1
|
Jiang Y, Jiang J. The Bor1 elevator transport cycle is subject to autoinhibition and activation. Nat Commun 2024; 15:9090. [PMID: 39433547 PMCID: PMC11494103 DOI: 10.1038/s41467-024-53411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Boron, essential for plant growth, necessitates precise regulation due to its potential toxicity. This regulation is achieved by borate transporters (BORs), which are homologous to the SLC4 family. The Arabidopsis thaliana Bor1 (AtBor1) transporter from clade I undergoes slow regulation through degradation and translational suppression, but its potential for fast regulation via direct activity modulation was unclear. Here, we combine cryo-electron microscopy, mutagenesis, and functional characterization to study AtBor1, revealing high-resolution structures of the dimer in one inactive and three active states. Our findings show that AtBor1 is regulated by two distinct mechanisms: an autoinhibitory domain at the carboxyl terminus obstructs the substrate pathway via conserved salt bridges, and phosphorylation of Thr410 allows interaction with a positively charged pocket at the cytosolic face, essential for borate transport. These results elucidate the molecular basis of AtBor1's activity regulation and highlight its role in fast boron level regulation in plants.
Collapse
Affiliation(s)
- Yan Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Jian L, Zhang Q, Yao D, Wang Q, Chen M, Xia Y, Li S, Shen Y, Cao M, Qin A, Li L, Cao Y. The structural insight into the functional modulation of human anion exchanger 3. Nat Commun 2024; 15:6134. [PMID: 39033175 PMCID: PMC11271275 DOI: 10.1038/s41467-024-50572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Anion exchanger 3 (AE3) is pivotal in regulating intracellular pH across excitable tissues, yet its structural intricacies and functional dynamics remain underexplored compared to other anion exchangers. This study unveils the structural insights into human AE3, including the cryo-electron microscopy structures for AE3 transmembrane domains (TMD) and a chimera combining AE3 N-terminal domain (NTD) with AE2 TMD (hAE3NTD2TMD). Our analyzes reveal a substrate binding site, an NTD-TMD interlock mechanism, and a preference for an outward-facing conformation. Unlike AE2, which has more robust acid-loading capabilities, AE3's structure, including a less stable inward-facing conformation due to missing key NTD-TMD interactions, contributes to its moderated pH-modulating activity and increased sensitivity to the inhibitor DIDS. These structural differences underline AE3's distinct functional roles in specific tissues and underscore the complex interplay between structural dynamics and functional specificity within the anion exchanger family, enhancing our understanding of the physiological and pathological roles of the anion exchanger family.
Collapse
Affiliation(s)
- Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Moxin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China.
| |
Collapse
|
3
|
Zhekova HR, Ramirez Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. Biophys J 2024; 123:1705-1721. [PMID: 38760929 PMCID: PMC11214021 DOI: 10.1016/j.bpj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO3-, CO32-, Cl-, Na+, K+, NH3, and H+, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl-/HCO3- exchanger) and NBCe1 (Na+-CO32-cotransporter). Previous computational studies of the outward-facing state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed coarse-grained and atomistic molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1, and NDCBE (an Na+-CO32-/Cl- exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. The recently resolved inward-facing state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, phosphatidylcholine, and sphingomyelin in the three studied proteins, and their potential roles in the SLC4 transport function, conformational transition, and protein dimerization are discussed.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel P Ramirez Echemendía
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Besian I Sejdiu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Zhang W, Ding D, Lu Y, Chen H, Jiang P, Zuo P, Wang G, Luo J, Yin Y, Luo J, Yin Y. Structural and functional insights into the lipid regulation of human anion exchanger 2. Nat Commun 2024; 15:759. [PMID: 38272905 PMCID: PMC10810954 DOI: 10.1038/s41467-024-44966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dian Ding
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yishuo Lu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyi Chen
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peijun Jiang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
7
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
8
|
Pethe A, Hamze M, Giannaki M, Heimrich B, Medina I, Hartmann AM, Roussa E. K +/Cl - cotransporter 2 (KCC2) and Na +/ HCO3- cotransporter 1 (NBCe1) interaction modulates profile of KCC2 phosphorylation. Front Cell Neurosci 2023; 17:1253424. [PMID: 37881493 PMCID: PMC10595033 DOI: 10.3389/fncel.2023.1253424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
K+/Cl- cotransporter 2 (KCC2) is a major Cl- extruder in mature neurons and is responsible for the establishment of low intracellular [Cl-], necessary for fast hyperpolarizing GABAA-receptor mediated synaptic inhibition. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a pH regulatory protein expressed in neurons and glial cells. An interactome study identified NBCe1 as a possible interaction partner of KCC2. In this study, we investigated the putative effect of KCC2/NBCe1 interaction in baseline and the stimulus-induced phosphorylation pattern and function of KCC2. Primary mouse hippocampal neuronal cultures from wildtype (WT) and Nbce1-deficient mice, as well as HEK-293 cells stably transfected with KCC2WT, were used. The results show that KCC2 and NBCe1 are interaction partners in the mouse brain. In HEKKCC2 cells, pharmacological inhibition of NBCs with S0859 prevented staurosporine- and 4-aminopyridine (4AP)-induced KCC2 activation. In mature cultures of hippocampal neurons, however, S0859 completely inhibited postsynaptic GABAAR and, thus, could not be used as a tool to investigate the role of NBCs in GABA-dependent neuronal networks. In Nbce1-deficient immature hippocampal neurons, baseline phosphorylation of KCC2 at S940 was downregulated, compared to WT, and exposure to staurosporine failed to reduce pKCC2 S940 and T1007. In Nbce1-deficient mature neurons, baseline levels of pKCC2 S940 and T1007 were upregulated compared to WT, whereas after 4AP treatment, pKCC2 S940 was downregulated, and pKCC2 T1007 was further upregulated. Functional experiments showed that the levels of GABAAR reversal potential, baseline intracellular [Cl-], Cl- extrusion, and baseline intracellular pH were similar between WT and Nbce1-deficient neurons. Altogether, our data provide a primary description of the properties of KCC2/NBCe1 protein-protein interaction and implicate modulation of stimulus-mediated phosphorylation of KCC2 by NBCe1/KCC2 interaction-a mechanism with putative pathophysiological relevance.
Collapse
Affiliation(s)
- Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Mira Hamze
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Heimrich
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Igor Medina
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Anna-Maria Hartmann
- Division of Neurogenetics, Faculty VI, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Lu Y, Zuo P, Chen H, Shan H, Wang W, Dai Z, Xu H, Chen Y, Liang L, Ding D, Jin Y, Yin Y. Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP 2. Nat Commun 2023; 14:6157. [PMID: 37788993 PMCID: PMC10547724 DOI: 10.1038/s41467-023-41924-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
BTR1 (SLC4A11) is a NH3 stimulated H+ (OH-) transporter belonging to the SLC4 family. Dysfunction of BTR1 leads to diseases such as congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy (FECD). However, the mechanistic basis of BTR1 activation by alkaline pH, transport activity regulation and pathogenic mutations remains elusive. Here, we present cryo-EM structures of human BTR1 in the outward-facing state in complex with its activating ligands PIP2 and the inward-facing state with the pathogenic R125H mutation. We reveal that PIP2 binds at the interface between the transmembrane domain and the N-terminal cytosolic domain of BTR1. Disruption of either the PIP2 binding site or protonation of PIP2 phosphate groups by acidic pH can transform BTR1 into an inward-facing conformation. Our results provide insights into the mechanisms of how the transport activity and conformation changes of BTR1 are regulated by PIP2 binding and interaction of TMD and NTD.
Collapse
Affiliation(s)
- Yishuo Lu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyi Chen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Weize Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zonglin Dai
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | | | | | - Ling Liang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dian Ding
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
10
|
Zhekova HR, Ramirez-Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Coarse-grained molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546592. [PMID: 37425774 PMCID: PMC10327080 DOI: 10.1101/2023.06.26.546592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO 3 -, CO 3 2- , Cl - , Na + , K + , NH 3 and H + necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl - /HCO 3 - exchanger) and NBCe1 (Na + -CO 3 2- cotransporter). Previous computational studies of the outward facing (OF) state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed multiple 50 µs coarse-grained molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1 and NDCBE (a Na + -CO 3 2- /Cl - exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), phosphatidylserine (POPS), and sphingomyelin (POSM). The recently resolved inward-facing (IF) state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, POPC, and POSM in the three studied proteins and their potential roles in the SLC4 transport function, conformational transition and protein dimerization were discussed. Statement of significance The SLC4 protein family is involved in critical physiological processes like pH and blood pressure regulation and maintenance of ion homeostasis. Its members can be found in various tissues. A number of studies suggest possible lipid regulation of the SLC4 function. However, the protein-lipid interactions in the SLC4 family are still poorly understood. Here we make use of long coarse-grained molecular dynamics simulations to assess the protein-lipid interactions in three SLC4 proteins with different transport modes, AE1, NBCe1, and NDCBE. We identify putative lipid binding sites for several lipid types of potential mechanistic importance, discuss them in the framework of the known experimental data and provide a necessary basis for further studies on lipid regulation of SLC4 function.
Collapse
|
11
|
Lee D, Hong JH. Multiple-Factors-Induced Rheumatoid Arthritis Synoviocyte Activation Is Attenuated by the α2-Adrenergic Receptor Agonist Dexmedetomidine. Int J Mol Sci 2023; 24:10756. [PMID: 37445932 DOI: 10.3390/ijms241310756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Dexmedetomidine (Dex) has analgesic and sedative properties and anti-inflammatory functions. Although the effects of Dex on arthritis have been revealed, the physiological mechanism underlying the interaction between Dex and rheumatoid arthritis (RA)-mediated inflammatory cytokines has not been fully studied. Inflamed and migrated fibroblast-like synoviocytes (FLSs) are involved in RA severity. Thus, we aimed to determine the effects of Dex on RA-FLSs treated with inflammatory cytokines and a growth factor as multiple stimulating inputs. TNF-α, IL-6, and EGF as multiple stimulating inputs increased the cAMP concentration of RA-FLSs, while Dex treatment reduced cAMP concentration. Dex reduced electroneutral sodium-bicarbonate cotransporter 1 (NBCn1) expression, NBC activity, and subsequent RA-FLS migration. The mRNA expression levels of RA-related factors, such as inflammatory cytokines and osteoclastogenesis factors, were enhanced by multiple-input treatment. Notably, Dex effectively reduced these expression levels in RA-FLSs. These results indicate that multiple inflammatory or stimulating inputs enhance RA-FLS migration, and treatment with Dex relieves activated RA-FLSs, suggesting that Dex is a potential therapeutic drug for RA.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
12
|
Cai L, Wang D, Gui T, Wang X, Zhao L, Boron WF, Chen LM, Liu Y. Dietary sodium enhances the expression of SLC4 family transporters, IRBIT, L-IRBIT, and PP1 in rat kidney: Insights into the molecular mechanism for renal sodium handling. Front Physiol 2023; 14:1154694. [PMID: 37082243 PMCID: PMC10111226 DOI: 10.3389/fphys.2023.1154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The kidney plays a central role in maintaining the fluid and electrolyte homeostasis in the body. Bicarbonate transporters NBCn1, NBCn2, and AE2 are expressed at the basolateral membrane of the medullary thick ascending limb (mTAL). In a previous study, NBCn1, NBCn2, and AE2 are proposed to play as a regulatory pathway to decrease NaCl reabsorption in the mTAL under high salt condition. When heterologously expressed, the activity of these transporters could be stimulated by the InsP3R binding protein released with inositol 1,4,5-trisphosphate (IRBIT), L-IRBIT (collectively the IRBITs), or protein phosphatase PP1. In the present study, we characterized by immunofluorescence the expression and localization of the IRBITs, and PP1 in rat kidney. Our data showed that the IRBITs were predominantly expressed from the mTAL through the distal renal tubules. PP1 was predominantly expressed in the TAL, but is also present in high abundance from the distal convoluted tubule through the medullary collecting duct. Western blotting analyses showed that the abundances of NBCn1, NBCn2, and AE2 as well as the IRBITs and PP1 were greatly upregulated in rat kidney by dietary sodium. Co-immunoprecipitation study provided the evidence for protein interaction between NBCn1 and L-IRBIT in rat kidney. Taken together, our data suggest that the IRBITs and PP1 play an important role in sodium handling in the kidney. We propose that the IRBITs and PP1 stimulates NBCn1, NBCn2, and AE2 in the basolateral mTAL to inhibit sodium reabsorption under high sodium condition. Our study provides important insights into understanding the molecular mechanism for the regulation of sodium homeostasis in the body.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| |
Collapse
|
13
|
Ji M, Ryu HJ, Baek HM, Shin DM, Hong JH. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp Mol Med 2022; 54:503-517. [PMID: 35414711 PMCID: PMC9076869 DOI: 10.1038/s12276-022-00756-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive fibroblast-like synoviocytes (FLSs) and pannus formation. Various therapeutic strategies have been developed against inflammatory cytokines in RA in recent decades. Based on the migratory features of FLSs, we examined whether modulation of the migratory module attenuates RA severity. In this study, inflamed synovial fluid-stimulated FLSs exhibited enhanced migration and migratory apparatus expression, and sodium bicarbonate cotransporter n1 (NBCn1) was identified in primary cultured RA-FLSs for the first time. The NBC inhibitor S0859 attenuated the migration of FLSs induced with synovial fluid from patients with RA or with TNF-α stimulation. Inhibition of NBCs with S0859 in a collagen-induced arthritis (CIA) mouse model reduced joint swelling and destruction without blood, hepatic, or renal toxicity. Primary FLSs isolated from the CIA-induced mouse model also showed reduced migration in the presence of S0859. Our results suggest that inflammatory mediators in synovial fluid, including TNF-α, recruit NBCn1 to the plasma membrane of FLSs to provide dynamic properties and that modulation of NBCn1 could be developed into a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdongdae-ro 774-gil, Nandong-gu, Incheon, South Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
14
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|
15
|
Peña-Münzenmayer G, Kondo Y, Salinas C, Sarmiento J, Brauchi S, Catalán MA. Activation of the Ae4 (Slc4a9) cation-driven Cl -/HCO 3- exchanger by the cAMP-dependent protein kinase in salivary gland acinar cells. Am J Physiol Gastrointest Liver Physiol 2021; 321:G628-G638. [PMID: 34585968 PMCID: PMC8887885 DOI: 10.1152/ajpgi.00145.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon β-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.
Collapse
Affiliation(s)
- Gaspar Peña-Münzenmayer
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Constanza Salinas
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Brauchi
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Marcelo A Catalán
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
16
|
Giannaki M, Ludwig C, Heermann S, Roussa E. Regulation of electrogenic Na + /HCO 3 - cotransporter 1 (NBCe1) function and its dependence on m-TOR mediated phosphorylation of Ser 245. J Cell Physiol 2021; 237:1372-1388. [PMID: 34642952 DOI: 10.1002/jcp.30601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Fremder M, Kim SW, Khamaysi A, Shimshilashvili L, Eini-Rider H, Park IS, Hadad U, Cheon JH, Ohana E. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep 2021; 36:109521. [PMID: 34380041 DOI: 10.1016/j.celrep.2021.109521] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/23/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
The gut metabolite composition determined by the microbiota has paramount impact on gastrointestinal physiology. However, the role that bacterial metabolites play in communicating with host cells during inflammatory diseases is poorly understood. Here, we aim to identify the microbiota-determined output of the pro-inflammatory metabolite, succinate, and to elucidate the pathways that control transepithelial succinate absorption and subsequent succinate delivery to macrophages. We show a significant increase of succinate uptake into pro-inflammatory macrophages, which is controlled by Na+-dependent succinate transporters in macrophages and epithelial cells. Furthermore, we find that fecal and serum succinate concentrations were markedly augmented in inflammatory bowel diseases (IBDs) and corresponded to changes in succinate-metabolizing gut bacteria. Together, our results describe a succinate production and transport pathway that controls the absorption of succinate generated by distinct gut bacteria and its delivery into macrophages. In IBD, this mechanism fails to protect against the succinate surge, which may result in chronic inflammation.
Collapse
Affiliation(s)
- Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liana Shimshilashvili
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Eini-Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
18
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|
19
|
Itoh R, Hatano N, Murakami M, Mitsumori K, Kawasaki S, Wakagi T, Kanzaki Y, Kojima H, Kawaai K, Mikoshiba K, Hamada K, Mizutani A. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl -/HCO 3- exchanger AE2 activity through modulating the lysosomal degradation of AE2. Sci Rep 2021; 11:5990. [PMID: 33727633 PMCID: PMC7966362 DOI: 10.1038/s41598-021-85499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.
Collapse
Affiliation(s)
- Ryo Itoh
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Naoya Hatano
- Division of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Momoko Murakami
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Kosuke Mitsumori
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Satoko Kawasaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoka Wakagi
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshino Kanzaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroyuki Kojima
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Koichi Hamada
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
20
|
Giannaki M, Schrödl-Häußel M, Khakipoor S, Kirsch M, Roussa E. STAT3-dependent regulation of the electrogenic Na +/ HCO 3- cotransporter 1 (NBCe1) functional expression in cortical astrocytes. J Cell Physiol 2021; 236:2036-2050. [PMID: 32761631 DOI: 10.1002/jcp.29990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
The electrogenic Na+ /HCO3- cotransporter (NBCe1) in astrocytes is crucial in regulation of acid-base homeostasis in the brain. Since many pathophysiological conditions in the brain have been associated with pH shifts we exposed primary mouse cortical and hippocampal astrocytes to prolonged low or high extracellular pH (pHo ) at constant extracellular bicarbonate concentration and investigated activation of astrocytes and regulation of NBCe1 by immunoblotting, biotinylation of surface proteins, and intracellular H+ recordings. High pHo at constant extracellular bicarbonate caused upregulation of NBCe1 protein, surface expression and activity via upregulation of the astrocytic activation markers signal transducer and activator of transcription 3 (STAT3) signaling and glial fibrillary acidic protein expression. High pHo -induced increased NBCe1 protein expression was prevented in astrocytes from Stat3flox/flox ::GfapCre/+ mice. In vitro, basal and high pHo -induced increased NBCe1 functional expression was impaired following inhibition of STAT3 phosphorylation. These results provide a novel regulation mode of NBCe1 protein and activity, highlight the importance of astrocyte reactivity on regulation of NBCe1 and implicate roles for NBCe1 in altering/modulating extracellular pH during development as well as of the microenvironment at sites of brain injuries and other pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Magdalena Schrödl-Häußel
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shokoufeh Khakipoor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
22
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Hwang S, Shin DM, Hong JH. Protective Role of IRBIT on Sodium Bicarbonate Cotransporter-n1 for Migratory Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12090816. [PMID: 32867284 PMCID: PMC7558343 DOI: 10.3390/pharmaceutics12090816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
IP3 receptor-binding protein released with IP3 (IRBIT) interacts with various ion channels and transporters. An electroneutral type of sodium bicarbonate cotransporter, NBCn1, participates in cell migration, and its enhanced expression is related to cancer metastasis. The effect of IRBIT on NBCn1 and its relation to cancer cell migration remain obscure. We therefore aimed to determine the effect of IRBIT on NBCn1 and the regulation of cancer cell migration due to IRBIT-induced alterations in NBCn1 activity. Overexpression of IRBIT enhanced cancer cell migration and NBC activity. Knockdown of IRBIT or NBCn1 and treatment with an NBC-specific inhibitor, S0859, attenuated cell migration. Stimulation with oncogenic epidermal growth factor enhanced the expression of NBCn1 and migration of cancer cells by recruiting IRBIT. The recruited IRBIT stably maintained the expression of the NBCn1 transporter machinery in the plasma membrane. Combined inhibition of IRBIT and NBCn1 dramatically inhibited the migration of cancer cells. Combined modulation of IRBIT and NBCn1 offers an effective strategy for attenuating cancer metastasis.
Collapse
Affiliation(s)
- Soyoung Hwang
- Department of Physiology, College of Medicine, Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (D.M.S.); (J.H.H.); Tel.: +82-22-228-3051 (D.M.S.); +82-32-899-6682 (J.H.H.); Fax: +82-23-64-1085 (D.M.S.); +82-32-899-6039 (J.H.H.)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
- Correspondence: (D.M.S.); (J.H.H.); Tel.: +82-22-228-3051 (D.M.S.); +82-32-899-6682 (J.H.H.); Fax: +82-23-64-1085 (D.M.S.); +82-32-899-6039 (J.H.H.)
| |
Collapse
|
24
|
Wang M, Wu H, Liu Y, Chen LM. Activation of mouse NBCe1-B by Xenopus laevis and mouse IRBITs: Role of the variable Nt appendage of IRBITs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183240. [PMID: 32119862 DOI: 10.1016/j.bbamem.2020.183240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
The IP3 receptor binding protein released with inositol 1,4,5-trisphosphate (IRBIT) plays important roles in the regulation of intracellular Ca2+ signaling and intracellular pH. The mammals express two IRBIT paralogs, i.e., IRBIT1 (encoded by AHCYL1) and IRBIT2 (encoded by AHCYL2). The clawed frog Xenopus laevis oocyte is widely used for biophysical studies on ion channels and transporters. It remains unknown whether endogenous IRBIT is expressed in Xenopus oocytes. Here, we cloned from frog oocyte irbit2.L and irbit2.S, orthologs of mammalian IRBIT2. When over-expressed, the frog IRBITs powerfully stimulate the electrogenic Na+/HCO3- cotransporter NBCe1-B as mouse IRBIT2-V2 does. Expression of an isolated Nt fragment of NBCe1-B containing the IRBIT-binding domain greatly decreases NBCe1-B activity in oocytes, suggesting that the basal activity of NBCe1-B contains a large component derived from the stimulation by endogenous frog IRBIT. The frog IRBITs are highly homologous to the mammalian ones in the carboxyl-terminal region, but varies greatly in the amino-terminal (Nt) appendage. Interestingly, truncation study showed that the Nt appendage of IRBIT1 and the long Nt appendage of IRBIT2-V2 modestly enhance, whereas the short Nt appendage of IRBIT2-V4 greatly inhibits the functional interaction between IRBIT and NBCe1-B. Finally, Ala-substitution of Ser68, a key phosphorylation site in the PEST domain of IRBIT, causes distinct functional consequences depending on the structural context of the Nt appendage in different IRBIT isoforms. We conclude that the Nt appendage of IRBITs is not necessary for, but plays an important regulatory role in the functional interaction between IRBIT and NBCe1-B.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
25
|
Wang JL, Wang XY, Wang DK, Parker MD, Musa-Aziz R, Popple J, Guo YM, Min TX, Xia T, Tan M, Liu Y, Boron WF, Chen LM. Multiple acid-base and electrolyte disturbances upregulate NBCn1, NBCn2, IRBIT and L-IRBIT in the mTAL. J Physiol 2020; 598:3395-3415. [PMID: 32359081 DOI: 10.1113/jp279009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The roles of the Na+ /HCO3 - cotransporters NBCn1 and NBCn2 as well as their activators IRBIT and L-IRBIT in the regulation of the mTAL transport of NH4 + , HCO3 - , and NaCl are investigated. Dietary challenges of NH4 Cl, NaHCO3 or NaCl all increase the abundance of NBCn1 and NBCn2 in the outer medulla. The three challenges generally produce parallel increases in the abundance of IRBIT and L-IRBIT in the outer medulla. Both IRBIT and L-IRBIT powerfully stimulate the activities of the mTAL isoforms of NBCn1 and NBCn2 as expressed in Xenopus oocytes. Our findings support the hypothesis that NBCn1, NBCn2, IRBIT and L-IRBIT appropriately promote NH4 + shunting but oppose HCO3 - and NaCl reabsorption in the mTAL, and thus are at the nexus of the regulation pathways for multiple renal transport processes. ABSTRACT The medullary thick ascending limb (mTAL) plays a key role in urinary acid and NaCl excretion. NBCn1 and NBCn2 are present in the basolateral mTAL, where NBCn1 promotes NH4 + shunting. IRBIT and L-IRBIT (the IRBITs) are two powerful activators of certain acid-base transporters. Here we use western blotting and immunofluorescence to examine the effects of multiple acid-base and electrolyte disturbances on expression of NBCn1, NBCn2 and the IRBITs in rat kidney. We also use electrophysiology to examine the functional effects of IRBITs on NBCn1 and NBCn2 in Xenopus oocytes. NH4 Cl-induced metabolic acidosis (MAc) substantially increases protein expression of NBCn1 and NBCn2 in the outer medulla (OM) of rat kidney. Surprisingly, NaHCO3 -induced metabolic alkalosis (MAlk) and high-salt diet (HSD) also increase expression of NBCn1 and NBCn2 (effect of NaHCO3 > HSD). Moreover, all three challenges generally increase OM expression of the IRBITs. In Xenopus oocytes, the IRBITs substantially increase the activities of NBCn1 and NBCn2. We propose that upregulation of basolateral NBCn1 and NBCn2 plus the IRBITs in the mTAL: (1) promotes NH4 + shunting by increasing basolateral HCO3 - uptake to neutralize apical NH4 + uptake during MAc; (2) inhibits HCO3 - reabsorption during MAlk by opposing HCO3 - efflux via the basolateral anion exchanger AE2; and (3) inhibits NaCl reabsorption by mediating (with AE2) net NaCl backflux into the mTAL cell during HSD. Thus, NBCn1, NBCn2 and the IRBITs are at the nexus of the regulatory pathways for multiple renal transport processes.
Collapse
Affiliation(s)
- Jin-Lin Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Xiao-Yu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Deng-Ke Wang
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, University at Buffalo: The State University of New York, Buffalo, NY, 14214, USA
| | - Raif Musa-Aziz
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-900, Brazil
| | - Jacob Popple
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yi-Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Tian-Xin Min
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Tian Xia
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Min Tan
- School of Optical & Electronic Information, Huazhong University of Science & Technology, Wuhan, 430074, China.,Wuhan National Laboratory of Optoelectronics, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Department of Medicine, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
26
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
27
|
Khakipoor S, Giannaki M, Theparambil SM, Zecha J, Küster B, Heermann S, Deitmer JW, Roussa E. Functional expression of electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse cortical astrocytes is dependent on S255‐257 and regulated by mTOR. Glia 2019; 67:2264-2278. [DOI: 10.1002/glia.23682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Shefeeq M. Theparambil
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS) Technical University of Munich Freising Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Joachim W. Deitmer
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| |
Collapse
|
28
|
Vachel L, Shcheynikov N, Yamazaki O, Fremder M, Ohana E, Son A, Shin DM, Yamazaki-Nakazawa A, Yang CR, Knepper MA, Muallem S. Modulation of Cl - signaling and ion transport by recruitment of kinases and phosphatases mediated by the regulatory protein IRBIT. Sci Signal 2018; 11:11/554/eaat5018. [PMID: 30377224 DOI: 10.1126/scisignal.aat5018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IRBIT is a multifunctional protein that controls the activity of various epithelial ion transporters including NBCe1-B. Interaction with IRBIT increases NBCe1-B activity and exposes two cryptic Cl--sensing GXXXP sites that enable regulation of NBCe1-B by intracellular Cl- (Cl- in). Here, phosphoproteomic analysis revealed that IRBIT controlled five phosphorylation sites in NBCe1-B that determined both the active conformation of the transporter and its regulation by Cl- in Mutational analysis suggested that the phosphorylation status of Ser232, Ser233, and Ser235 was regulated by IRBIT and determined whether NBCe1 transporters are in active or inactive conformations. The absence of phosphorylation at Ser232, Ser233, or Ser235 produced NBCe1-B in the conformations pSer233/pSer235, pSer232/pSer235, or pSer232/pSer233, respectively. The activity of the pSer233/pSer235 form was similar to that of IRBIT-activated NBCe1-B, but it was insensitive to inhibition by Cl- in The properties of the pSer232/pSer235 form were similar to those of wild-type NBCe1-B, whereas the pSer232/pSer233 form was partially active, further activated by IRBIT, but retained inhibition by Cl- in Furthermore, IRBIT recruited the phosphatase PP1 and the kinase SPAK to control phosphorylation of Ser65, which affected Cl- in sensing by the 32GXXXP36 motif. IRBIT also recruited the phosphatase calcineurin and the kinase CaMKII to control phosphorylation of Ser12, which affected Cl- in sensing by the 194GXXXP198 motif. Ser232, Ser233, and Ser235 are conserved in all NBCe1 variants and affect their activity. These findings reveal how multiple kinase and phosphatase pathways use phosphorylation sites to fine-tune a transporter, which have important implications for epithelial fluid and HCO3 - secretion.
Collapse
Affiliation(s)
- Laura Vachel
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Osamu Yamazaki
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Apheresis and Dialysis Center/General Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Ai Yamazaki-Nakazawa
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Lee SK, Boron WF. Exploring the autoinhibitory domain of the electrogenic Na + /HCO 3- transporter NBCe1-B, from residues 28 to 62. J Physiol 2018; 596:3637-3653. [PMID: 29808931 DOI: 10.1113/jp276241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Slc4a4 (mouse) encodes at least five variants of the electrogenic sodium/bicarbonate transporter NBCe1. The initial 41 cytosolic amino acids of NBCe1-A and -D are unique; NBCe1-A has high activity. The initial 85 amino acids of NBCe1-B, -C and -E are unique; NBCe1-B and -C have low activity. Previous work showed that deleting residues 1-85 or 40-62 of NBCe1-B, or 1-87 of NBCe1-C, eliminates autoinhibition. These regions also include binding determinants for IRBIT (inositol trisphosphate (IP3 )-receptor binding protein released with IP3 ), which relieves autoinhibition. Here, systematically replacing/deleting residues 28-62, we find that only the nine amino acid cationic cluster (residues 40-48) of NBCe1-B is essential for autoinhibition. IRBIT stimulates all but one low-activity construct. We suggest that electrostatic interactions - which IRBIT presumably interrupts - between the cationic cluster and the membrane or other domains of NBCe1 play a central role in tempering the activity of NBCe1-B in the pancreas, brain and other organs. ABSTRACT Variant B of the electrogenic Na+ /HCO3- cotransporter (NBCe1-B) contributes to the vectorial transport of HCO3- in epithelia (e.g. pancreatic ducts) and to the maintenance of intracellular pH in the central nervous systems (e.g. astrocytes). NBCe1-B has very low basal activity due to an autoinhibitory domain (AID) located, at least in part, in the unique portion (residues 1-85) of the cytosolic NH2 -terminus. Previous work has shown that removing 23 amino acids (residues 40-62) stimulates NBCe1-B. Here, we test the hypothesis that a cationic cluster of nine consecutive positively charged amino acids (residues 40-48) is a necessary part of the AID. Using two-electrode voltage clamping of Xenopus oocytes, we assess the activity of human NBCe1-B constructs in which we systematically replace or delete residues 28-62, which includes the cationic cluster. We find that replacing or deleting all residues within the cationic cluster markedly increases NBCe1-B activity (i.e. eliminates autoinhibition). On the background of a cationic clusterless construct, systematically restoring Arg residues restores autoinhibition in two distinct quanta, with one to three Arg residues restoring ∼50%, and four or more Arg residues restoring virtually all autoinhibition. Systematically deleting residues before the cluster reduces autoinhibition by, at most, a small amount. Replacing or deleting residues after the cluster has no effect. For constructs with low NBCe1 activity (but good surface expression, as assessed by biotinylation), co-expression with super-IRBIT (lacking PP1-binding site) restores full activity (i.e. relieves autoinhibition). In summary, the cationic cluster is a necessary component of the AID of NBCe1-B.
Collapse
Affiliation(s)
- Seong-Ki Lee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
30
|
Chen W, Zebaze LN, Dong J, Chézeau L, Inquimbert P, Hugel S, Niu S, Bihel F, Boutant E, Réal E, Villa P, Junier MP, Chneiweiss H, Hibert M, Haiech J, Kilhoffer MC, Zeniou M. WNK1 kinase and its partners Akt, SGK1 and NBC-family Na +/HCO3 - cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget 2018; 9:27197-27219. [PMID: 29930759 PMCID: PMC6007472 DOI: 10.18632/oncotarget.25509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a highly heterogeneous brain tumor. The presence of cancer cells with stem-like and tumor initiation/propagation properties contributes to poor prognosis. Glioblastoma cancer stem-like cells (GSC) reside in hypoxic and acidic niches favoring cell quiescence and drug resistance. A high throughput screening recently identified the laxative Bisacodyl as a cytotoxic compound targeting quiescent GSC placed in acidic microenvironments. Bisacodyl activity requires its hydrolysis into DDPM, its pharmacologically active derivative. Bisacodyl was further shown to induce tumor shrinking and increase survival in in vivo glioblastoma models. Here we explored the cellular mechanism underlying Bisacodyl cytotoxic effects using quiescent GSC in an acidic microenvironment and GSC-derived 3D macro-spheres. These spheres mimic many aspects of glioblastoma tumors in vivo, including hypoxic/acidic areas containing quiescent cells. Phosphokinase protein arrays combined with pharmacological and genetic modulation of signaling pathways point to the WNK1 serine/threonine protein kinase as a mediator of Bisacodyl cytotoxic effect in both cell models. WNK1 partners including the Akt and SGK1 protein kinases and NBC-family Na+/HCO3− cotransporters were shown to participate in the compound’s effect on GSC. Overall, our findings uncover novel potential therapeutic targets for combatting glioblastoma which is presently an incurable disease.
Collapse
Affiliation(s)
- Wanyin Chen
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Leonel Nguekeu Zebaze
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Jihu Dong
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Laëtitia Chézeau
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Perrine Inquimbert
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 67084 Strasbourg, France; Université de Strasbourg, Strasbourg 67084, France
| | - Sylvain Hugel
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 67084 Strasbourg, France; Université de Strasbourg, Strasbourg 67084, France
| | - Songlin Niu
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Fréderic Bihel
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies - LBP, UMR7021, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, Illkirch 67401, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies - LBP, UMR7021, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, Illkirch 67401, France
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg/CNRS UMS 3286, Laboratoire d'Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, Illkirch 67401, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/Inserm U1130/UPMC UMCR18, Paris 75005, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/Inserm U1130/UPMC UMCR18, Paris 75005, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, Centre National de la Recherche Scientifique/Université de Strasbourg, UMR7200, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Illkirch 67401, France
| |
Collapse
|
31
|
Yin J, Tse CM, Avula LR, Singh V, Foulke-Abel J, de Jonge HR, Donowitz M. Molecular Basis and Differentiation-Associated Alterations of Anion Secretion in Human Duodenal Enteroid Monolayers. Cell Mol Gastroenterol Hepatol 2018; 5:591-609. [PMID: 29930980 PMCID: PMC6009799 DOI: 10.1016/j.jcmgh.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Human enteroids present a novel tool to study human intestinal ion transport physiology and pathophysiology. The present study describes the contributions of Cl- and HCO3- secretion to total cyclic adenosine monophosphate (cAMP)-stimulated electrogenic anion secretion in human duodenal enteroid monolayers and the relevant changes after differentiation. METHODS Human duodenal enteroids derived from 4 donors were grown as monolayers and differentiated by a protocol that includes the removal of Wnt3A, R-spondin1, and SB202190 for 5 days. The messenger RNA level and protein expression of selected ion transporters and carbonic anhydrase isoforms were determined by quantitative real-time polymerase chain reaction and immunoblotting, respectively. Undifferentiated and differentiated enteroid monolayers were mounted in the Ussing chamber/voltage-current clamp apparatus, using solutions that contained as well as lacked Cl- and HCO3-/CO2, to determine the magnitude of forskolin-induced short-circuit current change and its sensitivity to specific inhibitors that target selected ion transporters and carbonic anhydrase(s). RESULTS Differentiation resulted in a significant reduction in the messenger RNA level and protein expression of cystic fibrosis transmembrane conductance regulator, (CFTR) Na+/K+/2Cl- co-transporter 1 (NKCC1), and potassium channel, voltage gated, subfamily E, regulatory subunit 3 (KCNE3); and, conversely, increase of down-regulated-in-adenoma (DRA), electrogenic Na+/HCO3- co-transporter 1 (NBCe1), carbonic anhydrase 2 (CA2), and carbonic anhydrase 4 (CA4). Both undifferentiated and differentiated enteroids showed active cAMP-stimulated anion secretion that included both Cl- and HCO3- secretion as the magnitude of total active anion secretion was reduced after the removal of extracellular Cl- or HCO3-/CO2. The magnitude of total anion secretion in differentiated enteroids was approximately 33% of that in undifferentiated enteroids, primarily owing to the reduction in Cl- secretion with no significant change in HCO3- secretion. Anion secretion was consistently lower but detectable in differentiated enteroids compared with undifferentiated enteroids in the absence of extracellular Cl- or HCO3-/CO2. Inhibiting CFTR, NKCC1, carbonic anhydrase(s), cAMP-activated K+ channel(s), and Na+/K+-adenosine triphosphatase reduced cAMP-stimulated anion secretion in both undifferentiated and differentiated enteroids. CONCLUSIONS Human enteroids recapitulate anion secretion physiology of small intestinal epithelium. Enteroid differentiation is associated with significant alterations in the expression of several ion transporters and carbonic anhydrase isoforms, leading to a reduced but preserved anion secretory phenotype owing to markedly reduced Cl- secretion but no significant change in HCO3- secretion.
Collapse
Key Words
- AE2, anion exchanger 2
- Bicarbonate Secretion
- CA, carbonic anhydrase
- CFTR, cystic fibrosis transmembrane conductance regulator
- Chloride Secretion
- DRA
- DRA, down-regulated-in-adenoma
- Ion Transport
- Isc, short-circuit current
- KRB, Krebs–Ringer bicarbonate
- NBC, Na+/HCO3- co-transporter
- NBCe1, electrogenic Na+/HCO3- co-transporter 1
- NHE, Na+/H+ exchanger
- NKCC1, Na+/K+/2Cl- co-transporter 1
- SDS, sodium dodecyl sulfate
- SITS, 4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid disodium salt hydrate
- TER, transepithelial electrical resistance
- cAMP, cyclic adenosine monophosphate
- mRNA, messenger ribonucleic acid
- qRT-PCR, quantitative real-time polymerase chain reaction
- ΔIsc, change in short-circuit current
Collapse
Affiliation(s)
- Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Rani Avula
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Mark Donowitz, MD, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Baltimore, Maryland 21205. fax: (410) 955-9677.
| |
Collapse
|
32
|
Ando H, Kawaai K, Bonneau B, Mikoshiba K. Remodeling of Ca 2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 2017; 68:64-76. [PMID: 29287955 DOI: 10.1016/j.jbior.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
The calcium ion (Ca2+) is a ubiquitous intracellular signaling molecule that regulates diverse physiological and pathological processes, including cancer. Increasing evidence indicates that oncogenes and tumor suppressors regulate the Ca2+ transport systems. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-activated Ca2+ release channels located on the endoplasmic reticulum (ER). They play pivotal roles in the regulation of cell death and survival by controlling Ca2+ transfer from the ER to mitochondria through mitochondria-associated ER membranes (MAMs). Optimal levels of Ca2+ mobilization to mitochondria are necessary for mitochondrial bioenergetics, whereas excessive Ca2+ flux into mitochondria causes loss of mitochondrial membrane integrity and apoptotic cell death. In addition to well-known functions on outer mitochondrial membranes, B-cell lymphoma 2 (Bcl-2) family proteins are localized on the ER and regulate IP3Rs to control Ca2+ transfer into mitochondria. Another regulatory protein of IP3R, IP3R-binding protein released with IP3 (IRBIT), cooperates with or counteracts the Bcl-2 family member depending on cellular states. Furthermore, several oncogenes and tumor suppressors, including Akt, K-Ras, phosphatase and tensin homolog (PTEN), promyelocytic leukemia protein (PML), BRCA1, and BRCA1 associated protein 1 (BAP1), are localized on the ER or at MAMs and negatively or positively regulate apoptotic cell death through interactions with IP3Rs and regulation of Ca2+ dynamics. The remodeling of Ca2+ signaling by oncogenes and tumor suppressors that interact with IP3Rs has fundamental roles in the pathology of cancers.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Benjamin Bonneau
- Institute NeuroMyoGene (INMG), CNRS UMR 5310, INSERM U1217, Gregor Mendel building, 16, rue Raphaël Dubois, 69100 Villeurbanne, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
33
|
Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep 2017; 18:1893-1904. [PMID: 29030479 DOI: 10.15252/embr.201744331] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/10/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.
Collapse
Affiliation(s)
- Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| |
Collapse
|
34
|
Khakipoor S, Ophoven C, Schrödl‐Häußel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 2017; 65:1361-1375. [PMID: 28568893 PMCID: PMC5518200 DOI: 10.1002/glia.23168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.
Collapse
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Christian Ophoven
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Magdalena Schrödl‐Häußel
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Melanie Feuerstein
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Bernd Heimrich
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Joachim W. Deitmer
- Department of General ZoologyFB Biology, University of KaiserslauternP.B. 3049D‐67653KaiserslauternGermany
| | - Eleni Roussa
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| |
Collapse
|
35
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
36
|
Abstract
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jinwei Zhang
- Departments of Neurosurgery, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA.
| |
Collapse
|
37
|
Webb BA, White KA, Grillo-Hill BK, Schönichen A, Choi C, Barber DL. A Histidine Cluster in the Cytoplasmic Domain of the Na-H Exchanger NHE1 Confers pH-sensitive Phospholipid Binding and Regulates Transporter Activity. J Biol Chem 2016; 291:24096-24104. [PMID: 27650500 DOI: 10.1074/jbc.m116.736215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/18/2016] [Indexed: 01/26/2023] Open
Abstract
The Na-H exchanger NHE1 contributes to intracellular pH (pHi) homeostasis in normal cells and the constitutively increased pHi in cancer. NHE1 activity is allosterically regulated by intracellular protons, with greater activity at lower pHi However, the molecular mechanism for pH-dependent NHE1 activity remains incompletely resolved. We report that an evolutionarily conserved cluster of histidine residues located in the C-terminal cytoplasmic domain between two phosphatidylinositol 4,5-bisphosphate binding sites (PI(4,5)P2) of NHE1 confers pH-dependent PI(4,5)P2 binding and regulates NHE1 activity. A GST fusion of the wild type C-terminal cytoplasmic domain of NHE1 showed increased maximum PI(4,5)P2 binding at pH 7.0 compared with pH 7.5. However, pH-sensitive binding is abolished by substitutions of the His-rich cluster to arginine (RXXR3) or alanine (AXXA3), mimicking protonated and neutral histidine residues, respectively, and the RXXR3 mutant had significantly greater PI(4,5)P2 binding than AXXA3. When expressed in cells, NHE1 activity and pHi were significantly increased with NHE1-RXXR3 and decreased with NHE1-AXXA3 compared with wild type NHE1. Additionally, fibroblasts expressing NHE1-RXXR3 had significantly more contractile actin filaments and focal adhesions compared with fibroblasts expressing wild type NHE1, consistent with increased pHi enabling cytoskeletal remodeling. These data identify a molecular mechanism for pH-sensitive PI(4,5)P2 binding regulating NHE1 activity and suggest that the evolutionarily conserved cluster of four histidines in the proximal cytoplasmic domain of NHE1 may constitute a proton modifier site. Moreover, a constitutively activated NHE1-RXXR3 mutant is a new tool that will be useful for studying how increased pHi contributes to cell behaviors, most notably the biology of cancer cells.
Collapse
Affiliation(s)
- Bradley A Webb
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Katharine A White
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Bree K Grillo-Hill
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - André Schönichen
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Changhoon Choi
- the Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea 06351
| | - Diane L Barber
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| |
Collapse
|
38
|
Park PW, Ahn JY, Yang D. Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:433-40. [PMID: 27382360 PMCID: PMC4930912 DOI: 10.4196/kjpp.2016.20.4.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Inositol-1,4,5-triphosphate [IP3] receptors binding protein released with IP3 (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.
Collapse
Affiliation(s)
- Pil Whan Park
- Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon 21565, Korea
| | - Jeong Yeal Ahn
- Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon 21565, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| |
Collapse
|
39
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
40
|
Koumangoye R, Delpire E. The Ste20 kinases SPAK and OSR1 travel between cells through exosomes. Am J Physiol Cell Physiol 2016; 311:C43-53. [PMID: 27122160 DOI: 10.1152/ajpcell.00080.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022]
Abstract
Proteomics studies have identified Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) in exosomes isolated from body fluids such as blood, saliva, and urine. Because proteomics studies likely overestimate the number of exosome proteins, we sought to confirm and extend this observation using traditional biochemical and cell biology methods. We utilized HEK293 cells in culture to verify the packaging of these Ste20 kinases in exosomes. Using a series of centrifugation and filtration steps of conditioned culture medium isolated from HEK293 cells, we isolated nanovesicles in the range of 40-100 nm. We show that these small vesicles express the tetraspanin protein CD63 and lack endoplasmic reticulum and Golgi markers, consistent with these being exosomes. We show by Western blot and immunogold analyses that these exosomes express SPAK, OSR1, and Na-K-Cl cotransporter 1 (NKCC1). We show that exosomes are not only secreted by cells, but also accumulated by adjacent cells. Indeed, exposing cultured cells to exosomes produced by other cells expressing a fluorescently labeled kinase resulted in the kinase finding its way into the cytoplasm of these cells, consistent with the idea of exosomes serving as cell-to-cell communication vessels. Similarly, coculturing cells expressing different fluorescently tagged proteins resulted in the exchange of proteins between cells. In addition, we show that both SPAK and OSR1 kinases entering cells through exosomes are preferentially expressed at the plasma membrane and that the kinases in exosomes are functional and maintain NKCC1 in a phosphorylated state.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
41
|
Thornell IM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes. J Physiol 2016; 593:541-58. [PMID: 25398525 DOI: 10.1113/jphysiol.2014.284307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS We previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 ) directly stimulates heterologously expressed electrogenic Na(+)/bicarbonate cotransporter NBCe1-A in an excised macropatch from the Xenopus oocyte, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate/Ca(2+). In the current study, we expand on a previous observation that PIP2 may also directly stimulate NBCe1 in the intact oocyte. In this study on oocytes, we co-expressed either NBCe1-B or -C and a voltage-sensitive phosphatase (VSP), which depletes PIP2 without changing inositol 1,4,5-trisphosphate, and monitored NBCe1-mediated currents with the two-electrode voltage-clamp technique or pHi changes using Vm/pH-sensitive microelectrodes. Activating VSP inhibited NBCe1-B and -C outward currents and NBCe1-mediated pHi increases, and changes in NBCe1 activity paralleled changes in surface PIP2. This study is a quantitative assessment of PIP2 itself as a regulator of NBCe1-B and -C in the intact cell, and represents the first use of VSP to characterize the PIP2 sensitivity of a transporter. These data combined with our previous work demonstrate that NBCe1-B and -C are regulated by two PIP2-mediated signalling pathways. Specifically, a decrease in PIP2 per se can inhibit NBCe1, whereas hydrolysis of PIP2 to inositol 1,4,5-trisphosphate/Ca(2+) can stimulate the transporter. ABSTRACT The electrogenic Na(+)/bicarbonate cotransporter (NBCe1) of the Slc4 gene family is a powerful regulator of intracellular pH (pHi) and extracellular pH (pHo), and contributes to solute reabsorption and secretion in many epithelia. Using Xenopus laevis oocytes expressing NBCe1 variants, we have previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) directly stimulates NBCe1-A in an excised macropatch, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate (InsP3)/Ca(2+). In the current study, we used the two-electrode voltage-clamp technique alone or in combination with pH/voltage-sensitive microelectrodes or confocal fluorescence imaging of plasma membrane PIP2 to characterize the PIP2 sensitivity of NBCe1-B and -C in whole oocytes by co-expressing a voltage-sensitive phosphatase (VSP) that decreases PIP2 and bypasses the InsP3/Ca(2+) pathway. An oocyte depolarization that activated VSP only transiently stimulated the NBCe1-B/C current, consistent with an initial rapid depolarization-induced NBCe1 activation, and then a subsequent slower VSP-mediated NBCe1 inhibition. Upon repolarization, the NBCe1 current decreased, and then slowly recovered with an exponential time course that paralleled PIP2 resynthesis as measured with a PIP2-sensitive fluorophore and confocal imaging. A subthreshold depolarization that minimally activated VSP caused a more sustained increase in NBCe1 current, and did not lead to an exponential current recovery following repolarization. Similar results were obtained with oocytes expressing a catalytically dead VSP mutant at all depolarized potentials. Depleting endoplasmic reticulum Ca(2+) did not inhibit the NBCe1 current recovery following repolarization from VSP activation, demonstrating that changes in InsP3/Ca(2+) were not responsible. This study demonstrates for the first time that depleting PIP2 per se inhibits NBCe1 activity. The data in conjunction with previous findings implicate a dual PIP2 regulatory pathway for NBCe1 involving both PIP2 itself and generated InsP3/Ca(2+).
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | |
Collapse
|
42
|
Jeong YS, Hong JH. Governing effect of regulatory proteins for Cl(-)/HCO3(-) exchanger 2 activity. Channels (Austin) 2015; 10:214-24. [PMID: 26716707 DOI: 10.1080/19336950.2015.1134068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Anion exchanger 2 (AE2) has a critical role in epithelial cells and is involved in the ionic homeostasis such as Cl(-) uptake and HCO3(-) secretion. However, little is known about the regulatory mechanism of AE2. The main goal of the present study was to investigate potential regulators, such as spinophilin (SPL), inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3 (IRBIT), STE20/SPS1-related proline/alanine-rich kinase (SPAK) kinase, and carbonic anhydrase XII (CA XII). We found that SPL binds to AE2 and markedly increased the Cl(-)/HCO3(-) exchange activity of AE2. Especially SPL 1-480 domain is required for enhancing AE2 activity. For other regulatory components that affect the fidelity of fluid and HCO3(-) secretion, IRBIT and SPAK had no effect on the activity of AE2 and no protein-protein interaction with AE2. It has been proposed that CA activity is closely associated with AE activity. In this study, we provide evidence that the basolateral membrane-associated CA isoform CA XII significantly increased the activity of AE2 and co-localized with AE2 to the plasma membrane. Collectively, SPL and CA XII enhanced the Cl(-)/HCO3(-) exchange activity of AE2. The modulating action of these regulatory proteins could serve as potential therapeutic targets for secretory diseases mediated by AE2.
Collapse
Affiliation(s)
- Yon Soo Jeong
- a Department of Physiology , Graduate School of Medicine, Gachon University , South Korea
| | - Jeong Hee Hong
- a Department of Physiology , Graduate School of Medicine, Gachon University , South Korea
| |
Collapse
|
43
|
Ando H, Hirose M, Gainche L, Kawaai K, Bonneau B, Ijuin T, Itoh T, Takenawa T, Mikoshiba K. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS One 2015; 10:e0141569. [PMID: 26509711 PMCID: PMC4624786 DOI: 10.1371/journal.pone.0141569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Laura Gainche
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| |
Collapse
|
44
|
Borth H, Weber N, Meyer D, Wartenberg A, Arlt E, Zierler S, Breit A, Wennemuth G, Gudermann T, Boekhoff I. The IP3 R Binding Protein Released With Inositol 1,4,5-Trisphosphate Is Expressed in Rodent Reproductive Tissue and Spermatozoa. J Cell Physiol 2015; 231:1114-29. [PMID: 26439876 DOI: 10.1002/jcp.25209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022]
Abstract
Besides its capacity to inhibit the 1,4,5-trisphosphate (IP3) receptor, the regulatory protein IRBIT (IP3 receptor binding protein released with IP3) is also able to control the activity of numerous ion channels and electrolyte transporters and thereby creates an optimal electrolyte composition of various biological fluids. Since a reliable execution of spermatogenesis and sperm maturation critically depends on the establishment of an adequate microenvironment, the expression of IRBIT in male reproductive tissue was examined using immunohistochemical approaches combined with biochemical fractionation methods. The present study documents that IRBIT is expressed in Leydig and Sertoli cells. In addition, pronounced IRBIT expression was detected in sperm precursors during early stages of spermatogenesis as well as in spermatozoa. Analyzing tissue sections of rodent epididymides, IRBIT was found to co-localize with the proton pumping V-ATPase and the cystic fibrosis transmembrane conductance regulator (CFTR) at the apical surface of narrow and clear cells. A similar co-localization of IRBIT with CFTR was also observed for Sertoli cells and developing germ cells. Remarkably, assaying caudal sperm in immunogold electron microscopy, IRBIT was found to localize to the acrosomal cap and the flagellum as well as to the sperm nucleus; moreover, a prominent oligomerization was observed for spermatozoa. The pronounced occurrence of IRBIT in the male reproductive system and mature spermatozoa indicates a potential role for IRBIT in establishing the essential luminal environment for a faithful execution of spermatogenesis and epididymal sperm maturation, and suggest a participation of IRBIT during maturation steps after ejaculation and/or the final fertilization process.
Collapse
Affiliation(s)
- Heike Borth
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Nele Weber
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Dorke Meyer
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Andrea Wartenberg
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Clinic Essen, University of Duisburg-Essen, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| |
Collapse
|
45
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
46
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
47
|
Schrödl-Häußel M, Theparambil SM, Deitmer JW, Roussa E. Regulation of functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), in mouse astrocytes. Glia 2015; 63:1226-39. [DOI: 10.1002/glia.22814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Magdalena Schrödl-Häußel
- Department of Molecular Embryology; Institute for Anatomy and Cell Biology, University of Freiburg; Freiburg Germany
| | - Shefeeq M. Theparambil
- Department of General Zoology; FB Biology, University of Kaiserslautern; Kaiserslautern Germany
| | - Joachim W. Deitmer
- Department of General Zoology; FB Biology, University of Kaiserslautern; Kaiserslautern Germany
| | - Eleni Roussa
- Department of Molecular Embryology; Institute for Anatomy and Cell Biology, University of Freiburg; Freiburg Germany
- Department of Neuroanatomy; University of Freiburg; Freiburg Germany
| |
Collapse
|
48
|
Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters. Proc Natl Acad Sci U S A 2015; 112:E329-37. [PMID: 25561556 DOI: 10.1073/pnas.1415673112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cl(-) is a major anion in mammalian cells involved in transport processes that determines the intracellular activity of many ions and plasma membrane potential. Surprisingly, a role of intracellular Cl(-) (Cl(-) in) as a signaling ion has not been previously evaluated. Here we report that Cl(-) in functions as a regulator of cellular Na(+) and HCO3 (-) concentrations and transepithelial transport through modulating the activity of several electrogenic Na(+)-HCO3 (-) transporters. We describe the molecular mechanism(s) of this regulation by physiological Cl(-) in concentrations highlighting the role of GXXXP motifs in Cl(-) sensing. Regulation of the ubiquitous Na(+)-HCO3(-) co-transport (NBC)e1-B is mediated by two GXXXP-containing sites; regulation of NBCe2-C is dependent on a single GXXXP motif; and regulation of NBCe1-A depends on a cryptic GXXXP motif. In the basal state NBCe1-B is inhibited by high Cl(-) in interacting at a low affinity GXXXP-containing site. IP3 receptor binding protein released with IP3 (IRBIT) activation of NBCe1-B unmasks a second high affinity Cl(-) in interacting GXXXP-dependent site. By contrast, NBCe2-C, which does not interact with IRBIT, has a single high affinity N-terminal GXXP-containing Cl(-) in interacting site. NBCe1-A is unaffected by Cl(-) in between 5 and 140 mM. However, deletion of NBCe1-A residues 29-41 unmasks a cryptic GXXXP-containing site homologous with the NBCe1-B low affinity site that is involved in inhibition of NBCe1-A by Cl(-) in. These findings reveal a cellular Cl(-) in sensing mechanism that plays an important role in the regulation of Na(+) and HCO3 (-) transport, with critical implications for the role of Cl(-) in cellular ion homeostasis and epithelial fluid and electrolyte secretion.
Collapse
|
49
|
Sommansson A, Wan Saudi WS, Nylander O, Sjöblom M. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-. PLoS One 2014; 9:e102654. [PMID: 25033198 PMCID: PMC4102535 DOI: 10.1371/journal.pone.0102654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/22/2014] [Indexed: 12/31/2022] Open
Abstract
Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.
Collapse
Affiliation(s)
- Anna Sommansson
- Division of Gastrointestinal Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Wan Salman Wan Saudi
- Division of Gastrointestinal Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Olof Nylander
- Division of Gastrointestinal Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Division of Gastrointestinal Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
50
|
May O, Yu H, Riederer B, Manns MP, Seidler U, Bachmann O. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C. PLoS One 2014; 9:e92275. [PMID: 24642792 PMCID: PMC3958514 DOI: 10.1371/journal.pone.0092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.
Collapse
Affiliation(s)
- Oliver May
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Haoyang Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|