1
|
Gong M, Myster F, Azouz A, Sanchez Sanchez G, Li S, Charloteaux B, Yang B, Nichols J, Lefevre L, Javaux J, Leemans S, Nivelles O, van Campe W, Roels S, Mostin L, van den Berg T, Davison AJ, Gillet L, Connelley T, Vermijlen D, Goriely S, Vanderplasschen A, Dewals BG. Unraveling clonal CD8 T cell expansion and identification of essential factors in γ-herpesvirus-induced lymphomagenesis. Proc Natl Acad Sci U S A 2024; 121:e2404536121. [PMID: 39088396 PMCID: PMC11317613 DOI: 10.1073/pnas.2404536121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.
Collapse
Affiliation(s)
- Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Françoise Myster
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Shifang Li
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Benoit Charloteaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), GIGA-Genomics core facility, University of Liège, Liège4000, Belgium
| | - Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Jenna Nichols
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - Justine Javaux
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Sylvain Leemans
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Olivier Nivelles
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Andrew J. Davison
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - David Vermijlen
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Alain Vanderplasschen
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Benjamin G. Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| |
Collapse
|
2
|
Zafar HS, Akbar H, Xu H, Ponnuraj N, Van Etten K, Jarosinski KW. Oncogenic Animal Herpesviruses. Curr Opin Virol 2024; 67:101424. [PMID: 38981163 DOI: 10.1016/j.coviro.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
Collapse
Affiliation(s)
- Hafiz S Zafar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huai Xu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathrine Van Etten
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Patho B, Grant DM, Percival A, Russell GC. Ivermectin inhibits replication of the malignant catarrhal fever virus alcelaphine herpesvirus 1. Virology 2024; 590:109958. [PMID: 38071929 DOI: 10.1016/j.virol.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates that is caused by genetically and antigenically related gamma herpesviruses of the genus Macavirus. Infection of the natural host species is efficient and asymptomatic but spread to susceptible hosts is often fatal with clinical signs including fever, depression, nasal and ocular discharge. There is no recognised treatment for MCF but a vaccine for one MCF virus, alcelaphine herpesvirus 1 (AlHV-1), has been described. In this paper we describe the inhibition of AlHV-1 replication and propagation by the anthelminthic drug ivermectin. Concentrations of 10 μM or greater led to significant reductions in both copy number and viable titre of virus tested in culture medium, with little replication detected at over 20 μM ivermectin. In the absence of alternative treatments, further testing of ivermectin as a candidate antiviral treatment for MCF may therefore be justified.
Collapse
Affiliation(s)
- Blanka Patho
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Dawn M Grant
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Ann Percival
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - George C Russell
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
4
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
5
|
Cunha CW, Baker KN, O’Toole D, Cole E, Shringi S, Dewals BG, Vanderplasschen A, Li H. A Vaccine Targeting Ovine Herpesvirus 2 Glycoprotein B Protects against Sheep-Associated Malignant Catarrhal Fever. Vaccines (Basel) 2022; 10:vaccines10122156. [PMID: 36560568 PMCID: PMC9786699 DOI: 10.3390/vaccines10122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). Rabbits were used as a laboratory animal model to test the safety, immunogenicity, and protective efficacy of a chimeric virus consisting of a recombinant, non-pathogenic strain of alcelaphine herpesvirus-1 encoding OvHV-2 ORF8 to express gB (AlHV-1∆ORF73/OvHV-2-ORF8). Viral-vectored immunizations were performed by using the AlHV-1∆ORF73/OvHV-2-ORF8 chimera alone or as a DNA prime (OvHV-2-ORF8)-virus boost regimen. The viral vector was inoculated by intravenous or intramuscular routes and the DNA was delivered by intradermal shots using a gene gun. The vaccine candidates were deemed safe as no clinical signs were observed following any of the immunizations. Anti-OvHV-2 gB antibodies with neutralizing activity were induced by all immunogens. At three weeks post-final immunization, all animals were challenged intranasally with a lethal dose of OvHV-2. MCF protection rates ranging from 66.7% to 71.4% were observed in vaccinated rabbits, while all mock-vaccinated animals developed the disease. The significant protective efficacy obtained with the vaccine platforms tested in this study encourages further trials in relevant livestock species, such as cattle and bison.
Collapse
Affiliation(s)
- Cristina W. Cunha
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
- Correspondence: ; Tel.: +1-509-335-6072
| | - Katherine N. Baker
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| | - Donal O’Toole
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Emily Cole
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Benjamin G. Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Hong Li
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Saura-Martinez H, Al-Saadi M, Stewart JP, Kipar A. Sheep-Associated Malignant Catarrhal Fever: Role of Latent Virus and Macrophages in Vasculitis. Vet Pathol 2020; 58:332-345. [PMID: 33280543 DOI: 10.1177/0300985820978310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malignant catarrhal fever (MCF) is a sporadic, generally fatal disease caused by gammaherpesviruses in susceptible dead-end hosts. A key pathological process is systemic vasculitis in which productively infected cytotoxic T cells play a major role. Nonetheless, the pathogenesis of MCF vasculitis is not yet clear. We hypothesized that it develops due to an interaction between virus-infected cells and immune cells, and we undertook a retrospective in situ study on the rete mirabile arteries of confirmed ovine gammaherpesvirus-2 (OvHV-2)-associated MCF cases in cattle, buffalo, and bison. Our results suggest that the arteritis develops from an adventitial infiltration of inflammatory cells from the vasa vasorum, and recruitment of leukocytes from the arterial lumen that leads to a superimposed infiltration of the intima and media that can result in chronic changes including neointimal proliferation. We found macrophages and T cells to be the dominant infiltrating cells, and both could proliferate locally. Using RNA in situ hybridization and immunohistology, we showed that the process is accompanied by widespread viral infection, not only in infiltrating leukocytes but also in vascular endothelial cells, medial smooth muscle cells, and adventitial fibroblasts. Our results suggest that OvHV-2-infected T cells, monocytes, and locally proliferating macrophages contribute to the vasculitis in MCF. The initial trigger or insult that leads to leukocyte recruitment and activation is not yet known, but there is evidence that latently infected, activated endothelial cells play a role in this. Activated macrophages might then release the necessary pro-inflammatory mediators and, eventually, induce the characteristic vascular changes.
Collapse
Affiliation(s)
| | - Mohammed Al-Saadi
- 223914University of Liverpool, Liverpool, UK.,Current address: 362928University of Al-Qadisiya, Iraq
| | | | - Anja Kipar
- 27217University of Zurich, Zurich, Switzerland.,223914University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions. FISHES 2020. [DOI: 10.3390/fishes5020017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive pest species are recognized as one of the important drivers of reduced global biodiversity. In Australia, the 267 invasive plant, animal and microbial species, established since European colonization in the 1770s, have been unequivocally declared the most important threat to species diversity in this country. One invasive pest, the common carp (Cyprinus carpio), has been targeted in an integrated pest management plan that might include cyprinid herpesvirus 3 (CyHV-3) as a potential biocontrol agent. The species-specificity of the released virus (and of field variants that will inevitably arise) has been assessed, and the virus judged to be safe. It has also been hypothesised that, because the virulence of the CyHV-3 will likely decline following release, the virus should be used strategically: initially, the aim would be to markedly reduce numbers of carp in naive populations, and then some other, as yet uncertain, complementary broad-scale control measure would knock-down carp numbers even further. Brief results are included from recent studies on the modelling of release and spread of the virus, the ecological and social concerns associated with virus release, and the restoration benefits that might be expected following carp control. We conclude that, while further work is required (on the virus, the target species, environmental issues, and especially the identification of a suitable broad-scale complementary control measure), optimism must prevail in order to ensure an eventual solution to this important environmental problem.
Collapse
|
8
|
Ovine Herpesvirus 2 Encodes a Previously Unrecognized Protein, pOv8.25, That Targets Mitochondria and Triggers Apoptotic Cell Death. J Virol 2020; 94:JVI.01536-19. [PMID: 32024777 PMCID: PMC7108854 DOI: 10.1128/jvi.01536-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype. Malignant catarrhal fever (MCF) is a rare but frequently lethal disease of certain cloven-hoofed animals. At least 10 different viruses, all members of the Macavirus genus in the subfamily Gammaherpesvirinae, are known as causative agents of MCF. Among these, ovine herpesvirus 2 (OvHV-2) is the most frequent and economically most important MCF agent. Phenotypically, MCF is characterized by severe lymphocytic arteritis-periarteritis, which leads to the accumulation of activated lymphocytes accompanied by apoptosis and necrosis in a broad range of tissues. However, a viral factor that might be responsible for tissue damage has not yet been identified. We have studied a seemingly intergenic locus on the OvHV-2 genome, which was previously shown to be transcriptionally highly active in MCF-affected tissue. We identified by 5′ and 3′ rapid amplification of cDNA ends (RACE) a conserved, double-spliced transcript that encoded a 9.9-kDa hydrophobic protein. The newly detected gene, Ov8.25, and its splicing pattern were conserved among OvHV-2 strains of different origins. Upon transient expression of synthetic variants of this gene in various cell types, including bovine lymphocytes, the protein (pOv8.25) was shown to target mitochondria, followed by caspase-dependent apoptosis and necrosis. Notably, a deletion mutant of the same protein lost these abilities. Finally, we detected pOv8.25 in brain-infiltrating lymphocytes of cattle with MCF. Thus, the cell death-causing properties of pOv8.25 in affected cells may be involved in the emergence of typical MCF-associated apoptosis and necrosis. Thus, we have identified a novel OvHV-2 protein, which might contribute to the phenotype of MCF-related lesions. IMPORTANCE Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype.
Collapse
|
9
|
Myster F, Gong MJ, Javaux J, Suárez NM, Wilkie GS, Connelley T, Vanderplasschen A, Davison AJ, Dewals BG. Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever. PLoS Pathog 2020; 16:e1008405. [PMID: 32176737 PMCID: PMC7098659 DOI: 10.1371/journal.ppat.1008405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/26/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF. Gammaherpesvirus entry into immune cells can result in latent infection which is associated with viral persistence and severe lymphoproliferative diseases. Gammaherpesviruses enter target cells during primary infection via a complex machinery of envelope glycoproteins. Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried by wildebeests without causing any clinical sign but induces malignant catarrhal fever (MCF) upon transmission to several species of ruminants including cattle. MCF is a deadly lymphoproliferative disease developing after a prolonged incubation period. In the present study, we demonstrated that the genes A7 and A8 of AlHV-1 encode envelope glycoproteins that are orthologs of Epstein-Barr virus gp42 and gp350, which regulate cell tropism switch. Impairment of A7 or A8 expression in a pathogenic strain of AlHV-1 strongly altered viral propagation in vitro. We further showed using bovine respiratory cell lines in vitro that AlHV-1 uses A7 to mediate cell-to-cell spread whereas A8 is necessary for cell-free viral propagation. Then, infection of rabbits as an experimental model to induce MCF with recombinant viral strains demonstrated that both A7 and A8 are essential for the induction of MCF. Thus, this study highlights an essential role for gp42 and gp350 orthologs in the pathogenesis of a gammaherpesvirus-induced lymphoproliferative disease.
Collapse
Affiliation(s)
- Françoise Myster
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Mei-Jiao Gong
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Tim Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
10
|
Lawler C, Stevenson PG. Limited protection against γ-herpesvirus infection by replication-deficient virus particles. J Gen Virol 2020; 101:420-425. [PMID: 31985394 DOI: 10.1099/jgv.0.001391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The γ-herpesviruses have proved hard to vaccination against, with no convincing protection against long-term latent infection by recombinant viral subunits. In experimental settings, whole-virus vaccines have proved more effective, even when the vaccine virus itself establishes latent infection poorly. The main alternative is replication-deficient virus particles. Here high-dose, replication-deficient murid herpesvirus-4 only protected mice partially against wild-type infection. By contrast, latency-deficient but replication-competent vaccine protected mice strongly, even when delivered non-invasively to the olfactory epithelium. Thus, this approach seems to provide the best chance of a safe and effective γ-herpesvirus vaccine.
Collapse
Affiliation(s)
- Clara Lawler
- Present address: School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.,Child Health Research Center, University of Queensland, South Brisbane, Australia
| |
Collapse
|
11
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Cunha CW, O’Toole D, Taus NS, Shringi S, Knowles DP, Li H. A Rabbit Model for Sheep-Associated Malignant Catarrhal Fever Research: from Virus Infection to Pathogenesis Studies and Vaccine Development. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Boutier M, Donohoe O, Kopf RK, Humphries P, Becker JA, Marshall J, Vanderplasschen A. Biocontrol of Carp: The Australian Plan Does Not Stand Up to a Rational Analysis of Safety and Efficacy. Front Microbiol 2019; 10:882. [PMID: 31114554 PMCID: PMC6503052 DOI: 10.3389/fmicb.2019.00882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium.,Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - R Keller Kopf
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Paul Humphries
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Joy A Becker
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Jonathan Marshall
- Queensland Department of Environment and Science, Water Planning Ecology, Brisbane, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Pesavento PA, Cunha CW, Li H, Jackson K, O'Toole D. In Situ Hybridization for Localization of Ovine Herpesvirus 2, the Agent of Sheep-Associated Malignant Catarrhal Fever, in Formalin-Fixed Tissues. Vet Pathol 2018; 56:78-86. [PMID: 30222071 DOI: 10.1177/0300985818798085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constraint on understanding the pathogenesis of malignant catarrhal fever (MCF) is the limited number of tools to localize infected cells. The amount of detectable virus, visualized in the past either by immunohistochemistry or in situ hybridization (ISH), has been modest in fixed or frozen tissues. This complicates our understanding of the widespread lymphoid proliferation, epithelial necrosis/apoptosis, and arteritis-phlebitis that characterize MCF. In this work, we developed a probe-based in situ hybridization assay targeting 2 ovine herpesvirus 2 (OvHV-2) genes, as well as their respective transcripts, in formalin-fixed tissues. Using this approach, OvHV-2 nucleic acids were detected in lymphocytes in MCF-affected animals following both natural infection (American bison and domestic cattle) and experimental infection (American bison, rabbits, and pigs). The probe did not cross-react with 4 closely related gammaherpesviruses that also cause MCF: alcelaphine herpesvirus 1, alcelaphine herpesvirus 2, caprine herpesvirus 2, and ibex-MCF virus (MCFV). No signal was detected in control tissues negative for OvHV-2. ISH will be of value in analyzing the natural progression of OvHV-2 infection in time-course studies following experimental infection and in addressing the pathogenesis of MCF.
Collapse
Affiliation(s)
- Patricia A Pesavento
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Cristina W Cunha
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 3 Paul G. Allen School for Global Animal Health, Allen Center, Washington State University, Pullman, WA, USA
| | - Hong Li
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 4 Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kenneth Jackson
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Donal O'Toole
- 5 Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
16
|
Ortiz K, Javaux J, Simon M, Petit T, Clavel S, Lamglait B, Blanc B, Brunet A, Myster F, Li H, Dewals BG. Seroprevalence of malignant catarrhal fever virus in captive wildebeest (Connochaetes sp.) in France. Transbound Emerg Dis 2018; 65:1697-1704. [PMID: 29962104 DOI: 10.1111/tbed.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 11/27/2022]
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeests (Connochaetes sp.) in sub-Saharan Africa. Although asymptomatic in wildebeest, AlHV-1 infection in a number of other ruminant species causes a severe and fatal lymphoproliferative disease named wildebeest-derived malignant catarrhal fever (WD-MCF). Several endangered species of captive ruminants are highly susceptible to developing WD-MCF if infected by AlHV-1, which is a critical concern in zoos, game reserves and wildlife parks where wildebeests are also kept in captivity. Here, we investigated the seroprevalence of AlHV-1 in 52 captive wildebeests randomly sampled from five different zoos in France. We found 46% (24/52) seropositive animals and detected AlHV-1 DNA in one of them, demonstrating that AlHV-1 infection is present in captive wildebeests in France. In an interesting manner, the repartition of seropositive wildebeests was not homogenous between zoos with 100% (20/20) of seronegative animals in three parks. These results further highlight the importance of considering WD-MCF as a threat for clinically susceptible species and encourage for testing AlHV-1 infection in captive wildebeests as a management control strategy.
Collapse
Affiliation(s)
- Katia Ortiz
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Justine Javaux
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | | | | | | | | | - Barbara Blanc
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Alice Brunet
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Françoise Myster
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Hong Li
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA.,Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Sorel O, Chen T, Myster F, Javaux J, Vanderplasschen A, Dewals BG. Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain. PLoS Pathog 2017; 13:e1006691. [PMID: 29059246 PMCID: PMC5695634 DOI: 10.1371/journal.ppat.1006691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/02/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Ting Chen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Françoise Myster
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
18
|
Bildfell RJ, Li H, Alcantar BE, Cunha CW, Bradway DS, Thomas KS. Alcelaphine gammaherpesvirus 1-induced malignant catarrhal fever in a Watusi ( Bos taurus africanus) steer in a North American game park. J Vet Diagn Invest 2017; 29:579-582. [PMID: 28545343 DOI: 10.1177/1040638717708392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A 10-y-old Watusi ( Bos taurus africanus) steer housed at a drive-through game park in Winston, Oregon developed severe clinical illness including fever, marked nasal discharge, injected scleral and conjunctival membranes, plus oral hemorrhages and erosions. The animal responded poorly to supportive treatment and was euthanized. Additional gross findings at postmortem examination included papules and erosive lesions on the tongue, hemorrhagic large intestine, and multifocal cardiac hemorrhages. Histopathologic findings included multifocal lymphoplasmacytic vasculitis plus fibrin exudation in heart and tongue. Total DNA obtained from the splenic samples was positive for alcelaphine gammaherpesvirus 1 (AlHV-1) as tested by a multiplex PCR for malignant catarrhal fever (MCF) viruses. The AlHV-1 detection was further confirmed by amplification and sequencing of a viral DNA polymerase gene fragment, which was identical to AlHV-1 sequences in GenBank. This was the first diagnosis of clinical wildebeest-associated MCF on these premises, although wildebeest have been held at the park for over 25 y. This disease is sporadic in North America and should be considered as a differential diagnosis for febrile illness with ulcerative oral lesions in ruminants.
Collapse
Affiliation(s)
- Robert J Bildfell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| | - Hong Li
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| | - Benjamin E Alcantar
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| | - Cristina W Cunha
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| | - Dan S Bradway
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| | - Kirsten S Thomas
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR (Bildfell).,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA (Li, Cunha).,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA (Li).,Wildlife Safari, Winston, OR (Alcantar, Thomas).,Washington Animal Disease Diagnostic Laboratory (Bradway).,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA (Cunha, Bradway)
| |
Collapse
|
19
|
Kaye S, Wang W, Miller C, McLuckie A, Beatty JA, Grant CK, VandeWoude S, Bielefeldt-Ohmann H. Role of Feline Immunodeficiency Virus in Lymphomagenesis--Going Alone or Colluding? ILAR J 2017; 57:24-33. [PMID: 27034392 DOI: 10.1093/ilar/ilv047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic and nondomestic feline species. Infection in domestic cats leads to immune dysfunction via mechanisms similar to those caused by human immunodeficiency virus (HIV) and, as such, is a valuable natural animal model for acquired immunodeficiency syndrome (AIDS) in humans. An association between FIV and an increased incidence of neoplasia has long been recognized, with frequencies of up to 20% in FIV-positive cats recorded in some studies. This is similar to the rate of neoplasia seen in HIV-positive individuals, and in both species neoplasia typically requires several years to arise. The most frequently reported type of neoplasia associated with FIV infection is lymphoma. Here we review the possible mechanisms involved in FIV lymphomagenesis, including the possible involvement of coinfections, notably those with gamma-herpesviruses.
Collapse
Affiliation(s)
- Sarah Kaye
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Wenqi Wang
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Craig Miller
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Alicia McLuckie
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Julia A Beatty
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Chris K Grant
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Sue VandeWoude
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Helle Bielefeldt-Ohmann
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| |
Collapse
|
20
|
Myster F, van Beurden SJ, Sorel O, Suárez NM, Vanderplasschen A, Davison AJ, Dewals BG. Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in alcelaphine herpesvirus 1. Sci Rep 2016; 6:38607. [PMID: 27924936 PMCID: PMC5141506 DOI: 10.1038/srep38607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of ruminants, including cattle. The strain C500 has been cloned as an infectious, pathogenic bacterial artificial chromosome (BAC) that is used to study MCF. Although AlHV-1 infection can be established in cell culture, multiple passages in vitro cause a loss of virulence associated with rearrangements of the viral genome. Here, sequencing of the BAC clone showed that the long unique region (LUR) of the genome is nearly identical to that of the previously sequenced strain from which the BAC was derived, and identified the duplication and translocation of a region from within LUR, containing the entire coding sequences of ORF50-encoding reactivation transactivator Rta and A6-encoding bZIP protein genes. The duplicated region was further located to a position within the terminal repeat (TR) and its deletion resulted in lower ORF50 expression levels and reduced viral fitness. Finally, the presence of a similar but not identical duplication and translocation containing both genes was found in AlHV-1 strain WC11. These results indicate that selection pressure for enhanced viral fitness may drive the duplication of ORF50 and A6 in AlHV-1.
Collapse
Affiliation(s)
- Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Steven J van Beurden
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Nicolás M Suárez
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
21
|
Replacement of Glycoprotein B in Alcelaphine Herpesvirus 1 by Its Ovine Herpesvirus 2 Homolog : Implications in Vaccine Development for Sheep-Associated Malignant Catarrhal Fever. mSphere 2016; 1:mSphere00108-16. [PMID: 27504498 PMCID: PMC4973634 DOI: 10.1128/msphere.00108-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccine development is a top priority in malignant catarrhal fever (MCF) research. In the case of sheep-associated MCF (SA-MCF) caused by ovine herpesvirus 2 (OvHV-2), progress toward this objective has been hindered by the absence of methods to attenuate or modify the virus, since it cannot be propagated in vitro. As an alternative for vaccine development, in this study, we tested the hypothesis that one of the SA-MCF vaccine candidate targets, OvHV-2 glycoprotein B (gB), could be expressed by a nonpathogenic alcelaphine herpesvirus 1 (AlHV-1) and then evaluated the potential of the AlHV-1/OvHV-2 chimera to be used as a vaccine and a diagnostic tool. The construction and characterization of an AlHV-1/OvHV-2 chimeric virus that is nonpathogenic and expresses an OvHV-2 vaccine target are significant steps toward the development of an SA-MCF vaccine and also provide a valuable means to study OvHV-2 biology.
Collapse
|
22
|
Sorel O, Tuddenham L, Myster F, Palmeira L, Kerkhofs P, Pfeffer S, Vanderplasschen A, Dewals BG. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1. J Gen Virol 2016; 96:3360-3372. [PMID: 26329753 DOI: 10.1099/jgv.0.000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction.
Collapse
Affiliation(s)
- Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Lee Tuddenham
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Leonor Palmeira
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Pierre Kerkhofs
- Veterinary and Agrochemical Research Center (CODA-CERVA), Brussels, Belgium
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
23
|
Wambua L, Wambua PN, Ramogo AM, Mijele D, Otiende MY. Wildebeest-associated malignant catarrhal fever: perspectives for integrated control of a lymphoproliferative disease of cattle in sub-Saharan Africa. Arch Virol 2015; 161:1-10. [PMID: 26446889 PMCID: PMC4698299 DOI: 10.1007/s00705-015-2617-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Wildebeest-associated malignant catarrhal fever (WA-MCF), an acute lymphoproliferative disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), remains a significant constraint to cattle production in nomadic pastoralist systems in eastern and southern Africa. The transmission of WA-MCF is dependent on the presence of the wildlife reservoir, i.e. wildebeest, belonging to the species Connochaetes taurinus and Connochaetes gnou; hence, the distribution of WA-MCF is largely restricted to Kenya, Tanzania and the Republic of South Africa, where wildebeest are present. WA-MCF is analogous to sheep-associated MCF (SA-MCF) in many aspects, with the latter having sheep as its reservoir host and a more global distribution, mainly in developed countries with intensive livestock production systems. However, unlike SA-MCF, the geographic seclusion of WA-MCF may have contributed to an apparent neglect in research efforts aimed at increased biological understanding and control of the disease. This review aims to highlight the importance of WA-MCF and the need for intensified research towards measures for its integrated control. We discuss current knowledge on transmission and geographical distribution in eastern and southern Africa and the burden of WA-MCF in affected vulnerable pastoral communities in Africa. Recent findings towards vaccine development and pertinent knowledge gaps for future research efforts on WA-MCF are also considered. Finally, integrated control of WA-MCF based on a logical three-pronged framework is proposed, contextualizing vaccine development, next-generation diagnostics, and diversity studies targeted to the viral pathogen and cattle hosts.
Collapse
Affiliation(s)
- Lillian Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya. .,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya.
| | - Peninah Nduku Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya.,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Allan Maurice Ramogo
- International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Domnic Mijele
- Kenya Wildlife Service, P.O Box 40241, 00100, Nairobi, Kenya
| | | |
Collapse
|
24
|
Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J Virol 2015; 89:3630-47. [PMID: 25589653 DOI: 10.1128/jvi.03634-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Viral semaphorins are semaphorin 7A (sema7A) mimics found in pox- and herpesviruses. Among herpesviruses, semaphorins are encoded by gammaherpesviruses of the Macavirus genus only. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus that persistently infects wildebeest asymptomatically but induces malignant catarrhal fever (MCF) when transmitted to several species of susceptible ruminants and the rabbit model. MCF is caused by the activation/proliferation of latently infected T lymphocytes. Viral semaphorins have been suggested to mediate immune evasion mechanisms and/or directly alter host T cell function. We studied AlHV-sema, the viral semaphorin encoded by the A3 gene of AlHV-1. Phylogenetic analyses revealed independent acquisition of pox- and herpesvirus semaphorins, suggesting that these proteins might have distinct functions. AlHV-sema showed a predicted three-dimensional structure very similar to sema7A and conserved key residues in sema7A-plexinC1 interaction. Expression analyses revealed that AlHV-sema is a secreted 93-kDa glycoprotein expressed during the early phase of virus replication. Purified AlHV-sema was able to bind to fibroblasts and dendritic cells and induce F-actin condensation and cell retraction through a plexinC1 and Rho/cofilin-dependent mechanism. Cytoskeleton rearrangement was further associated with inhibition of phagocytosis by dendritic cells and migration to the draining lymph node. Next, we generated recombinant viruses and demonstrated that the lack of A3 did not significantly affect virus growth in vitro and did not impair MCF induction and associated lymphoproliferative lesions. In conclusion, AlHV-sema has immune evasion functions through mechanisms similar to poxvirus semaphorin but is not directly involved in host T cell activation during MCF. IMPORTANCE Whereas most poxviruses encode viral semaphorins, semaphorin-like genes have only been identified in few gammaherpesviruses belonging to the Macavirus genus. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus carried asymptomatically by wildebeest but induces a latency-associated lymphoproliferative disease of T lymphocytes in various ruminant species, namely, malignant catarrhal fever (MCF). Viral semaphorins have been hypothesized to have immune evasion functions and/or be involved in activating latently infected T cells. We present evidence that the viral semaphorin AlHV-sema inhibits dendritic cell phagocytosis and migration to the draining lymph node, both being indispensable mechanisms for protective antiviral responses. Next, we engineered recombinant viruses unable to express AlHV-sema and demonstrated that this protein is dispensable for the induction of MCF. In conclusion, this study suggests that herpesvirus and poxvirus semaphorins have independently evolved similar functions to thwart the immune system of the host while AlHV-sema is not directly involved in MCF-associated T-cell activation.
Collapse
|
25
|
Mølleskov-Jensen AS, Oliveira MT, Farrell HE, Davis-Poynter N. Virus-Encoded 7 Transmembrane Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:353-93. [DOI: 10.1016/bs.pmbts.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Parameswaran N, Russell GC, Bartley K, Grant DM, Deane D, Todd H, Dagleish MP, Haig DM. The effect of the TLR9 ligand CpG-oligodeoxynucleotide on the protective immune response to alcelaphine herpesvirus-1-mediated malignant catarrhal fever in cattle. Vet Res 2014; 45:59. [PMID: 24886334 PMCID: PMC4059458 DOI: 10.1186/1297-9716-45-59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/14/2014] [Indexed: 12/02/2022] Open
Abstract
We wished to determine the effect of of CpG ODN adjuvant on the magnitude and duration of protective immunity against alcelaphine herpesvirus-1 (AlHV-1) malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of cattle. Immunity was associated with a mucosal barrier of virus-neutralising antibody. The results showed that CpG ODN included either with emulsigen adjuvant and attenuated AlHV-1 (atAlHV-1) or alone with atAlHV-1 did not affect the overall protection from clinical disease or duration of immunity achieved using emulsigen and atAlHV-1. This is in contrast to other similar studies in cattle with BoHV-1 or cattle and pigs with various other immunogens. In addition to this, several other novel observations were made, not reported previously. Firstly, we were able to statistically verify that vaccine protection against MCF was associated with virus-neutralising antibodies (nAbs) in nasal secretions but was not associated with antibodies in blood plasma, nor with total virus-specific antibody (tAb) titres in either nasal secretions or blood plasma. Furthermore, CpG ODN alone as adjuvant did not support the generation of virus-neutralising antibodies. Secondly, there was a significant boost in tAb in animals with MCF comparing titres before and after challenge. This was not seen with protected animals. Finally, there was a strong IFN-γ response in animals with emulsigen and atAlHV-1 immunisation, as measured by IFN-γ secreting PBMC in culture (and a lack of IL-4) that was not affected by the inclusion of CpG ODN. This suggests that nAbs at the oro-nasal-pharyngeal region are important in protection against AlHV-1 MCF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD Nottingham, UK.
| |
Collapse
|
27
|
The A2 gene of alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res 2014; 188:68-80. [PMID: 24732177 DOI: 10.1016/j.virusres.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Alcelaphine herpesvirus-1 (AlHV-1) causes malignant catarrhal fever (MCF). The A2 gene of AlHV-1 is a member of the bZIP transcription factor family. We wished to determine whether A2 is a virulence gene or not and whether it is involved in pathogenesis by interference with host transcription pathways. An A2 gene knockout (A2ΔAlHV-1) virus, revertant (A2revAlHV-1) virus, and wild-type virus (wtAlHV-1) were used to infect three groups of rabbits. A2ΔAlHV-1-infected rabbits succumbed to MCF, albeit with a delayed onset compared to the control groups, so A2 is not a critical virulence factor. Differential gene transcription analysis by RNAseq and qRT-PCR validation of a selection of these was performed in infected large granular lymphocyte (LGL) T cells obtained in culture from the MCF-affected animals. A2 was involved in the transcriptional regulation of immunological, cell cycle and apoptosis pathways. In particular, there was a bias towards γδ T cell receptor (TCR) expression and downregulation of αβ TCR. TCR signalling, apoptosis, cell cycle, IFN-γ and NFAT pathways were affected. Of particular interest was partial inhibition of the cytotoxicity-associated pathways involving perforin and the granzymes A and B in the A2ΔAlHV-1-infected LGLs compared to controls. In functional assays, A2ΔAlHV-1-infected LGLs were significantly less cytotoxic than wtAlHV-1- and A2revAlHV-1-infected LGLs using rabbit corneal epithelial cells (SIRC) as targets. This implies that A2 is involved in a pathway enhancing the expression of LGL cytotoxicity. This is important as virus-infected T cell cytotoxicity in vivo has been suggested as a potential mechanism of disease induction in MCF.
Collapse
|
28
|
O'Toole D, Li H. The pathology of malignant catarrhal fever, with an emphasis on ovine herpesvirus 2. Vet Pathol 2014; 51:437-52. [PMID: 24503439 DOI: 10.1177/0300985813520435] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The enigmatic pathogenesis of malignant catarrhal fever (MCF) involves dysregulated immune responses in susceptible ruminant species. Economically important outbreaks of MCF are due to 2 of the 10 viruses currently comprising the malignant catarrhal fever virus group: ovine herpesvirus 2 (OvHV-2) and alcelaphine herpesvirus 1 (AlHV-1). Attempts to develop effective vaccines for this group of viruses in the 1970s were sufficiently discouraging that they were temporarily abandoned. This review focuses on recent efforts to understand the pathogenesis of MCF, particularly the sheep-associated form of the disease, with the goal of developing rational control methods, including vaccination. The past 2 decades have seen several advances, including recognition of new members of the MCF virus group, better diagnostic assays, induction of disease by a natural route (aerosol), and clearer understanding of OvHV-2's shedding patterns by domestic sheep. A consistent theme in experimental studies of OvHV-2 in susceptible species is that there are 2 peaks of OvHV-2 gene expression: a preclinical peak involving the respiratory tract and a second in multiple organ systems leading to clinical disease. Latent and lytic gene expression may coexist in tissues during clinical stages in symptomatic animals.
Collapse
Affiliation(s)
- D O'Toole
- Wyoming State Veterinary Laboratory, University of Wyoming, 1174 Snowy Range Rd, Laramie, Wyoming 82070, USA.
| | | |
Collapse
|
29
|
Russell GC, Todd H, Deane D, Percival A, Dagleish MP, Haig DM, Stewart JP. A novel spliced gene in alcelaphine herpesvirus 1 encodes a glycoprotein which is secreted in vitro. J Gen Virol 2013; 94:2515-2523. [DOI: 10.1099/vir.0.055673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Herpesviruses often contain cryptic, spliced genes that are not obvious from the initial in silico annotation. Alcelaphine herpesvirus 1 (AlHV-1) contains 72 annotated ORFs but there are also a number of gaps between these that may have protein-coding potential. Comparative analysis of coding potential between AlHV-1 and the related ovine herpesvirus 2 (OvHV-2) revealed a putative novel spliced gene that we have termed A9.5. Analysis of cDNA clones from AlHV-1-infected cells revealed three overlapping clones corresponding to A9.5 and the coding sequence was confirmed by reverse transcription PCR of RNA from AlHV-1-infected cattle tissues. The A9.5 gene was predicted to encode a secreted glycoprotein with molecular mass 19 kDa. Empirical analysis showed that a recombinant haemagglutinin-tagged A9.5 fusion protein was secreted from transfected cells and had a molecular mass of 45 kDa, which was reduced to 20 kDa by endoglycosidase F treatment, confirming that A9.5 was a secreted glycoprotein. In situ RNA hybridization showed that A9.5 was expressed in cells associated with malignant catarrhal fever (MCF) lesions in infected cattle. Detailed analysis of the available OvHV-2 sequences revealed an homologous gene (Ov9.5) with conserved splicing signals and predicted amino acid sequence features in both sequenced isolates of this related virus. We have therefore identified a novel spliced gene in two related macaviruses that is expressed in MCF lesions. Future work will determine its importance for the pathogenesis of disease.
Collapse
Affiliation(s)
- George C. Russell
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Helen Todd
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David Deane
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Ann Percival
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Mark P. Dagleish
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David M. Haig
- School of Veterinary Medicine and Science, Nottingham University, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - James P. Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool L3 5RF, UK
| |
Collapse
|
30
|
Abstract
Malignant catarrhal fever (MCF) is an often lethal infection of many species in the order Artiodactyla. It is caused by members of the MCF virus group within Gammaherpesvirinae. MCF is a worldwide problem and has a significant economic impact on highly disease-susceptible hosts, such as cattle, bison, and deer. Several epidemiologic forms of MCF, defined by the reservoir ruminant species from which the causative virus arises, are recognized. Wildebeest-associated MCF (WA-MCF) and sheep-associated MCF (SA-MCF) are the most prevalent and well-studied forms of the disease. Historical understanding of MCF is largely based on WA-MCF, in which the causative virus can be propagated in vitro. Characterization of SA-MCF has been constrained because the causative agent has never been successfully propagated in vitro. Development of molecular tools has enabled more definitive studies on SA-MCF. The current understanding of MCF, including its etiological agents, epidemiology, pathogenesis, and prevention, is the subject of the present review.
Collapse
Affiliation(s)
- Hong Li
- Animal Disease Research Unit, USDA-ARS, and
| | | | | | | |
Collapse
|