1
|
Dolganov PV, Spiridenko NA, Dolganov VK. Ordered structures formed by nematic topological defects and their transformation with changing the Euler characteristics. Phys Rev E 2024; 110:024703. [PMID: 39295066 DOI: 10.1103/physreve.110.024703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024]
Abstract
Ordered chain structures from topological defects of opposite charges ("necklaces" of defects) were prepared and their dynamics and cooperative rearrangement were investigated. We studied topological defects in nematic films with change of the Euler characteristic induced by temperature. Topological defects emerged due to competing surface anchoring on the nematic-isotropic and nematic-solid interfaces. Transformation of the structure with a circular chain from topological defects to the structure with a single defect and then to a structure without defects takes place as the nematic geometry changes. The temporal evolution of the number of topological defects at their annihilation in the chains differs from coarsening in two-dimensional (2D) and 3D geometry.
Collapse
|
2
|
Yoshioka J, Ito Y, Fukao K. Morphogenesis of a chiral liquid crystalline droplet with topological reconnection and Lehmann rotation. Sci Rep 2024; 14:7597. [PMID: 38556534 PMCID: PMC11365937 DOI: 10.1038/s41598-024-58054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Morphogenesis is a hierarchical phenomenon that produces various macroscopic structures in living organisms, with high reproducibility. This study demonstrates that such structural formation can also be observed in a chiral liquid crystalline droplet under a temperature gradient. Through specific control of the temperature change process, we were able to switch the final structure obtained as a result of the formation via the appearance and reconnection of loop defects in the transient state during structure formation. Simultaneously, the existence of the gradient resulted in a characteristic rotational phenomenon called Lehmann rotation, which was prominently induced in the transient state. By demonstrating three-dimensional measurements of the flow field, we revealed the existence of Marangoni convection in the state. Consequently, it is indicated that the convection results in high-speed Lehmann rotation and large structural deformation with topological changes, thereby playing a significant role in the structure formation.
Collapse
Affiliation(s)
- Jun Yoshioka
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yuki Ito
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koji Fukao
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
3
|
Kim J, Jeong J. Confinement twists achiral liquid crystals and causes chiral liquid crystals to twist in the opposite handedness: cases in and around sessile droplets. SOFT MATTER 2024; 20:1361-1368. [PMID: 38252544 DOI: 10.1039/d3sm01283b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We study the chiral symmetry breaking and metastability of confined nematic lyotropic chromonic liquid crystals (LCLCs) with and without chiral dopants. The isotropic-nematic coexistence phase of the LCLC renders two confining geometries: sessile isotropic (I) droplets surrounded by the nematic (N) phase and sessile nematic droplets immersed in the isotropic background. In the achiral system with no dopants, LCLC's elastic anisotropy and topological defects induce a spontaneous twist deformation to lower the energetic penalty of splay deformation, resulting in spiral optical textures under crossed polarizers both in the I-in-N and N-in-I systems. While the achiral system exhibits both handednesses with an equal probability, a small amount of the chiral dopant breaks the balance. Notably, in contrast to the homochiral configuration of a chirally doped LCLC in the bulk, the spiral texture of the disfavored handedness appears with a finite probability both in the I-in-N and N-in-I systems. We propose director field models explaining how chiral symmetry breaking arises by the energetics and the opposite-twist configurations exist as meta-stable structures in the energy landscape. These findings help us create and control chiral structures using confined LCs with large elastic anisotropy.
Collapse
Affiliation(s)
- Jungmyung Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
4
|
Palacio-Betancur V, Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Curvature and confinement effects on chiral liquid crystal morphologies. SOFT MATTER 2023; 19:6066-6073. [PMID: 37318304 DOI: 10.1039/d3sm00437f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral liquid crystals (ChLCs) exhibit an inherent twist that originates at the molecular scale and can extend over multiple length scales when unconstrained. Under confinement, the twist is thwarted, leading to formation of defects in the molecular order that offer distinct optical responses and opportunities for colloidal driven assembly. Past studies have explored spheroidal confinement down to the nanoscopic regime, where curved boundaries produce surface defects to accommodate topological constraints and restrict the propagation of cuboidal defect networks. Similarly, strict confinement in channels and shells has been shown to give rise to escaped configurations and skyrmions. However, little is known about the role of extrinsic curvature in the development of cholesteric textures and Blue Phases (BP). In this paper, we examine the palette of morphologies that arises when ChLCs are confined in toroidal and cylindrical cavities. The equilibrium morphologies are obtained following an annealing strategy of a Landau-de Gennes free energy functional. Three dimensionless groups are identified to build phase diagrams: the natural twist, the ratio of elastic energies, and the circumscription of a BP cell. Curvature is shown to introduce helical features that are first observed as a Double Twist, and progress to Chiral Ribbons and, ultimately, Helical BP and BP. Chiral ribbons are examined as useful candidates for driven assembly given their tunability and robustness.
Collapse
Affiliation(s)
| | - Julio C Armas-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, León (Gto.) 37150, Mexico
| | - Juan P Hernández-Ortiz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia.
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
5
|
Revignas D, Ferrarini A. On the elusive saddle-splay and splay-bend elastic constants of nematic liquid crystals. J Chem Phys 2023; 159:034905. [PMID: 37470424 DOI: 10.1063/5.0153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
The elastic behavior of nematics is commonly described in terms of the three so-called bulk deformation modes, i.e., splay, twist, and bend. However, the elastic free energy contains also other terms, often denoted as saddle-splay and splay-bend, which contribute, for instance, in confined systems. The role of such terms is controversial, partly because of the difficulty of their experimental determination. The saddle-splay (K24) and splay-bend (K13) elastic constants remain elusive also for theories; indeed, even the possibility of obtaining unambiguous microscopic expressions for these quantities has been questioned. Here, within the framework of Onsager theory with Parsons-Lee correction, we obtain microscopic estimates of the deformation free energy density of hard rod nematics in the presence of different director deformations. In the limit of a slowly changing director, these are directly compared with the macroscopic elastic free energy density. Within the same framework, we derive also closed microscopic expressions for all elastic coefficients of rodlike nematics. We find that the saddle-splay constant K24 is larger than both K11 and K22 over a wide range of particle lengths and densities. Moreover, the K13 contribution comes out to be crucial for the consistency of the results obtained from the analysis of the microscopic deformation free energy density calculated for variants of the splay deformation.
Collapse
Affiliation(s)
- Davide Revignas
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
6
|
Norouzi S, Zhang R, Munguia-Fernández JG, de Pablo L, Zhou Y, Taheri-Qazvini N, Shapiro H, Morin S, Martinez-Gonzalez JA, Sadati M, de Pablo JJ. Director Distortion and Phase Modulation in Deformable Nematic and Smectic Liquid Crystal Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15272-15281. [PMID: 36454950 DOI: 10.1021/acs.langmuir.2c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growing interest in integrating liquid crystals (LCs) into flexible and miniaturized technologies brings about the need to understand the interplay between spatially curved geometry, surface anchoring, and the order associated with these materials. Here, we integrate experimental methods and computational simulations to explore the competition between surface-induced orientation and the effects of deformable curved boundaries in uniaxially and biaxially stretched nematic and smectic microdroplets. We find that the director field of the nematic LCs upon uniaxial strain reorients and forms a larger twisted defect ring to adjust to the new deformed geometry of the stretched droplet. Upon biaxial extension, the director field initially twists in the now oblate geometry and subsequently transitions into a uniform vertical orientation at high strains. In smectic microdroplets, on the other hand, LC alignment transforms from a radial smectic layering to a quasi-flat layering in a compromise between interfacial and dilatation forces. Upon removing the mechanical strain, the smectic LC recovers its initial radial configuration; however, the oblate geometry traps the nematic LC in the metastable vertical state. These findings offer a basis for the rational design of LC-based flexible devices, including wearable sensors, flexible displays, and smart windows.
Collapse
Affiliation(s)
- Sepideh Norouzi
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Rui Zhang
- Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Juan G Munguia-Fernández
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1580, San Luis Potosí 78295, México
| | - Luis de Pablo
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Ye Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Harrison Shapiro
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Samuel Morin
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Jose A Martinez-Gonzalez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1580, San Luis Potosí 78295, México
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Mur M, Kos Ž, Ravnik M, Muševič I. Continuous generation of topological defects in a passively driven nematic liquid crystal. Nat Commun 2022; 13:6855. [PMID: 36369171 PMCID: PMC9652398 DOI: 10.1038/s41467-022-34384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic active matter is emerging as the prime route for the realisation of biological mechanisms such as locomotion, active mixing, and self-organisation in soft materials. In particular, passive nematic complex fluids are known to form out-of-equilibrium states with topological defects, but their locomotion, activation and experimental realization has been developed and understood to only a limited extent. Here, we report that the concentration-driven flow of small molecules triggers turbulent flow in the thin film of a nematic liquid crystal that continuously generates pairs of topological defects with an integer topological charge. The diffusion results in the formation of counter-rotating vortex rolls in the liquid crystal, which above a velocity threshold transform into a turbulent flow with continuous generation and annihilation of the defect pairs. The pairs of defects are created by the self-amplifying splay instability between the vortices, until a pair of oppositely charged defects is formed. It has been known that spontaneous defect formation and annihilation can be triggered by turbulent flows in active nematic liquid crystals. Here, Mur et al. show a complementary mechanism induced by the flow of foreign organic molecules into the liquid crystal following the concentration gradient.
Collapse
|
8
|
Karyappa R, Goh WH, Hashimoto M. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41520-41530. [PMID: 36048005 DOI: 10.1021/acsami.2c09041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible core-shell 3D structures are essential for the development of soft sensors and actuators. Despite recent advancements in 3D printing, the fabrication of flexible 3D objects with internal architectures (such as channels and void spaces) remains challenging with liquid precursors due to the difficulty to maintain the printed structures. The difficulty of such fabrication is prominent especially when low-viscosity polysiloxane resins are used. This study presents a unique approach to applying direct ink writing (DIW) 3D printing in a three-phase system to overcome this limitation. We performed core-shell 3D printing using a low-viscosity commercial polysiloxane resin (Ecoflex 10) as shell inks combined with a coaxially extruded core liquid (Pluronic F127) in Bingham plastic microparticulate gels (ethanol gel). In the process termed embedded core-shell 3D printing (eCS3DP), we highlighted the dependence of the rheological characteristics of the three fluids on the stability of the printed core-shell filament. With the core liquid with a sufficiently high concentration of Pluronic F127 (30 w/w%; σy = 158.5 Pa), the interfacial instability between the shell liquid and core liquid was suppressed; the removal of the core liquid permitted the fabrication of perfusable channels. We identified the printing conditions to ensure lateral attachments of printed core-shell filaments. Interestingly, judicious selection of the rheological properties and flow rates of three phases allowed the formation of droplets consisting of core liquids distributed along the printed filaments. eCS3DP offers a simple route to fabricate 3D structures of a soft elastomeric matrix with embedded channels and should serve as a useful tool for DIW-based fabrication of flexible wearable devices and soft robotic components.
Collapse
Affiliation(s)
- Rahul Karyappa
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8, Somapah Road, Singapore 487372, Sinagapore
| | - Wei Huang Goh
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8, Somapah Road, Singapore 487372, Sinagapore
| | - Michinao Hashimoto
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8, Somapah Road, Singapore 487372, Sinagapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8, Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
9
|
Nanikashvili PM, Butenko AV, Deutsch M, Lee D, Sloutskin E. Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets. J Colloid Interface Sci 2022; 621:131-138. [PMID: 35487043 DOI: 10.1016/j.jcis.2022.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS The counterintuitive temperature-controlled self-faceting of water-suspended, surfactant-stabilized, liquid oil droplets provides new opportunities in engineering of smart liquids, the properties of which are controllable by external stimuli. However, many emulsions exhibiting self-faceting phenomena have limited stability due to surfactant precipitation. The emulsions' stability may be enhanced, and their inter-droplet electrostatic repulsion tuned, through controlled charge screening driven by varying-concentration added salts. Moreover, in many technologically-relevant situations, salts may already exist in the emulsion's aqueous phase. Yet, salts' impact on self-faceting effects has never been explored. We hypothesize that the self-faceting transitions' temperatures, and stability against surfactant precipitation, of ionic-surfactants-stabilized emulsions are significantly modified by salt introduction. EXPERIMENTS We explore the temperature-dependent impact of NaCl and CsCl salt concentration on the emulsions' phase diagrams, employing optical microscopy of emulsion droplet shapes and interfacial tension measurements, both sensitive to interfacial phase transitions. FINDINGS A salt concentration dependent increase in the self-faceting transition temperatures is found, and its mechanism elucidated. Our findings allow for a significant enhancement of the emulsions' stability, and provide the physical understanding necessary for future progress in research and applications of self-faceting phenomena in salt-containing emulsions.
Collapse
Affiliation(s)
- Pilkhaz M Nanikashvili
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexander V Butenko
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moshe Deutsch
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eli Sloutskin
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Varadharajan D, Nayani K, Zippel C, Spuling E, Cheng KC, Sarangarajan S, Roh S, Kim J, Trouillet V, Bräse S, Abbott NL, Lahann J. Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108386. [PMID: 34918392 DOI: 10.1002/adma.202108386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Mesoscale chiral materials are prepared by lithographic methods, assembly of chiral building blocks, and through syntheses in the presence of polarized light. Typically, these processes result in micrometer-sized structures, require complex top-down manipulation, or rely on tedious asymmetric separation. Chemical vapor deposition (CVD) polymerization of chiral precursors into supported films of liquid crystals (LCs) are discovered to result in superhierarchical arrangements of enantiomorphically pure nanofibers. Depending on the molecular chirality of the 1-hydroxyethyl [2.2]paracyclophane precursor, extended arrays of enantiomorphic nanohelices are formed from achiral nematic templates. Arrays of chiral nanohelices extend over hundreds of micrometers and consistently display enantiomorphic micropatterns. The pitch of individual nanohelices depends on the enantiomeric excess and the purity of the chiral precursor, consistent with the theoretical model of a doubly twisted LC director configuration. During CVD of chiral precursors into cholesteric LC films, aspects of molecular and mesoscale asymmetry combine constructively to form regularly twisted nanohelices. Enantiomorphic surfaces permit the tailoring of a wide range of functional properties, such as the asymmetric induction of weak chiral systems.
Collapse
Affiliation(s)
- Divya Varadharajan
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Karthik Nayani
- Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701-1201, USA
| | - Christoph Zippel
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
| | - Eduard Spuling
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
| | - Kenneth C Cheng
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| | - Swetha Sarangarajan
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - John Kim
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| | - Vanessa Trouillet
- Institut fuer Angewandte Materialien (IAM-ESS) and Karlsruhe Nano Micro Facility KNMF), 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institut für Organische Chemie Karlsruher Institut für Technologie (KIT), 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joerg Lahann
- Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| |
Collapse
|
11
|
Novkoski F, Falcon E, Pham CT. Experimental Dispersion Relation of Surface Waves along a Torus of Fluid. PHYSICAL REVIEW LETTERS 2021; 127:144504. [PMID: 34652193 DOI: 10.1103/physrevlett.127.144504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
We report the observation of gravity-capillary waves on a torus of fluid. By means of an original technique, a stable torus is achieved by depositing water on a superhydrophobic groove with a shallow wedge-shaped channel running along its perimeter. Using a spatiotemporal optical measurement, we report the full dispersion relation of azimuthal waves propagating along the inner and outer torus borders, highlighting several branches modeled as varicose, sinuous, and sloshing modes. Standing azimuthal waves are also studied leading to polygonlike patterns arising on the two torus borders with a number of sides different when a tunable decoupling of the two interfaces occurs. The quantized nature of the dispersion relation is also evidenced.
Collapse
Affiliation(s)
- Filip Novkoski
- Université de Paris, MSC, UMR 7057 CNRS, F-75013 Paris, France
| | - Eric Falcon
- Université de Paris, MSC, UMR 7057 CNRS, F-75013 Paris, France
| | - Chi-Tuong Pham
- Université Paris-Saclay, LISN, UMR 9015 CNRS, F-91405 Orsay, France
| |
Collapse
|
12
|
Eun J, Pollard J, Kim SJ, Machon T, Jeong J. Layering transitions and metastable structures of cholesteric liquid crystals in cylindrical confinement. Proc Natl Acad Sci U S A 2021; 118:e2102926118. [PMID: 34373332 PMCID: PMC8379955 DOI: 10.1073/pnas.2102926118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our study of cholesteric lyotropic chromonic liquid crystals in cylindrical confinement reveals the topological aspects of cholesteric liquid crystals. The double-twist configurations we observe exhibit discontinuous layering transitions, domain formation, metastability, and chiral point defects as the concentration of chiral dopant is varied. We demonstrate that these distinct layer states can be distinguished by chiral topological invariants. We show that changes in the layer structure give rise to a chiral soliton similar to a toron, comprising a metastable pair of chiral point defects. Through the applicability of the invariants we describe to general systems, our work has broad relevance to the study of chiral materials.
Collapse
Affiliation(s)
- Jonghee Eun
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Joseph Pollard
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Sung-Jo Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Thomas Machon
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
| |
Collapse
|
13
|
Patel M, Radhakrishnan ANP, Bescher L, Hunter-Sellars E, Schmidt-Hansberg B, Amstad E, Ibsen S, Guldin S. Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture. SOFT MATTER 2021; 17:947-954. [PMID: 33284300 DOI: 10.1039/d0sm01742f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4'-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
Collapse
Affiliation(s)
- Mehzabin Patel
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar S, Ghosh A, Chaudhuri J, Timung S, Dasmahapatra AK, Bandyopadhyay D. Self-organized spreading of droplets to fluid toroids. J Colloid Interface Sci 2020; 578:738-748. [DOI: 10.1016/j.jcis.2020.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
|
15
|
Smalyukh II. Review: knots and other new topological effects in liquid crystals and colloids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:106601. [PMID: 32721944 DOI: 10.1088/1361-6633/abaa39] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humankind has been obsessed with knots in religion, culture and daily life for millennia, while physicists like Gauss, Kelvin and Maxwell already involved them in models centuries ago. Nowadays, colloidal particles can be fabricated to have shapes of knots and links with arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets with complex topology. Knotted and linked colloidal particles induce knots and links of singular defects, which can be interlinked (or not) with colloidal particle knots, revealing the diversity of interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, which are classified based on homotopy theory, characterized by integer-valued topological invariants and often contain knotted or linked preimages, nonsingular regions of space corresponding to single points of the order parameter space. A zoo of topological solitons in liquid crystals, colloids and ferromagnets promises new breeds of information displays and a plethora of data storage, electro-optic and photonic applications. Their particle-like collective dynamics echoes coherent motions in active matter, ranging from crowds of people to schools of fish. This review discusses the state of the art in the field, as well as highlights recent developments and open questions in physics of knotted soft matter. We systematically overview knotted field configurations, the allowed transformations between them, their physical stability and how one can use one form of knotted fields to model, create and imprint other forms. The large variety of symmetries accessible to liquid crystals and colloids offer insights into stability, transformation and emergent dynamics of fully nonsingular and singular knotted fields of fundamental and applied importance. The common thread of this review is the ability to experimentally visualize these knots in real space. The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.
Collapse
Affiliation(s)
- Ivan I Smalyukh
- Department of Physics, Department of Electrical, Computer and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, United States of America
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
16
|
Ellis PW, Klaneček S, Fernandez-Nieves A. Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Phys Rev E 2020; 101:052703. [PMID: 32575280 DOI: 10.1103/physreve.101.052703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/05/2020] [Indexed: 11/07/2022]
Abstract
We develop polarized epifluorescence microscopy (PFM), a technique to qualitatively determine a director field, even when refraction effects are too strong to use optical polarized microscopy. We present the basic theory behind the technique and cover in detail the experimental setup. We validate PFM on the well-studied cases of a planar nematic cell, spherical nematic droplets, and a cylindrical capillary filled with nematic liquid crystal. Last, we use nematic capillary bridges to demonstrate that PFM can indeed provide measurements of the director field, even when refraction effects are large.
Collapse
Affiliation(s)
- Perry W Ellis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138-2933, USA
| | - Susannah Klaneček
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.,Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Ellis PW, Nambisan J, Fernandez-Nieves A. Coherence-enhanced diffusion filtering applied to partially-ordered fluids. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Perry W. Ellis
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Condensed Matter Physics, University of Barcelona, Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| |
Collapse
|
18
|
Wand CR, Bates MA. Chiral nematic liquid crystals in torus-shaped and cylindrical cavities. Phys Rev E 2019; 100:052702. [PMID: 31869937 DOI: 10.1103/physreve.100.052702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/07/2022]
Abstract
We present a Monte Carlo simulation study of chiral nematic liquid crystals confined in torus-shaped and cylindrical cavities. For an achiral nematic with planar degenerate anchoring confined to a toroidal or cylindrical cavity, the ground state is defect free, with an untwisted director field. As chirality is introduced, the ground state remains defect free but the director field becomes twisted within the cavity. For homeotropic anchoring, the ground state for an achiral nematic within a toroidal cavity consists of two disclination rings, one large and one small, that follow the major circumference of the torus. As chirality is introduced and increased, this ground state becomes unstable with respect to twisted configurations. The closed nature of the toroidal cavity requires that only a half integer number of twists can be formed and this leads to the ground state being either a single disclination line that encircles the torus twice or a pair of intertwined disclination rings forming stable, knotted defect structures.
Collapse
Affiliation(s)
- Charlie R Wand
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Martin A Bates
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
19
|
Programming emergent symmetries with saddle-splay elasticity. Nat Commun 2019; 10:5104. [PMID: 31704934 PMCID: PMC6841980 DOI: 10.1038/s41467-019-13012-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/13/2019] [Indexed: 11/08/2022] Open
Abstract
The director field adopted by a confined liquid crystal is controlled by a balance between the externally imposed interactions and the liquid's internal orientational elasticity. While the latter is usually considered to resist all deformations, liquid crystals actually have an intrinsic propensity to adopt saddle-splay arrangements, characterised by the elastic constant [Formula: see text]. In most realisations, dominant surface anchoring treatments suppress such deformations, rendering [Formula: see text] immeasurable. Here we identify regimes where more subtle, patterned surfaces enable saddle-splay effects to be both observed and exploited. Utilising theory and continuum calculations, we determine experimental regimes where generic, achiral liquid crystals exhibit spontaneously broken surface symmetries. These provide a new route to measuring [Formula: see text]. We further demonstrate a multistable device in which weak, but directional, fields switch between saddle-splay-motivated, spontaneously-polar surface states. Generalising beyond simple confinement, our highly scalable approach offers exciting opportunities for low-field, fast-switching optoelectronic devices which go beyond current technologies.
Collapse
|
20
|
Laroche C, Bacri JC, Devaud M, Jamin T, Falcon E. Observation of the Resonance Frequencies of a Stable Torus of Fluid. PHYSICAL REVIEW LETTERS 2019; 123:094502. [PMID: 31524494 DOI: 10.1103/physrevlett.123.094502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/10/2023]
Abstract
We report the first quantitative measurements of the resonance frequencies of a torus of fluid confined in a horizontal Hele-Shaw cell. By using the unwetting property of a metal liquid, we are able to generate a stable torus of fluid with an arbitrary aspect ratio. When subjected to vibrations, the torus displays azimuthal patterns at its outer periphery. These lobes oscillate radially, and their number n depends on the forcing frequency. We report the instability "tongues" of the patterns up to n=25. These resonance frequencies are well explained by adapting to a fluid torus the usual drop model of Rayleigh. This approach could be applied to the modeling of large-scale structures arisen transiently in vortex rings in various domains.
Collapse
Affiliation(s)
- Claude Laroche
- Laroche Laboratory, Rue de la Madeleine, F-69 007 Lyon, France
| | - Jean-Claude Bacri
- Université de Paris, Université Paris Diderot, MSC, UMR 7057 CNRS, F-75 013 Paris, France
| | - Martin Devaud
- Université de Paris, Université Paris Diderot, MSC, UMR 7057 CNRS, F-75 013 Paris, France
| | - Timothée Jamin
- Université de Lyon, ENS de Lyon, CNRS, Lab. de Physique & UPMA, F-69342 Lyon, France
| | - Eric Falcon
- Université de Paris, Université Paris Diderot, MSC, UMR 7057 CNRS, F-75 013 Paris, France
| |
Collapse
|
21
|
McInerney JP, Ellis PW, Rocklin DZ, Fernandez-Nieves A, Matsumoto EA. Curved boundaries and chiral instabilities - two sources of twist in homeotropic nematic tori. SOFT MATTER 2019; 15:1210-1214. [PMID: 30676600 DOI: 10.1039/c8sm02055h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many liquid crystalline systems display spontaneous breaking of achiral symmetry, as achiral molecules aggregate into large chiral domains. In confined cylinders with homeotropic boundary conditions, chromonic liquid crystals - which have a twist elastic modulus which is at least an order of magnitude less than their splay and bend counter parts - adopt a twisted escaped radial texture (TER) to minimize their free energy, whilst 5CB - which has all three elastic constants roughly comparable - does not. In a recent series of experiments, we have shown that 5CB confined to tori and bent cylindrical capillaries with homeotropic boundary conditions also adopts a TER structure resulting from the curved nature of the confining boundaries [P. W. Ellis et al., Phys. Rev. Lett., 2018, 247803]. We shall call this microscopic twist, as the twisted director organization not only depends on the confinement geometry but also on the values of elastic moduli. Additionally, we demonstrate theoretically that the curved geometry of the boundary induces a twist in the escaped radial (ER) texture. Moving the escaped core of the structure towards the center of the torus not only lowers the splay and bend energies, but lowers the energetic cost of this distinct source for twist that we shall call geometric twist. As the torus becomes more curved, the ideal location for the escaped core approaches the inner radius of the torus.
Collapse
Affiliation(s)
- James P McInerney
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA.
| | | | | | | | | |
Collapse
|
22
|
Pedrini A, Piastra M, Virga EG. Non-monotonic, lily-like twist distribution in toroidal nematics. SOFT MATTER 2019; 15:633-641. [PMID: 30608499 DOI: 10.1039/c8sm02177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toroidal nematics are droplets of nematic liquid crystals in the form of a circular torus. When the nematic director is subject to planar degenerate boundary conditions, the bend-only director field with vector lines along the parallels of all nested torodial shells is an equilibrium solution for all values of the elastic constants. Local stability analyses have shown that an instability is expected to occur for sufficiently small values of the twist elastic constant. It is natural to wonder whether in this regime the global equilibrium would be characterized by a monotonic twist, or not. In the former case, the twist distribution over the torus' circular cross-section would be represented pictorially by a fennel-like surface emanating from the centre. We prove that instead the stable twist distribution is represented by a lily-like surface. Thus, generically the twist distribution is not monotonic and its maximum may fall well within the torus, far away from the boundary. To cope with the peculiar complexity of the elastic free-energy functional in the fully non-linear setting, we developed an ad hoc deep-learning optimization method, which here is also further validated and documented for it promises to be applicable to other similar problems, equally intractable analytically.
Collapse
Affiliation(s)
- Andrea Pedrini
- Dipartimento di Matematica, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| | - Marco Piastra
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| | - Epifanio G Virga
- Dipartimento di Matematica, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Ellis PW, Nayani K, McInerney JP, Rocklin DZ, Park JO, Srinivasarao M, Matsumoto EA, Fernandez-Nieves A. Curvature-Induced Twist in Homeotropic Nematic Tori. PHYSICAL REVIEW LETTERS 2018; 121:247803. [PMID: 30608771 DOI: 10.1103/physrevlett.121.247803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 06/09/2023]
Abstract
We confine a nematic liquid crystal with homeotropic anchoring to stable toroidal droplets and study how geometry affects the equilibrium director configuration. In contrast to the case of cylindrical confinement, we find that the equilibrium state is chiral-a twisted and escaped radial director configuration. Furthermore, we find that the magnitude of the twist distortion increases as the ratio of the ring radius to the tube radius decreases; we confirm this with computer simulations of optically polarized microscopy textures. In addition, numerical calculations also indicate that the local geometry indeed affects the magnitude of the twist distortion. We further confirm this curvature-induced twisting using bent cylindrical capillaries.
Collapse
Affiliation(s)
- Perry W Ellis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Karthik Nayani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
| | - James P McInerney
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - D Zeb Rocklin
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Jung Ok Park
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
| | - Mohan Srinivasarao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Vallamkondu J, Corgiat EB, Buchaiah G, Kandimalla R, Reddy PH. Liquid Crystals: A Novel Approach for Cancer Detection and Treatment. Cancers (Basel) 2018; 10:E462. [PMID: 30469457 PMCID: PMC6267481 DOI: 10.3390/cancers10110462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
Liquid crystals are defined as the fourth state of matter forming between solid and liquid states. Earlier the applications of liquid crystals were confined to electronic instruments, but recent research findings suggest multiple applications of liquid crystals in biology and medicine. Here, the purpose of this review article is to discuss the potential biological impacts of liquid crystals in the diagnosis and prognosis of cancer along with the risk assessment. In this review, we also discussed the recent advances of liquid crystals in cancer biomarker detection and treatment in multiple cell line models. Cases reviewed here will demonstrate that cancer diagnostics based on the multidisciplinary technology and intriguingly utilization of liquid crystals may become an alternative to regular cancer detection methodologies. Additionally, we discussed the formidable challenges and problems in applying liquid crystal technologies. Solving these problems will require great effort and the way forward is through the multidisciplinary collaboration of physicists, biologists, chemists, material-scientists, clinicians, and engineers. The triumphant outcome of these liquid crystals and their applications in cancer research would be convenient testing for the detection of cancer and may result in treating the cancer patients non-invasively.
Collapse
Affiliation(s)
- Jayalakshmi Vallamkondu
- Department of Physics, NIT Warangal, Telangana 506004, India.
- Centre for Advanced Materials, NIT Warangal, Telangana 506004, India.
| | - Edwin Bernard Corgiat
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA.
- Cell Biology and Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| |
Collapse
|
25
|
Javadi A, Eun J, Jeong J. Cylindrical nematic liquid crystal shell: effect of saddle-splay elasticity. SOFT MATTER 2018; 14:9005-9011. [PMID: 30376031 DOI: 10.1039/c8sm01829d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study introduces cylindrical nematic liquid crystal (LC) shells. Shells as confinement can provide soft matter with intriguing topology and geometry. Indeed, in spherical shells of LCs, rich defect structures have been reported. Avoiding the inherent Plateau-Rayleigh instability of cylindrical liquid-liquid interfaces, we realize the cylindrical nematic LC shell by two different methods: the phase separation in the nematic-isotropic coexistence phase and a cylindrical cavity with a glass rod suspended in the middle. Specifically, the director configurations of lyotropic chromonic LCs (LCLCs) in the cylindrical shell and their energetics are investigated theoretically and experimentally. Unusual elastic properties of LCLCs, i.e., a large saddle-splay modulus, and a shell geometry with both concave and convex curvatures, result in a double-twist director configuration.
Collapse
Affiliation(s)
- Arman Javadi
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | | | | |
Collapse
|
26
|
Hao C, Xie Z, Atherton TJ, Spicer PT. Arrested Coalescence of Viscoelastic Droplets: Ellipsoid Shape Effects and Reorientation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12379-12386. [PMID: 30239202 DOI: 10.1021/acs.langmuir.8b02136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The stable configurations formed by two poroelastic, ellipsoid-shaped droplets during their arrested coalescence have been investigated using micromanipulation experiments. Ellipsoidal droplets are produced by millifluidic emulsification of petrolatum into a yield stress fluid that preserves their elongated shape. The liquid meniscus between droplets can transmit stress and instigate movement of the droplets, from their initial relative position, in order to minimize doublet surface energy. The action of the liquid meniscus causes the ellipsoidal droplets to undergo rolling and reorientation events because of their unique ellipsoid shape and associated variation in the surface curvature. The final configuration of the droplets is controlled by the balance between interfacial Laplace pressure and internal elasticity, as well as a constraint force that resists complete minimization of surface energy. Geometric and surface energy calculations are used to map the possible and most likely configurations of the droplet pairs. Experimental deviations from the calculations indicate the magnitude and potential origin of the constraint force resisting full equilibration. Droplet aspect ratio and elasticity are both shown to influence the degree of reorientation and stability of the droplets at energy extrema. Higher aspect ratios drive greater reorientation and better agreement with final doublet configurations predicted by energy minimization. Lower elasticity droplets undergo secondary deformations at high aspect ratios, further broadening the space of possible morphologies.
Collapse
Affiliation(s)
- Chen Hao
- School of Chemical Engineering , UNSW Sydney , Sydney , New South Wales 2052 , Australia
| | - Zhaoyu Xie
- Department of Physics and Astronomy , Tufts University , Boston , Massachusetts 02155 , United States
| | - Timothy J Atherton
- Department of Physics and Astronomy , Tufts University , Boston , Massachusetts 02155 , United States
| | - Patrick T Spicer
- School of Chemical Engineering , UNSW Sydney , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
27
|
Hashemi SM, Ravnik M. Nematic colloidal knots in topological environments. SOFT MATTER 2018; 14:4935-4945. [PMID: 29740657 DOI: 10.1039/c8sm00539g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The role of environment in shaping material properties is of great significance, but less is known about how non-trivial topology of the environment couples to material states, which can be of non-trivial topology themselves. In this paper, we demonstrate the role of the topology of the environment on the formation of complex nematic fields and defect structures, specifically in the system of nematic colloidal knots. The topological environments around knotted colloidal particles are suggested to exist as spherical surface-patterned nematic cavities imposing radial, uniform or hyperbolic nematic profiles. We show that topologically different nematic environments significantly affect and create differences in the colloidal field structure created within the environment, such as the location, profile and number of topological defects. Specifically, we demonstrate that topological environments in combination with knotted colloidal particles of non-trivial topology lead to the formation of diverse nematic knotted and linked fields. These fields are different adaptations of the knotted shape of the colloidal particles, creating knots and links of topological defects as well as escaped-core defect-like solitonic structures. These are observed in chiral nematic media but here are stabilised in achiral nematic media as a result of the distinct shape of the knotted colloidal particle, with a double helix segment and nematic environmental patterns. More generally, this paper is a contribution towards understanding the role of environment, especially its topology, on the response and defect formation in elastic fields, such as in nematic liquid crystal colloids.
Collapse
Affiliation(s)
- S Masoomeh Hashemi
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, 1000, Slovenia.
| | | |
Collapse
|
28
|
Abstract
Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to textures of ordered media. Maxwell's electrostatic equations, whose vacuum solution is mathematically known as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical knotted tubes, we identify the torsion driven transition from bipolar to vortex patterns. We also analogously extend our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding about the general role of topology in shaping a physical field in confined space, and may find applications in the control of physical fields by manipulation of surface topology.
Collapse
Affiliation(s)
- Xiuqing Duan
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenwei Yao
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Sidky H, de Pablo JJ, Whitmer JK. In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals. PHYSICAL REVIEW LETTERS 2018; 120:107801. [PMID: 29570343 DOI: 10.1103/physrevlett.120.107801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k_{24}, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.
Collapse
Affiliation(s)
- Hythem Sidky
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
30
|
Muševič I. Nematic Liquid-Crystal Colloids. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E24. [PMID: 29295574 PMCID: PMC5793522 DOI: 10.3390/ma11010024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/24/2022]
Abstract
This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology.
Collapse
Affiliation(s)
- Igor Muševič
- J. Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia.
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
31
|
Wang H, Zetterlund PB, Boyer C, Boyd BJ, Prescott SW, Spicer PT. Soft polyhedral particles based on cubic liquid crystalline emulsion droplets. SOFT MATTER 2017; 13:8492-8501. [PMID: 29091103 DOI: 10.1039/c7sm01521f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soft polyhedral particles based on variations of the cubic symmetry group are produced from a precursor emulsion by extracting solvent to grow facets on the droplets. The droplets transform into liquid crystals with solid-like rheology and controlled size and shape. Small-angle X-ray scattering confirms a bicontinuous cubic liquid crystalline phase forms from aqueous glycerol monoolein and is responsible for the particle faceting observed. Different polyhedra are produced by varying face growth rates through control of precursor droplet size, system temperature, and solubilization and adsorption of guest molecules. More exotic faceted shapes can be formed by the soft particles by applying asymmetric solvent removal gradients and by deforming the precursor droplets into, for example, ellipsoids before crystallization. The method is a powerful means to produce soft polyhedra, using continuous microfluidic or other approaches, or to act as templates for hard polyhedral particle synthesis.
Collapse
Affiliation(s)
- Haiqiao Wang
- Complex Fluids Group, School of Chemical Engineering, UNSW Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Rudyak VY, Krakhalev MN, Sutormin VS, Prishchepa OO, Zyryanov VY, Liu JH, Emelyanenko AV, Khokhlov AR. Electrically induced structure transition in nematic liquid crystal droplets with conical boundary conditions. Phys Rev E 2017; 96:052701. [PMID: 29347734 DOI: 10.1103/physreve.96.052701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/07/2022]
Abstract
Polymer-dispersed liquid crystal composites have been a focus of study for a long time for their unique electro-optical properties and manufacturing by "bottom-up" techniques at large scales. In this paper, nematic liquid crystal oblate droplets with conical boundary conditions (CBCs) under the action of electric field were studied by computer simulations and polarized optical microscopy. Droplets with CBCs were shown to prefer an axial-bipolar structure, which combines a pair of boojums and circular disclinations on a surface. In contrast to droplets with degenerate planar boundary conditions (PBCs), hybridization of the two structure types in droplets with CBCs leads to a two-minima energy profile, resulting in an abrupt structure transition and bistable behavior of the system. The nature of the low-energy barrier in droplets with CBCs makes it highly sensitive to external stimuli, such as electric or magnetic fields, temperature, and light. In particular, the value of the electric field of the structure reorientation in droplets with CBCs was found to be a few times smaller than the one for droplets with PBCs, and the droplet state remained stable after switching off the voltage.
Collapse
Affiliation(s)
- V Yu Rudyak
- Lomonosov Moscow State University, Faculty of Physics, Moscow 119991, Russia
| | - M N Krakhalev
- Kirensky Institute of Physics, Federal Research Center - Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.,Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - V S Sutormin
- Kirensky Institute of Physics, Federal Research Center - Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - O O Prishchepa
- Kirensky Institute of Physics, Federal Research Center - Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.,Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - V Ya Zyryanov
- Kirensky Institute of Physics, Federal Research Center - Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - J-H Liu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - A V Emelyanenko
- Lomonosov Moscow State University, Faculty of Physics, Moscow 119991, Russia
| | - A R Khokhlov
- Lomonosov Moscow State University, Faculty of Physics, Moscow 119991, Russia
| |
Collapse
|
33
|
Wang X, Zhou Y, Kim YK, Miller DS, Zhang R, Martinez-Gonzalez JA, Bukusoglu E, Zhang B, Brown TM, de Pablo JJ, Abbott NL. Patterned surface anchoring of nematic droplets at miscible liquid-liquid interfaces. SOFT MATTER 2017; 13:5714-5723. [PMID: 28752888 DOI: 10.1039/c7sm00975e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the internal configurations of droplets of nematic liquid crystals (LCs; 10-50 μm-in-diameter; comprised of 4-cyano-4'-pentylbiphenyl and 4-(3-acryloyloxypropyloxy)benzoic acid 2-methyl-1,4-phenylene ester) sedimented from aqueous solutions of sodium dodecyl sulfate (SDS) onto interfaces formed with pure glycerol. We observed a family of internal LC droplet configurations and topological defects consistent with a remarkably abrupt transition from homeotropic (perpendicular) to tangential anchoring on the surface of the LC droplets in the interfacial environment. Calculations of the interdiffusion of water and glycerol at the aqueous-glycerol interface revealed the thickness of the diffuse interfacial region of the two miscible liquids to be small (0.2-0.5 μm) compared to the diameters of the LC droplets on the experimental time-scale (15-120 minutes), leading us to hypothesize that the patterned surface anchoring was induced by gradients in concentration of SDS and glycerol across the diameter of the LC droplets in the interfacial region. This hypothesis received additional support from experiments in which the time of sedimentation of the LC droplets onto the interface was systematically increased and the droplets were photo-polymerized to preserve their configurations: the configurations of the LC droplets were consistent with a time-dependent decrease in the fraction of the surface area of each droplet exhibiting homeotropic anchoring. Specifically, LC droplets with <10% surface area with tangential anchoring exhibited a bulk point defect within the LC droplet, whereas droplets with >10% surface area with tangential anchoring exhibited a boojum defect within the tangential region and a disclination loop separated the regions with tangential and homeotropic anchoring. The topological charge of these LC droplet configurations was found to be consistent with the geometrical theorems of Poincaré and Gauss and also well-described by computer simulations performed by minimization of a Landau-de Gennes free energy. Additional experimental observations (e.g., formation of "Janus-like" particles with one hemisphere exhibiting tangential anchoring and the other perpendicular anchoring) and simulations (e.g., a size-dependent set of LC droplet configurations with <10% surface area exhibiting tangential anchoring) support our general conclusion that placement of LC droplets into miscible liquid-liquid interfacial environments with compositional gradients can lead to a rich set of LC droplet configurations with symmetries and optical characteristics that are not encountered in LC droplet systems in homogeneous, bulk environments. Our results also reveal that translocation of LC droplets across liquid-liquid interfaces can define new transition pathways that connect distinct configurations of LC droplets.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Duan X, Yao Z. Curvature-driven stability of defects in nematic textures over spherical disks. Phys Rev E 2017; 95:062706. [PMID: 28709326 DOI: 10.1103/physreve.95.062706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Stabilizing defects in liquid-crystal systems is crucial for many physical processes and applications ranging from functionalizing liquid-crystal textures to recently reported command of chaotic behaviors of active matters. In this work, we perform analytical calculations to study the curvature-driven stability mechanism of defects based on the isotropic nematic disk model that is free of any topological constraint. We show that in a growing spherical disk covering a sphere the accumulation of curvature effect can prevent typical +1 and +1/2 defects from forming boojum textures where the defects are repelled to the boundary of the disk. Our calculations reveal that the movement of the equilibrium position of the +1 defect from the boundary to the center of the spherical disk occurs in a very narrow window of the disk area, exhibiting the first-order phase-transition-like behavior. For the pair of +1/2 defects by splitting a +1 defect, we find the curvature-driven alternating repulsive and attractive interactions between the two defects. With the growth of the spherical disk these two defects tend to approach and finally recombine towards a +1 defect texture. The sensitive response of defects to curvature and the curvature-driven stability mechanism demonstrated in this work in nematic disk systems may have implications towards versatile control and engineering of liquid-crystal textures in various applications.
Collapse
Affiliation(s)
- Xiuqing Duan
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenwei Yao
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Urbanski M, Reyes CG, Noh J, Sharma A, Geng Y, Subba Rao Jampani V, Lagerwall JPF. Liquid crystals in micron-scale droplets, shells and fibers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:133003. [PMID: 28199222 DOI: 10.1088/1361-648x/aa5706] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward.
Collapse
|
36
|
Fialho AR, Bernardino NR, Silvestre NM, Telo da Gama MM. Effect of curvature on cholesteric liquid crystals in toroidal geometries. Phys Rev E 2017; 95:012702. [PMID: 28208389 DOI: 10.1103/physreve.95.012702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/07/2022]
Abstract
The confinement of liquid crystals inside curved geometries leads to exotic structures, with applications ranging from biosensors to optical switches and privacy windows. Here we study how curvature affects the alignment of a cholesteric liquid crystal. We model the system on the mesoscale using the Landau-de Gennes model. Our study was performed in three stages, analyzing different curved geometries from cylindrical walls and pores, to toroidal domains, in order to isolate the curvature effects. Our results show that the stresses introduced by the curvature influence the orientation of the liquid crystal molecules, and cause distortions in the natural periodicity of the cholesteric that depend on the radius of curvature, on the pitch, and on the dimensions of the system. In particular, the cholesteric layers of toroidal droplets exhibit a symmetry breaking not seen in cylindrical pores and that is driven by the additional curvature.
Collapse
Affiliation(s)
- Ana R Fialho
- Departamento de Física da Faculdade de Ciências, Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| | - Nelson R Bernardino
- Departamento de Física da Faculdade de Ciências, Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| | - Nuno M Silvestre
- Departamento de Física da Faculdade de Ciências, Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Departamento de Física da Faculdade de Ciências, Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| |
Collapse
|
37
|
Silvestre NM, Romero-Enrique JM, Telo da Gama MM. Nematic liquid crystals on sinusoidal channels: the zigzag instability. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:014004. [PMID: 27830658 DOI: 10.1088/0953-8984/29/1/014004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.
Collapse
Affiliation(s)
- Nuno M Silvestre
- Departamento de Física da Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal. Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
| | | | | |
Collapse
|
38
|
Fumeron S, Moraes F, Pereira E. Retrieving the saddle-splay elastic constant K24 of nematic liquid crystals from an algebraic approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:83. [PMID: 27589980 DOI: 10.1140/epje/i2016-16083-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The physics of light interference experiments is well established for nematic liquid crystals. Using well-known techniques, it is possible to obtain important quantities, such as the differential scattering cross section and the saddl-splay elastic constant K24. However, the usual methods to retrieve the latter involve adjusting of computational parameters through visual comparisons between the experimental light interference pattern or a (2) H-NMR spectral pattern produced by an escaped-radial disclination, and their computational simulation counterparts. To avoid such comparisons, we develop an algebraic method for obtaining of saddle-splay elastic constant K24. Considering an escaped-radial disclination inside a capillary tube with radius R0 of tens of micrometers, we use a metric approach to study the propagation of the light (in the scalar wave approximation), near the surface of the tube and to determine the light interference pattern due to the defect. The latter is responsible for the existence of a well-defined interference peak associated to a unique angle [Formula: see text] . Since this angle depends on factors such as refractive indexes, curvature elastic constants, anchoring regime, surface anchoring strength and radius R0, the measurement of [Formula: see text] from the interference experiments involving two different radii allows us to algebraically retrieve K24. Our method allowed us to give the first reported estimation of K24 for the lyotropic chromonic liquid crystal Sunset Yellow FCF: K 24 = 2.1 pN.
Collapse
Affiliation(s)
- Sébastien Fumeron
- Institut Jean Lamour, Université de Lorraine, Boulevard des Aiguillettes, BP 239, 54506, Vandæuvre les Nancy, France
- Laboratoire dÉnergétique et de Mécanique Théorique et Appliquée, CNRS UMR 7563, Nancy Université, 54506, Vandoeuvre Cedex, France
| | - Fernando Moraes
- Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB, Brazil
- Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil
| | - Erms Pereira
- Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001, Recife, PE, Brazil.
| |
Collapse
|
39
|
Napoli G, Vergori L. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment. Phys Rev E 2016; 94:020701. [PMID: 27627231 DOI: 10.1103/physreve.94.020701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 06/06/2023]
Abstract
We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell.
Collapse
Affiliation(s)
- Gaetano Napoli
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, Edificio "Corpo O", 73100 Lecce, Italy
| | - Luigi Vergori
- School of Mathematics and Statistics, University of Glasgow, University Gardens 15, G12 8QW Glasgow, United Kingdom
| |
Collapse
|
40
|
Guo Y, Afghah S, Xiang J, Lavrentovich OD, Selinger RLB, Wei QH. Cholesteric liquid crystals in rectangular microchannels: skyrmions and stripes. SOFT MATTER 2016; 12:6312-6320. [PMID: 27396898 DOI: 10.1039/c6sm01190j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we present experimental and numerical studies on the microstructures of a cholesteric liquid crystal (CLC) confined in rectangular micron-channels. By using a sequence of microfabrication techniques we fabricated the micro-sized channels with accurately controlled size, aspect ratio and homeotropic surface anchoring. Through optical microscopic studies we established a phase diagram for the liquid crystal defect textures as a function of the channel depth and width. For the channel width larger than ∼2 times the cholesteric pitch p, the LC molecules are oriented primarily vertical to the channel when the channel depth is below 0.75p, form bubble domain defects when the channel depth is around 0.75p, and form stripe textures when the cell depth is above the cholesteric pitch p. In addition, the bubble domain size and the stripe texture periodicity are found to grow with the increase of the channel width. For the channel width smaller than ∼2p and the channel depth between 0.6p to 1.1p, no textures can be observed in the channels. Numerical simulations based on a director tensor relaxation approach yield detailed molecular director fields, and show that the bubble domain defects are baby-skyrmions and that the stripes are the first type of cholesteric fingerprints. A comparison with previous experiments and numerical simulations indicates that the size of the microchannels also influences what type of soliton-like topological textures form in the CLCs confined in the channels.
Collapse
Affiliation(s)
- Yubing Guo
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Sajedeh Afghah
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Jie Xiang
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | | | | | - Qi-Huo Wei
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
41
|
Lassoing saddle splay and the geometrical control of topological defects. Proc Natl Acad Sci U S A 2016; 113:7106-11. [PMID: 27222582 DOI: 10.1073/pnas.1602703113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systems with holes, such as colloidal handlebodies and toroidal droplets, have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl (5CB): Both point and ring topological defects can occur within each hole and around the system while conserving the system's overall topological charge. However, what has not been fully appreciated is the ability to manipulate the hole geometry with homeotropic (perpendicular) anchoring conditions to induce complex, saddle-like deformations. We exploit this by creating an array of holes suspended in an NLC cell with oriented planar (parallel) anchoring at the cell boundaries. We study both 5CB and a binary mixture of bicyclohexane derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study how the bulk saddle deformations of each hole interact to create defect structures, including an array of disclination lines, reminiscent of those found in liquid-crystal blue phases. The line locations are tunable via the NLC elastic constants, the cell geometry, and the size and spacing of holes in the array. This research lays the groundwork for the control of complex elastic deformations of varying length scales via geometrical cues in materials that are renowned in the display industry for their stability and easy manipulability.
Collapse
|
42
|
Points, skyrmions and torons in chiral nematic droplets. Sci Rep 2016; 6:26361. [PMID: 27198649 PMCID: PMC4873801 DOI: 10.1038/srep26361] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
Chiral nematic droplets with perpendicular surface alignment of liquid crystalline molecules frustrate the helical structure into convoluted 3D textures with complex topology. We observe the droplets with fluorescent confocal polarising microscopy (FCPM), and reconstruct and analyse for the first time the topology of the 3D director field using a novel method of director reconstruction from raw data. We always find an odd number of topological defects, which preserve the total topological charge of the droplet of +1 regardless of chirality. At higher chirality, we observe up to 5 point hedgehog defects, which are elastically stabilized with convoluted twisted structures, reminiscent of 2D skyrmions and toron-like structure, nested into a sphere.
Collapse
|
43
|
Guttman S, Ocko BM, Deutsch M, Sloutskin E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Kos Ž, Ravnik M. Relevance of saddle-splay elasticity in complex nematic geometries. SOFT MATTER 2016; 12:1313-1323. [PMID: 26610395 DOI: 10.1039/c5sm02417j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context of complex surface anchoring conditions and the complex geometrical confinement. Specifically, nematic cells with patterns of surface anchoring and colloidal knots are shown as examples where saddle-splay free energy contribution can have a notable role which originates from nonhomogeneous surface anchoring and the varying surface curvature. Patterned nematic cells are shown to exhibit various (meta)stable configurations of nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high enough values of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally indicating that the saddle-splay can reverse or change the (meta)stability of various nematic structures affecting their phase diagrams. Furthermore, we investigate saddle-splay elasticity in the geometry of highly curved boundaries - the colloidal particle knots in nematic - where the local curvature of the particles induces complex spatial variations of the saddle-splay contributions. Finally, a nematic order parameter tensor based saddle-splay invariant is shown, which allows for the direct calculation of saddle-splay free energy from the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches, such as Landau-de Gennes free energy modelling.
Collapse
Affiliation(s)
- Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia. and Josef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
45
|
Batista VMO, Silvestre NM, Telo da Gama MM. Nematic droplets on fibers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062507. [PMID: 26764711 DOI: 10.1103/physreve.92.062507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 06/05/2023]
Abstract
The emergence of new techniques for the fabrication of nematic droplets with nontrivial topology provides new routes for the assembly of responsive devices. Here we explore some of the properties of nematic droplets on fibers, which constitute the basic units of a type of device that is able to respond to external stimuli, including the detection of gases. We perform a numerical study of spherical nematic droplets on fibers. We analyze the equilibrium textures for homogeneous and hybrid boundary conditions and find that in some cases the nematic avoids the nucleation of topological defects, which would provide a different optical response. We consider in detail a homeotropic nematic droplet wrapped around a fiber with planar anchoring. We investigate the effect of an electric field on the texture of this droplet. In the presence of a dc field, the system undergoes an orientational transition above a given threshold E(c), for which a ring defect is transformed into a figure-eight defect. We also consider ac fields, at high and low frequencies, and find that the textures are similar to those observed for static fields, in contrast with recently reported experiments.
Collapse
Affiliation(s)
- V M O Batista
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1649-003, Portugal
- and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
| | - N M Silvestre
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1649-003, Portugal
- and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
| | - M M Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1649-003, Portugal
- and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
| |
Collapse
|
46
|
Ravnik M, Čopar S, Žumer S. Particles with changeable topology in nematic colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354111. [PMID: 26291540 DOI: 10.1088/0953-8984/27/35/354111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles.
Collapse
Affiliation(s)
- Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
47
|
Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. Nat Commun 2015; 6:8067. [PMID: 26287517 PMCID: PMC4560794 DOI: 10.1038/ncomms9067] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/14/2015] [Indexed: 01/10/2023] Open
Abstract
The presumed ground state of a nematic fluid confined in a cylindrical geometry with planar anchoring corresponds to that of an axial configuration, wherein the director, free of deformations, is along the long axis of the cylinder. However, upon confinement of lyotropic chromonic liquid crystals in cylindrical geometries, here we uncover a surprising ground state corresponding to a doubly twisted director configuration. The stability of this ground state, which involves significant director deformations, can be rationalized by the saddle-splay contribution to the free energy. We show that sufficient anisotropy in the elastic constants drives the transition from a deformation-free ground state to a doubly twisted structure, and results in spontaneous symmetry breaking with equal probability for either handedness. Enabled by the twist angle measurements of the spontaneous twist, we determine the saddle-splay elastic constant for chromonic liquid crystals for the first time. Chirality in molecular materials is commonly used to manipulate the polarization of light. Here, Nayani et al. observe the formation of doubly twisted structure in achiral chromonic liquid crystals when confined to a cylindrical capillary, which leads to spontaneous chiral breaking.
Collapse
|
48
|
Davidson ZS, Kang L, Jeong J, Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:050501. [PMID: 26066106 DOI: 10.1103/physreve.91.050501] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 06/04/2023]
Abstract
An experimental and theoretical study of lyotropic chromonic liquid crystals (LCLCs) confined in cylinders with degenerate planar boundary conditions elucidates LCLC director configurations. When the Frank saddle-splay modulus is more than twice the twist modulus, the ground state adopts an inhomogeneous escaped-twisted configuration. Analysis of the configuration yields a large saddle-splay modulus, which violates Ericksen inequalities but not thermodynamic stability. Lastly, we observe point defects between opposite-handed domains, and we explain a preference for point defects over domain walls.
Collapse
Affiliation(s)
- Zoey S Davidson
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Louis Kang
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joonwoo Jeong
- School of Natural Science, Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Tim Still
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter J Collings
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics & Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Tom C Lubensky
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - A G Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
Gómez LR, García NA, Vitelli V, Lorenzana J, Vega DA. Phase nucleation in curved space. Nat Commun 2015; 6:6856. [DOI: 10.1038/ncomms7856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/04/2015] [Indexed: 11/09/2022] Open
|
50
|
Chiral structures from achiral liquid crystals in cylindrical capillaries. Proc Natl Acad Sci U S A 2015; 112:E1837-44. [PMID: 25825733 DOI: 10.1073/pnas.1423220112] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.
Collapse
|