1
|
Cheng CK, Yung YL, Chan HY, Leung KT, Chan KYY, Leung AWK, Cheng FWT, Li CK, Wan TSK, Luo X, Pitts HA, Cheung JS, Chan NPH, Ng MHL. Deep genomic characterization highlights complexities and prognostic markers of pediatric acute myeloid leukemia. Commun Biol 2023; 6:356. [PMID: 37002311 PMCID: PMC10066286 DOI: 10.1038/s42003-023-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an uncommon but aggressive hematological malignancy. The poor outcome is attributed to inadequate prognostic classification and limited treatment options. A thorough understanding on the genetic basis of pediatric AML is important for the development of effective approaches to improve outcomes. Here, by comprehensively profiling fusion genes as well as mutations and copy number changes of 141 myeloid-related genes in 147 pediatric AML patients with subsequent variant functional characterization, we unveil complex mutational patterns of biological relevance and disease mechanisms including MYC deregulation. Also, our findings highlight TP53 alterations as strong adverse prognostic markers in pediatric AML and suggest the core spindle checkpoint kinase BUB1B as a selective dependency in this aggressive subgroup. Collectively, our present study provides detailed genomic characterization revealing not only complexities and mechanistic insights into pediatric AML but also significant risk stratification and therapeutic strategies to tackle the disease.
Collapse
Affiliation(s)
- Chi-Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuk-Lin Yung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yun Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy Y Y Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex W K Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Frankie W T Cheng
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas S K Wan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Luo
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert-Augustus Pitts
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joyce S Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Natalie P H Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret H L Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Majdalani P, Levitas A, Krymko H, Slanovic L, Braiman A, Hadad U, Dabsan S, Horev A, Zarivach R, Parvari R. A Missense Variation in PHACTR2 Associates with Impaired Actin Dynamics, Dilated Cardiomyopathy, and Left Ventricular Non-Compaction in Humans. Int J Mol Sci 2023; 24:ijms24021388. [PMID: 36674904 PMCID: PMC9864900 DOI: 10.3390/ijms24021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Dilated cardiomyopathy (DCM) with left ventricular non-compaction (LVNC) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure, and excessive risk of sudden cardiac death. Using whole-exome sequencing to investigate a possible genetic cause of DCM with LVNC in a consanguineous child, a homozygous nucleotide change c.1532G>A causing p.Arg511His in PHACTR2 was found. The missense change can affect the binding of PHACTR2 to actin by eliminating the hydrogen bonds between them. The amino acid change does not change PHACTR2 localization to the cytoplasm. The patient’s fibroblasts showed a decreased globular to fibrillary actin ratio compared to the control fibroblasts. The re-polymerization of fibrillary actin after treatment with cytochalasin D, which disrupts the actin filaments, was slower in the patient’s fibroblasts. Finally, the patient’s fibroblasts bridged a scar gap slower than the control fibroblasts because of slower and indirect movement. This is the first report of a human variation in this PHACTR family member. The knock-out mouse model presented no significant phenotype. Our data underscore the importance of PHACTR2 in regulating the monomeric actin pool, the kinetics of actin polymerization, and cell movement, emphasizing the importance of actin regulation for the normal function of the human heart.
Collapse
Affiliation(s)
- Pierre Majdalani
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Hanna Krymko
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Leonel Slanovic
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Salam Dabsan
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amir Horev
- Pediatric Dermatology Service, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Raz Zarivach
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: ; Tel.: +972-8-647-9967
| |
Collapse
|
3
|
Di Minin G, Holzner M, Grison A, Dumeau CE, Chan W, Monfort A, Jerome-Majewska LA, Roelink H, Wutz A. TMED2 binding restricts SMO to the ER and Golgi compartments. PLoS Biol 2022; 20:e3001596. [PMID: 35353806 PMCID: PMC9000059 DOI: 10.1371/journal.pbio.3001596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/11/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Hedgehog (HH) signaling is important for embryonic pattering and stem cell differentiation. The G protein–coupled receptor (GPCR) Smoothened (SMO) is the key HH signal transducer modulating both transcription-dependent and transcription-independent responses. We show that SMO protects naive mouse embryonic stem cells (ESCs) from dissociation-induced cell death. We exploited this SMO dependency to perform a genetic screen in haploid ESCs where we identify the Golgi proteins TMED2 and TMED10 as factors for SMO regulation. Super-resolution microscopy shows that SMO is normally retained in the endoplasmic reticulum (ER) and Golgi compartments, and we demonstrate that TMED2 binds to SMO, preventing localization to the plasma membrane. Mutation of TMED2 allows SMO accumulation at the plasma membrane, recapitulating early events after HH stimulation. We demonstrate the physiologic relevance of this interaction in neural differentiation, where TMED2 functions to repress HH signal strength. Identification of TMED2 as a binder and upstream regulator of SMO opens the way for unraveling the events in the ER–Golgi leading to HH signaling activation. Hedgehog signals orchestrate tissue patterning by binding the receptor Patched and restricting the signal transducer Smoothened. A genetic screen reveals Tmed2 as a new interactor of Smoothened that is required for regulating Smoothened transport from the endoplasmic reticulum and Golgi to the plasma membrane and hence modulating the strength of Hedgehog signal transduction.
Collapse
Affiliation(s)
- Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (GDM); (AW)
| | - Markus Holzner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Alice Grison
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Charles E. Dumeau
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Wesley Chan
- Department Anatomy and Cell Biology, Human Genetics and McGill University, Montreal, Canada
- Department of Pediatrics, Human Genetics and McGill University, Montreal, Canada
| | - Asun Monfort
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Loydie A. Jerome-Majewska
- Department Anatomy and Cell Biology, Human Genetics and McGill University, Montreal, Canada
- Department of Pediatrics, Human Genetics and McGill University, Montreal, Canada
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (GDM); (AW)
| |
Collapse
|
4
|
Randzavola LO, Mortimer PM, Garside E, Dufficy ER, Schejtman A, Roumelioti G, Yu L, Pardo M, Spirohn K, Tolley C, Brandt C, Harcourt K, Nichols E, Nahorski M, Woods G, Williamson JC, Suresh S, Sowerby JM, Matsumoto M, Santos CXC, Kiar CS, Mukhopadhyay S, Rae WM, Dougan GJ, Grainger J, Lehner PJ, Calderwood MA, Choudhary J, Clare S, Speak A, Santilli G, Bateman A, Smith KGC, Magnani F, Thomas DC. EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling. eLife 2022; 11:76387. [PMID: 36421765 PMCID: PMC9767466 DOI: 10.7554/elife.76387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.
Collapse
Affiliation(s)
- Lyra O Randzavola
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Paige M Mortimer
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Emma Garside
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth R Dufficy
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - Andrea Schejtman
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Georgia Roumelioti
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Lu Yu
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Mercedes Pardo
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | | | | | | | - Esme Nichols
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Mike Nahorski
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Geoff Woods
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Shreehari Suresh
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Celio XC Santos
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College LondonLondonUnited Kingdom
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - William M Rae
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Gordon J Dougan
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John Grainger
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Paul J Lehner
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | - Jyoti Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Simon Clare
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | | | - Giorgia Santilli
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome CampusHinxtonUnited Kingdom
| | - Kenneth GC Smith
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of PaviaPaviaItaly
| | - David C Thomas
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Uriostegui-Arcos M, Aguayo-Ortiz R, Valencia-Morales MDP, Melchy-Pérez E, Rosenstein Y, Dominguez L, Zurita M. Disruption of TFIIH activities generates a stress gene expression response and reveals possible new targets against cancer. Open Biol 2020; 10:200050. [PMID: 32543350 PMCID: PMC7333893 DOI: 10.1098/rsob.200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of the enzymatic activities of the transcription factor TFIIH by the small molecules Triptolide (TPL) or THZ1 could be used against cancer. Here, we used the MCF10A-ErSrc oncogenesis model to compare the effect of TFIIH inhibitors between transformed cells and their progenitors. We report that tumour cells exhibited highly increased sensitivity to TPL or THZ1 and that the combination of both had a synergic effect. TPL affects the interaction between XPB and p52, causing a reduction in the levels of XPB, p52 and p8, but not other TFIIH subunits. RNA-Seq and RNAPII-ChIP-Seq experiments showed that although the levels of many transcripts were reduced, the levels of a significant number were increased after TPL treatment, with maintained or increased RNAPII promoter occupancy. A significant number of these genes encode for factors that have been related to tumour growth and metastasis, suggesting that transformed cells might rapidly develop resistance to TPL/THZ inhibitors. Some of these genes were also overexpressed in response to THZ1, of which depletion enhances the toxicity of TPL, and are possible new targets against cancer.
Collapse
Affiliation(s)
- Maritere Uriostegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - María del Pilar Valencia-Morales
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Erika Melchy-Pérez
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Yvonne Rosenstein
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
7
|
Gaviraghi M, Vivori C, Pareja Sanchez Y, Invernizzi F, Cattaneo A, Santoliquido BM, Frenquelli M, Segalla S, Bachi A, Doglioni C, Pelechano V, Cittaro D, Tonon G. Tumor suppressor PNRC1 blocks rRNA maturation by recruiting the decapping complex to the nucleolus. EMBO J 2018; 37:embj.201899179. [PMID: 30373810 DOI: 10.15252/embj.201899179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Vivori
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Yerma Pareja Sanchez
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Francesca Invernizzi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Cattaneo
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Benedetta Maria Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Cho CJ, Jung J, Jiang L, Lee EJ, Kim DS, Kim BS, Kim HS, Jung HY, Song HJ, Hwang SW, Park Y, Jung MK, Pack CG, Myung SJ, Chang S. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer. Dig Dis Sci 2018; 63:1835-1850. [PMID: 29691780 DOI: 10.1007/s10620-018-5081-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adenosine deaminase acting on RNA 1 (ADAR1) is known to mediate deamination of adenosine-to-inosine through binding to double-stranded RNA, the phenomenon known as RNA editing. Currently, the function of ADAR1 in gastric cancer is unclear. AIMS This study was aimed at investigating RNA editing-dependent and editing-independent functions of ADAR1 in gastric cancer, especially focusing on its influence on editing of 3' untranslated regions (UTRs) and subsequent changes in expression of messenger RNAs (mRNAs) as well as microRNAs (miRNAs). METHODS RNA-sequencing and small RNA-sequencing were performed on AGS and MKN-45 cells with a stable ADAR1 knockdown. Changed frequencies of editing and mRNA and miRNA expression were then identified by bioinformatic analyses. Targets of RNA editing were further validated in patients' samples. RESULTS In the Alu region of both gastric cell lines, editing was most commonly of the A-to-I type in 3'-UTR or intron. mRNA and protein levels of PHACTR4 increased in ADAR1 knockdown cells, because of the loss of seed sequences in 3'-UTR of PHACTR4 mRNA that are required for miRNA-196a-3p binding. Immunohistochemical analyses of tumor and paired normal samples from 16 gastric cancer patients showed that ADAR1 expression was higher in tumors than in normal tissues and inversely correlated with PHACTR4 staining. On the other hand, decreased miRNA-148a-3p expression in ADAR1 knockdown cells led to increased mRNA and protein expression of NFYA, demonstrating ADAR1's editing-independent function. CONCLUSIONS ADAR1 regulates post-transcriptional gene expression in gastric cancer through both RNA editing-dependent and editing-independent mechanisms.
Collapse
Affiliation(s)
- Charles J Cho
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Jaeeun Jung
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Lushang Jiang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Dae-Soo Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Hwoon-Yong Jung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Ho-June Song
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Yangsoon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Min Kyo Jung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Chan Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea. .,Department of Gastroenterology and Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea.
| |
Collapse
|
9
|
Fujii R, Friedman ER, Richards J, Tsang KY, Heery CR, Schlom J, Hodge JW. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 2018; 7:33498-511. [PMID: 27172898 PMCID: PMC5085098 DOI: 10.18632/oncotarget.9256] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.
Collapse
Affiliation(s)
- Rika Fujii
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eitan R Friedman
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C, Meckley M, Wong J, Stewart L, D’Jamoos C, Altman N, Imamura Kawasawa Y, Du Z, Honaas L, Abraham T. "Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0184451. [PMID: 28957348 PMCID: PMC5619717 DOI: 10.1371/journal.pone.0184451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma (PDAC) patients. The MTFs were generally aneuploidy, and immunophenotypic characterizations showed that the MTFs express markers characteristic of PDAC and stem cells, as well as M2-polarized macrophages. Single cell RNASeq analyses showed that the MTFs express many transcripts implicated in cancer progression, LINE1 retrotransposons, and very high levels of several long non-coding transcripts involved in metastasis (such as MALAT1). When cultured MTFs were transplanted orthotopically into mouse pancreas, they grew as obvious well-differentiated islands of cells, but they also disseminated widely throughout multiple tissues in "stealth" fashion. They were found distributed throughout multiple organs at 4, 8, or 12 weeks after transplantation (including liver, spleen, lung), occurring as single cells or small groups of cells, without formation of obvious tumors or any apparent progression over the 4 to 12 week period. We suggest that MTFs form continually during PDAC development, and that they disseminate early in cancer progression, forming "niches" at distant sites for subsequent colonization by metastasis-initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Ping Xin
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Christopher McGovern
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Eric Wafula
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Claude dePamphilis
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Morgan Meckley
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Joyce Wong
- Department of Surgery, HMC, PSU, Hershey, PA, United States of America
| | - Luke Stewart
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Christopher D’Jamoos
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Naomi Altman
- Department of Statistics, Eberly College, UP, PSU, University Park, PA, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, HMC, PSU, Hershey, PA, United States of America
| | - Zhen Du
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Loren Honaas
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Thomas Abraham
- Department of Neural & Behavioral Sciences and Microscopy Imaging Facility, HMC, PSU, Hershey, PA, United States of America
| |
Collapse
|
11
|
Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol 2015; 18:111-21. [PMID: 26619149 DOI: 10.1038/ncb3275] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs play diverse roles in both normal and malignant stem cells. Focusing on miRs and/or miR(∗)s abundant in squamous cell carcinoma (SCC) stem cells, we engineer an efficient, strand-specific expression library, and apply functional genomics screening in mice to identify which of 169 cancer-associated miRs are key drivers in malignant progression. Not previously linked functionally to cancer, miR-21(∗) was the second top hit, surfacing in >12% of tumours. miR-21(∗) also correlates with poor prognosis in human SCCs and enhances tumour progression in xenografts. On deleting the miR-21 gene and rescuing each strand separately, we document the dual, but independent, oncogenicity of miR-21 and miR-21(∗). A cohort of predicted miR-21(∗) targets inversely correlate with miR-21(∗) in SCCs. Of particular interest is Phactr4, which we show is a miR-21(∗) target in SCCs, acting through the Rb/E2F cell cycle axis. Through in vivo physiological miR screens, our findings add an interesting twist to an increasingly important oncomiR locus.
Collapse
|
12
|
Itoh A, Uchiyama A, Taniguchi S, Sagara J. Phactr3/scapinin, a member of protein phosphatase 1 and actin regulator (phactr) family, interacts with the plasma membrane via basic and hydrophobic residues in the N-terminus. PLoS One 2014; 9:e113289. [PMID: 25405772 PMCID: PMC4236165 DOI: 10.1371/journal.pone.0113289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022] Open
Abstract
Proteins that belong to the protein phosphatase 1 and actin regulator (phactr) family are involved in cell motility and morphogenesis. However, the mechanisms that regulate the actin cytoskeleton are poorly understood. We have previously shown that phactr3, also known as scapinin, localizes to the plasma membrane, including lamellipodia and membrane ruffles. In the present study, experiments using deletion and point mutants showed that the basic and hydrophobic residues in the N-terminus play crucial roles in the localization to the plasma membrane. A BH analysis (http://helixweb.nih.gov/bhsearch) is a program developed to identify membrane-binding domains that comprise basic and hydrophobic residues in membrane proteins. We applied this program to phactr3. The results of the BH plot analysis agreed with the experimentally determined region that is responsible for the localization of phactr3 to the plasma membrane. In vitro experiments showed that the N-terminal itself binds to liposomes and acidic phospholipids. In addition, we showed that the interaction with the plasma membrane via the N-terminal membrane-binding sequence is required for phactr3-induced morphological changes in Cos7 cells. The membrane-binding sequence in the N-terminus is highly conserved in all members of the phactr family. Our findings may provide a molecular basis for understanding the mechanisms that allow phactr proteins to regulate cell morphogenesis.
Collapse
Affiliation(s)
- Akihiro Itoh
- Department of Biomedical Laboratory Sciences, Health Sciences, Shinshu University, Matsumoto, Japan
| | - Atsushi Uchiyama
- Department of Biomedical Laboratory Sciences, Health Sciences, Shinshu University, Matsumoto, Japan
| | - Shunichiro Taniguchi
- Department of Molecular Oncology, Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Junji Sagara
- Department of Biomedical Laboratory Sciences, Health Sciences, Shinshu University, Matsumoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 2014; 10:733. [PMID: 24987113 PMCID: PMC4299491 DOI: 10.15252/msb.20145216] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Technological advancement has opened the door to systematic genetics in mammalian cells.
Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown,
using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can
reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to
cancerous tissue can uncover genes that are essential only in the tumor; these genes are targets for
the development of specific anticancer therapies. Unfortunately, progress in this field has been
hampered by off-target effects of perturbation reagents and poorly quantified error rates in
large-scale screens. To improve the quality of information derived from these screens, and to
provide a framework for understanding the capabilities and limitations of CRISPR technology, we
derive gold-standard reference sets of essential and nonessential genes, and provide a Bayesian
classifier of gene essentiality that outperforms current methods on both RNAi and CRISPR screens.
Our results indicate that CRISPR technology is more sensitive than RNAi and that both techniques
have nontrivial false discovery rates that can be mitigated by rigorous analytical methods.
Collapse
Affiliation(s)
- Traver Hart
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Kevin R Brown
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Fabrice Sircoulomb
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital University Health Network, Toronto, ON, Canada
| | - Robert Rottapel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital University Health Network, Toronto, ON, Canada Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Division of Rheumatology, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|