683661 DOI: 10.1534/g3.115.021709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis.
Collapse
|
22
|
Rad R, Rad L, Wang W, Strong A, Ponstingl H, Bronner IF, Mayho M, Steiger K, Weber J, Hieber M, Veltkamp C, Eser S, Geumann U, Öllinger R, Zukowska M, Barenboim M, Maresch R, Cadiñanos J, Friedrich M, Varela I, Constantino-Casas F, Sarver A, Ten Hoeve J, Prosser H, Seidler B, Bauer J, Heikenwälder M, Metzakopian E, Krug A, Ehmer U, Schneider G, Knösel T, Rümmele P, Aust D, Grützmann R, Pilarsky C, Ning Z, Wessels L, Schmid RM, Quail MA, Vassiliou G, Esposito I, Liu P, Saur D, Bradley A. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet 2014; 47:47-56. [PMID: 25485836 DOI: 10.1038/ng.3164] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023]
Abstract
Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.
Collapse
Affiliation(s)
- Roland Rad
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. [3] The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Wei Wang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Iraad F Bronner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Katja Steiger
- Department of Pathology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Julia Weber
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maren Hieber
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Christian Veltkamp
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Stefan Eser
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Ulf Geumann
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Öllinger
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Magdalena Zukowska
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Maxim Barenboim
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roman Maresch
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC-SODERCAN), Santander, Spain
| | | | - Aaron Sarver
- Biostatistics and Bioinformatics Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jelle Ten Hoeve
- Bioinformatics and Statistics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Haydn Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Barbara Seidler
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Judith Bauer
- Institute of Virology, Technische Universität München, Munich, Germany
| | | | | | - Anne Krug
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig Maximilians Universität München, München, Germany
| | - Petra Rümmele
- Institute of Pathology, Universität Regensburg, Regensburg, Germany
| | - Daniela Aust
- Institute of Pathology, Technische Universität Dresden, Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, Technische Universität Dresden, Dresden, Germany
| | | | - Zemin Ning
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Lodewyk Wessels
- Bioinformatics and Statistics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roland M Schmid
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Irene Esposito
- Institute of Pathology, Medizinische Universität Insbruck, Insbruck, Austria
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - Dieter Saur
- 1] Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, München, Germany. [2] German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|
23
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
24
|
Filipovic R, Kumar SS, Bahr BA, Loturco J. Slice Culture Method for Studying Migration of Neuronal Progenitor Cells Derived from Human Embryonic Stem Cells (hESC). ACTA ACUST UNITED AC 2014; 29:1H.7.1-14. [PMID: 24838914 DOI: 10.1002/9780470151808.sc01h07s29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this unit we describe an overlay brain slice culture assay for studying migration of transgenic neurospheres derived from human embryonic stem cells (hESC). Neuronal progenitor cells were generated from hESC by derivation of embryoid bodies and rosettes. Rosettes were transfected using the PiggyBac transposon system with either control plasmids (GFP) or plasmid encoding a gene important for migration of neuronal progenitor cells, Doublecortin (DCX). Transfected cells were subsequently grown in low-adhesion plates to generate transgenic human neurospheres (t-hNS). Organotypic slice cultures were prepared from postnatal rat forebrain and maintained using the interface method, before transfected t-hNS were overlaid below the cortex of each hemisphere. After 1 to 5 days, forebrain slices were fixed and processed for immunofluorescence. The distance at which cells migrated from the center of neurospheres to the host forebrain tissue was measured using Image J software. This protocol provides details for using the slice culture method for studying migration and integration of human neuronal cells into the host brain tissue.
Collapse
Affiliation(s)
- Radmila Filipovic
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | | | | | | |
Collapse
|
25
|
Novel therapeutic approaches for various cancer types using a modified sleeping beauty-based gene delivery system. PLoS One 2014; 9:e86324. [PMID: 24466025 PMCID: PMC3897668 DOI: 10.1371/journal.pone.0086324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/06/2013] [Indexed: 12/01/2022] Open
Abstract
Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host's chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.
Collapse
|
26
|
Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. Functional characterization of the human mariner transposon Hsmar2. PLoS One 2013; 8:e73227. [PMID: 24039890 PMCID: PMC3770610 DOI: 10.1371/journal.pone.0073227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022] Open
Abstract
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot–Marie–Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Estel Gil
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpcio Bosch
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jose M. Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose C. Perales
- Department of Physiological Sciences II, IDIBELL, University of Barcelona, Campus de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Olivier Danos
- Institut National de la Sante et de la recherche Medicale U845, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Miguel Chillon
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
27
|
Fattash I, Bhardwaj P, Hui C, Yang G. A rice Stowaway MITE for gene transfer in yeast. PLoS One 2013; 8:e64135. [PMID: 23704977 PMCID: PMC3660474 DOI: 10.1371/journal.pone.0064135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) lack protein coding capacity and often share very limited sequence similarity with potential autonomous elements. Their capability of efficient transposition and dramatic amplification led to the proposition that MITEs are an untapped rich source of materials for transposable element (TE) based genetic tools. To test the concept of using MITE sequence in gene transfer, a rice Stowaway MITE previously shown to excise efficiently in yeast was engineered to carry cargo genes (neo and gfp) for delivery into the budding yeast genome. Efficient excision of the cargo gene cassettes was observed even though the excision frequency generally decreases with the increase of the cargo sizes. Excised elements insert into new genomic loci efficiently, with about 65% of the obtained insertion sites located in genes. Elements at the primary insertion sites can be remobilized, frequently resulting in copy number increase of the element. Surprisingly, the orientation of a cargo gene (neo) on a construct bearing dual reporter genes (gfp and neo) was found to have a dramatic effect on transposition frequency. These results demonstrated the concept that MITE sequences can be useful in engineering genetic tools to deliver cargo genes into eukaryotic genomes.
Collapse
Affiliation(s)
- Isam Fattash
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Priyanka Bhardwaj
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Caleb Hui
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Guojun Yang
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- * E-mail:
| |
Collapse
|
28
|
Jursch T, Miskey C, Izsvák Z, Ivics Z. Regulation of DNA transposition by CpG methylation and chromatin structure in human cells. Mob DNA 2013; 4:15. [PMID: 23676100 PMCID: PMC3680223 DOI: 10.1186/1759-8753-4-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/19/2013] [Indexed: 12/25/2022] Open
Abstract
Background The activity of transposable elements can be regulated by different means. DNA CpG methylation is known to decrease or inhibit transpositional activity of diverse transposons. However, very surprisingly, it was previously shown that CpG methylation of the Sleeping Beauty (SB) transposon significantly enhanced transposition in mouse embryonic stem cells. Results In order to investigate the unexpected response of SB transposition to CpG methylation, related transposons from the Tc1/mariner superfamily, that is, Tc1, Himar1, Hsmar1, Frog Prince (FP) and Minos were tested to see how transposition was affected by CpG methylation. A significant increase of >20-fold in transposition of SB, FP and Minos was seen, whereas Tc1, Himar1 and Hsmar1 showed no difference in transposition upon CpG-methylation. The terminal inverted repeats (TIRs) of the SB, FP and Minos elements share a common structure, in which each TIR contains two functionally important binding sites for the transposase (termed the IR/DR structure). The group of IR/DR elements showed increased excision after CpG methylation compared to untreated transposon donor plasmids. We found that de novo CpG methylation is not required for transposition. A mutated FP donor plasmid with depleted CpG sites in both TIRs was as efficient in transposition as the wild-type transposon, indicating that CpG sites inside the TIRs are not responsible for altered binding of factors potentially modulating transposition. By using an in vivo one-hybrid DNA-binding assay in cultured human cells we found that CpG methylation had no appreciable effect on the affinity of SB transposase to its binding sites. However, chromatin immunoprecipitation indicated that CpG-methylated transposon donor plasmids are associated with a condensed chromatin structure characterized by trimethylated histone H3K9. Finally, DNA compaction by protamine was found to enhance SB transposition. Conclusions We have shown that DNA CpG methylation upregulates transposition of IR/DR elements in the Tc1/mariner superfamily. CpG methylation provokes the formation of a tight chromatin structure at the transposon DNA, likely aiding the formation of a catalytically active complex by facilitating synapsis of sites bound by the transposase.
Collapse
Affiliation(s)
- Tobias Jursch
- Max Delbrück Center for Molecular Medicine, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
Filipovic R, Santhosh Kumar S, Fiondella C, Loturco J. Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons. Stem Cells 2013; 30:1852-62. [PMID: 22753232 DOI: 10.1002/stem.1162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human embryonic stem cell-derived neuronal progenitors (hNPs) provide a potential source for cellular replacement following neurodegenerative diseases. One of the greatest challenges for future neuron replacement therapies will be to control extensive cell proliferation and stimulate cell migration of transplanted cells. The doublecortin (DCX) gene encodes the protein DCX, a microtubule-associated protein essential for the migration of neurons in the human brain. In this study, we tested whether increasing the expression of DCX in hNPs would favorably alter their proliferation and migration. Migration and proliferation of hNPs was compared between hNPs expressing a bicistronic DCX/IRES-GFP transgene and those expressing a green fluorescent protein (GFP) transgene introduced by piggyBac-mediated transposition. The DCX-transfected hNPs showed a significant decrease in their proliferation and migrated significantly further on two different substrates, Matrigel and brain slices. Additionally, a dense network of nestin-positive (+) and vimentin+ fibers were found to extend from neurospheres transplanted onto brain slices, and this fiber growth was increased from neurospheres containing DCX-transfected hNPs. In summary, our results show that increased DCX expression inhibits proliferation and promotes migration of hNPs.
Collapse
Affiliation(s)
- Radmila Filipovic
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06268, USA.
| | | | | | | |
Collapse
|
30
|
Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y. Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn 2012; 242:30-43. [PMID: 23073965 DOI: 10.1002/dvdy.23891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transposon-mediated transgenesis is an excellent method for creating stable transgenic lines and insertional mutants. In the chordate Ciona intestinalis, Minos is the only transposon that has been used as the tool for germline transformation. Adding another transposon system in this organism enables us to conduct genetic techniques which can only be realized with the use of two transposons. RESULTS In the present study, we found that another Tc1/mariner superfamily transposon, sleeping beauty (SB), retains sufficient activity for germline transformation of C. intestinalis. SB shows efficiencies of germline transformation, insertion into gene coding regions, and enhancer detection comparable to those of Minos. We have developed a system for the remobilization of SB copies in the C. intestinalis genome by using transgenic lines expressing SB transposase in the germ cells. With this system, we examined the manner of SB mobilization in the C. intestinalis genome. SB shows intrachromosomal transposition more frequently than Minos. CONCLUSIONS SB-based germline transformation and the establishment of a new method that uses its frequent intrachromosomal transposition will result in breakthroughs in genetic approaches that use C. intestinalis together with Minos.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oh SA, Allen T, Kim GJ, Sidorova A, Borg M, Park SK, Twell D. Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:550-63. [PMID: 22448600 DOI: 10.1111/j.1365-313x.2012.05007.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO-IN-ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP-tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast-associated kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, as TIO-interacting proteins and determine TIO-Kinesin-12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin-12 subfamily members mainly through the C-terminal ARM repeat domain, but with a contribution from the N-terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 2012; 192:1235-48. [PMID: 23023007 DOI: 10.1534/genetics.112.140855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hybrid piggyBac/Sleeping Beauty transposon-based insertional mutagenesis system that can be mobilized by simple breeding was established in the rat. These transposons were engineered to include gene trap sequences and a tyrosinase (Tyr) pigmentation reporter to rescue the albinism of the genetic background used in the mutagenesis strategy. Single-copy transposon insertions were transposed into the rat genome by co-injection of plasmids carrying the transposon and RNA encoding piggyBac transposase into zygotes. The levels of transgenic Tyr expression were influenced by chromosomal context, leading to transgenic rats with different pigmentation that enabled visual genotyping. Transgenic rats designed to ubiquitously express either piggyBac or Sleeping Beauty transposase were generated by standard zygote injection also on an albino background. Bigenic rats carrying single-copy transposons at known loci and transposase transgenes exhibited coat color mosaicism, indicating somatic transposition. PiggyBac or Sleeping Beauty transposase bigenic rats bred with wild-type albino rats yielded offspring with pigmentation distinct from the initial transposon insertions as a consequence of germline transposition to new loci. The germline transposition frequency for Sleeping Beauty and piggyBac was ∼10% or about one new insertion per litter. Approximately 50% of the insertions occurred in introns. Chimeric transcripts containing endogenous and gene trap sequences were identified in Gabrb1 mutant rats. This mutagenesis system based on simple crosses and visual genotyping can be used to generate a collection of single-gene mutations in the rat.
Collapse
|
33
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
34
|
A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet Res Commun 2012; 36:99-105. [DOI: 10.1007/s11259-012-9519-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
35
|
Abstract
The mobility of class II transposable elements (DNA transposons) can be experimentally controlled by separating the two functional components of the transposon: the terminal inverted repeat sequences that flank a gene of interest to be mobilized and the transposase protein that can be conditionally supplied to drive the transposition reaction. Thus, a DNA molecule of interest (e.g., a fluorescent marker, an shRNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be stably integrated into the genome in a regulated and highly efficient manner. Sleeping Beauty (SB) was the first transposon ever shown capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering in vertebrate species, including transgenesis, insertional mutagenesis, and therapeutic somatic gene, transfer both ex vivo and in vivo. This methodological paradigm opened up a number of avenues for genome manipulations for basic and applied research. This review highlights the state-of-the-art in SB transposon technology in diverse genetic applications with special emphasis on the transposon as well as transposase vectors currently available in the SB transposon toolbox.
Collapse
Affiliation(s)
- Ismahen Ammar
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
36
|
Abstract
We describe an experimental approach for generating mutant alleles in rat spermatogonial stem cells (SSCs) using Sleeping Beauty (SB) transposon-mediated insertional mutagenesis. The protocol is based on mobilization of mutagenic gene-trap transposons from transfected plasmid vectors into the genomes of cultured stem cells. Cells with transposon insertions in expressed genes are selected on the basis of activation of an antibiotic-resistance gene encoded by the transposon. These gene-trap clones are transplanted into the testes of recipient males (either as monoclonal or polyclonal libraries); crossing of these founders with wild-type females allows the insertions to be passed to F(1) progeny. This simple, economic and user-friendly methodological pipeline enables screens for functional gene annotation in the rat, with applicability in other vertebrate models where germ line-competent stem cells have been established. The complete protocol from transfection of SSCs to the genotyping of heterozygous F(1) offspring that harbor genomic SB gene-trap insertions takes 5-6 months.
Collapse
|
37
|
Gallardo-Gálvez JB, Méndez T, Béjar J, Alvarez MC. Endogenous transposases affect differently Sleeping Beauty and Frog Prince transposons in fish cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:695-705. [PMID: 21120677 DOI: 10.1007/s10126-010-9331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Fish cells stably expressing exogenous genes have potential applications in the production of fish recombinant proteins, gene-function studies, gene-trapping, and the production of transgenic fish. However, expression of a gene of interest after random integration may be difficult to predict or control. In the past decade, major contributions have been made in vertebrate-gene transfer, by using tools derived from DNA transposons. Among them, the Sleeping Beauty (SB) and Frog Prince (FP) transposons, derived, respectively, from fish and frog genomes, mediate transposition in a large variety of cells, although with different efficiency. This study was aimed at assessing the activities of the SB and the FP transposases in fish cell lines from genetically distant species (CHSE-214, RTG-2, BF-2, EPC, and SAF-1). Their transpositional ability was evaluated by the plasmid-based excision assay, the colony formation assay, and the footprint patterns. The results reveal that while both transposases are active in all cell lines, the transposition rates and the precision of the transposition are overall higher with FP than SB. Our results also indicated a key role of cell-specific host factors in transposition, which was associated with the presence of Tc1-like endogenous transposases; this effect was more accentuated in the two salmonid cell lines transfected with SB. This result agrees with previous studies supporting the use of transposons in heterologous organisms to prevent from genomic instability and from impeding the precise activity of the exogenous transposase.
Collapse
|
38
|
Landrette SF, Xu T. Somatic genetics empowers the mouse for modeling and interrogating developmental and disease processes. PLoS Genet 2011; 7:e1002110. [PMID: 21814514 PMCID: PMC3140981 DOI: 10.1371/journal.pgen.1002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With recent advances in genomic technologies, candidate human disease genes are being mapped at an accelerated pace. There is a clear need to move forward with genetic tools that can efficiently validate these mutations in vivo. Murine somatic mutagenesis is evolving to fulfill these needs with tools such as somatic transgenesis, humanized rodents, and forward genetics. By combining these resources one is not only able to model disease for in vivo verification, but also to screen for mutations and pathways integral to disease progression and therapeutic intervention. In this review, we briefly outline the current advances in somatic mutagenesis and discuss how these new tools, especially the piggyBac transposon system, can be applied to decipher human biology and disease.
Collapse
Affiliation(s)
- Sean F. Landrette
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
- Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Grabundzija I, Izsvák Z, Ivics Z. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview. Methods Mol Biol 2011; 738:69-85. [PMID: 21431720 DOI: 10.1007/978-1-61779-099-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.
Collapse
|
40
|
Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods 2010; 53:356-65. [PMID: 21193047 DOI: 10.1016/j.ymeth.2010.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022] Open
Abstract
Since several aspects of physiology in rats have evolved to be more similar to humans than that of mice, it is highly desirable to link the rat into the process of annotating the human genome with function. However, the lack of technology for generating defined mutants in the rat genome has hindered the identification of causative relationships between genes and disease phenotypes. As an important step towards this goal, an approach of establishing transposon-mediated insertional mutagenesis in rat spermatogonial stem cells was recently developed. Transposons can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest such as a mutagenic gene trap cassette cloned between the inverted repeat sequences of a transposon-based vector can be utilized for stable genomic insertion in a regulated and highly efficient manner. Gene-trap transposons integrate into the genome in a random fashion, and those mutagenic insertions that occurred in expressed genes can be selected in vitro based on activation of a reporter. Selected monoclonal as well as polyclonal libraries of gene trap clones are transplanted into the testes of recipient/founder male rats allowing passage of the mutation through the germline to F1 progeny after only a single cross with wild-type females. This paradigm enables a powerful methodological pipeline for forward genetic screens for functional gene annotation in the rat, as well as other vertebrate models. This article provides a detailed description on how to culture rat spermatogonial stem cell lines, their transfection with transposon plasmids, selection of gene-trap insertions with antibiotics, transplantation of genetically modified stem cells and genotyping of knockout animals.
Collapse
|
41
|
Lifelong reporter gene imaging in the lungs of mice following polyethyleneimine-mediated sleeping-beauty transposon delivery. Biomaterials 2010; 32:1978-85. [PMID: 21168204 DOI: 10.1016/j.biomaterials.2010.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/14/2010] [Indexed: 11/20/2022]
Abstract
Polyethyleneimine (PEI) is a cationic polymer that is effective in gene delivery in vivo. Plasmid DNA incorporating the Sleeping-Beauty (SB) transposon has been shown to induce long-term transgene expression in mouse lungs after PEI-mediated delivery. In the current report, we followed the reporter gene expression mediated by PEI/SB delivery in lungs of mice using the non-invasive bioluminescent imaging (BLI) technology. After delivery, the reporter gene signal showed a rapid decay in the first two weeks to a nearly undetectable level, but then the signal augmented gradually in the following weeks and finally reached a stable level that maintained until the natural death of animals. The stabilization of transgene expression is associated with the multiplication of a small number of PEI/SB-labeled alveolar cells, which proliferated both under normal conditions and in response to acute local injury for epithelia repair, and may play a role in long-term homeostatic maintenance in alveoli. The data presented here suggests that systemic delivery of PEI/SB induces stable transfection specifically in a small population of alveolar progenitor cells. The technique provides a promising platform for future research in distal lung biology and tissue regenerative therapy.
Collapse
|
42
|
Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 2010; 1:25. [PMID: 21138556 PMCID: PMC3016246 DOI: 10.1186/1759-8753-1-25] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022] Open
Abstract
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
43
|
Genome organization influences partner selection for chromosomal rearrangements. Trends Genet 2010; 27:63-71. [PMID: 21144612 DOI: 10.1016/j.tig.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the genome. With the advent of novel high-throughput approaches, detailed genome integrity and folding maps are becoming available. Integrating these data with knowledge of experimentally induced DNA recombination strongly suggests that partner choice in chromosomal rearrangement primarily follows the three-dimensional conformation of the genome. Local rearrangements are favored over distal and interchromosomal rearrangements. This is seen for neutral rearrangements, but not necessarily for rearrangements that drive oncogenesis. The recurrent detection of tumorigenic rearrangements probably reflects their exceptional capacity to confer growth advantage to the rare cells that contain them. The abundant presence of neutral rearrangements suggests that somatic genome variation is also common in healthy tissue.
Collapse
|
44
|
Abstract
Recently, it has become possible to mobilize the Tc1/mariner transposon, Sleeping Beauty (SB), in mouse somatic cells at frequencies high enough to induce cancer. Tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of the genes and signalling pathways that drive tumour formation. A conditional SB transposition system has also been developed that makes it possible to limit where SB mutagenesis occurs, providing a means to selectively model many types of human cancer. SB mutagenesis has already identified a large collection of known cancer genes in addition to a plethora of new candidate cancer genes and potential drug targets.
Collapse
Affiliation(s)
- Neal G Copeland
- Genomics and Genetics Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673
| | | |
Collapse
|
45
|
Kong J, Wang F, Brenton JD, Adams DJ. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis. Nucleic Acids Res 2010; 38:e173. [PMID: 20688953 PMCID: PMC2952874 DOI: 10.1093/nar/gkq658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a self-inactivating PiggyBac transposon system for tamoxifen inducible insertional mutagenesis from a stably integrated chromosomal donor. This system, which we have named 'Slingshot', utilizes a transposon carrying elements for both gain- and loss-of-function screens in vitro. We show that the Slingshot transposon can be efficiently mobilized from a range of chromosomal loci with high inducibility and low background generating insertions that are randomly dispersed throughout the genome. Furthermore, we show that once the Slingshot transposon has been mobilized it is not remobilized producing stable clonal integrants in all daughter cells. To illustrate the efficacy of Slingshot as a screening tool we set out to identify mediators of resistance to puromycin and the chemotherapeutic drug vincristine by performing genetrap screens in mouse embryonic stem cells. From these genome-wide screens we identified multiple independent insertions in the multidrug resistance transporter genes Abcb1a/b and Abcg2 conferring resistance to drug treatment. Importantly, we also show that the Slingshot transposon system is functional in other mammalian cell lines such as human HEK293, OVCAR-3 and PE01 cells suggesting that it may be used in a range of cell culture systems. Slingshot represents a flexible and potent system for genome-wide transposon-mediated mutagenesis with many potential applications.
Collapse
Affiliation(s)
- Jun Kong
- Experimental Cancer Genetics, Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | |
Collapse
|
46
|
Dupuy AJ. Transposon-based screens for cancer gene discovery in mouse models. Semin Cancer Biol 2010; 20:261-8. [PMID: 20478384 DOI: 10.1016/j.semcancer.2010.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 01/29/2023]
Abstract
Significant emphasis has recently been placed on the characterization of the human cancer genome. This effort has been assisted by the development of new DNA sequencing technologies that allow the genomes of individual tumors to be analyzed in much greater detail. However, the genetic complexity of human cancer has complicated the identification of driver mutations among the more abundant passenger mutations found in tumors. Recently, the Sleeping Beauty (SB) transposon system has been engineered to model cancer in mice. SB-induced tumors are produced by transposon insertional mutagenesis, thus the tagged mutations facilitate the identification of novel cancer genes. This review provides a brief summary of the SB system and its use in modeling cancer in mice.
Collapse
Affiliation(s)
- Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
47
|
Sasakura Y, Yaguchi J, Yaguchi S, Yajima M. Excision and transposition activity of Tc1/mariner superfamily transposons in sea urchin embryos. Zoolog Sci 2010; 27:256-62. [PMID: 20192694 DOI: 10.2108/zsj.27.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tc1/mariner superfamily transposons are used as transformation vectors in various model organisms. The utility of this transposon family is evidenced by the fact that Tc1/mariner transposons have loose host specificity. However, the activity of these transposons has been observed in only a few organisms, and a recent study in the ascidian Ciona intestinalis suggests that not all Tc1/ mariner transposons show loose host specificity. To understand host specificity, we used sea urchins, since they have a long history as materials of embryology and developmental biology. Transposon techniques have not been reported in this organism, despite the likelihood that these techniques would open up many experimental possibilities. Here we tested the activity of three Tc1/ mariner transposons (Minos, Sleeping Beauty, and Frog Prince) in the sea urchin Hemicentrotus pulcherrimus. Minos has both excision and transposition activity in H. pulcherrimus embryos, whereas no excision activity was detected for Sleeping Beauty or Frog Prince. This study suggests that Minos is active in a broad range of non-host organisms and can be used as a transformation tool in sea urchin embryos.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | |
Collapse
|
48
|
Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts. Mol Biol Rep 2010; 38:151-61. [DOI: 10.1007/s11033-010-0089-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
49
|
Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y. Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev Dyn 2010; 239:1076-88. [DOI: 10.1002/dvdy.22254] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE. Remobilization of Tol2 transposons in Xenopus tropicalis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:11. [PMID: 20096115 PMCID: PMC2848417 DOI: 10.1186/1471-213x-10-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 01/22/2010] [Indexed: 12/05/2022]
Abstract
Background The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency. Results To test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis. Conclusions In this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.
Collapse
Affiliation(s)
- Donald A Yergeau
- Department of Pathology, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|