1
|
Wadhwa V, Jamshidi C, Stachowski K, Bird AJ, Foster MP. Conformational dynamics in specialized C 2H 2 zinc finger domains enable zinc-responsive gene repression in S. pombe. Protein Sci 2025; 34:e70044. [PMID: 39865413 PMCID: PMC11761706 DOI: 10.1002/pro.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem C2H2 zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical C2H2 zinc fingers. Isothermal titration calorimetry and NMR spectroscopy reveal two distinct zinc binding events localized to the zinc fingers. NMR spectra reveal complex dynamic behavior in this zinc-responsive region spanning time scales from fast 10-12-10-10 to slow >100 s. Slow exchange due to cis-trans isomerization of the TGERP linker results in the doubling of many signals in the protein. Conformational exchange on the 10-3 s timescale throughout the first zinc finger distinguishes it from the second and is linked to a weaker affinity for zinc. These findings reveal a mechanism of zinc sensing by Loz1 and illuminate how the protein's rough free-energy landscape enables zinc sensing, DNA binding and regulated gene expression.
Collapse
Affiliation(s)
- Vibhuti Wadhwa
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Cameron Jamshidi
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Kye Stachowski
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda J. Bird
- Department of Human Nutrition and Molecular GeneticsCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
2
|
Weeks AT, Bird AJ. Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex. J Biol Chem 2025; 301:108156. [PMID: 39761853 PMCID: PMC11830320 DOI: 10.1016/j.jbc.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/02/2025] Open
Abstract
Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of sod1 mRNA and protein accumulate under low zinc conditions and that this regulation does not require the sod1 promoter or known factors that regulate the transcription of sod1 in response to zinc and other environmental stresses. Further analyses using yeast deletion strains and an inactive allele of Caf1 revealed that the reduced accumulation of sod1 mRNA and protein under low zinc conditions depends on the Caf1 and Ccr4 deadenylases of the CCR4-NOT complex. We also found that Caf1 and Ccr4 are both required for growth under zinc-limiting conditions. To gain additional mechanistic insight we used immunoblot analysis to map the regions required for the regulation of the Sod1 protein by zinc. We found that the sod1 ORF and 3'UTR are both necessary and sufficient for the zinc-dependent changes in Sod1 protein abundance. Our studies reveal a novel mechanism of altering mRNA and protein abundance in response to zinc status, which depends on the CCR4-NOT complex.
Collapse
Affiliation(s)
- Andrew T Weeks
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA; Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Liu J, Zuo X, Bi J, Li H, Li Y, Ma J, Wang S. Palliative Effect of Combined Application of Zinc and Selenium on Reproductive Injury Induced by Tripterygium Glycosides in Male Rats. Biol Trace Elem Res 2024; 202:5081-5093. [PMID: 38190060 DOI: 10.1007/s12011-023-04054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The long-term use of tripterygium glycosides (TG) can lead to male reproductive damage. Research indicates that zinc and selenium exhibit a synergistic effect in the male reproductive system, with the combined preparation demonstrating superior therapeutic effects compared to individual preparations. The purpose of this study was to explore the specific mechanism by which zinc and selenium mitigate reproductive toxicity induced by TG in male rats. Rats were randomly assigned to three groups: control group (C group), model group (M group, receiving TG at 30 mg/kg/day), and model + zinc + selenium group (ZS group). The ZS group was also given TG gavage for the first 4 weeks. Starting from the fifth week until the conclusion of the eighth week, the ZS group received an additional protective treatment of 10 mg/kg/day Zn and 0.1 mg/kg/day Se 4 h after TG administration. Following euthanasia, blood samples, rat testis, and epididymis tissues were collected for further experiments. Combined zinc-selenium treatment corrects the imbalance of zinc-selenium homeostasis in testicular tissue induced by TG. This is achieved by upregulating the expression of metal transcription factor (MTF1) and zinc transporters ZIP8 and ZIP14 and downregulating the expression of ZnT10. Improvement of zinc and selenium homeostasis enhanced the expression of zinc-containing enzymes (ADH, LDH, and ALP) and selenoproteins (GPx1 and SELENOP) in the testis. At the same time, zinc and selenium mitigate TG-induced reproductive damage by promoting the activity of antioxidant enzymes and upregulating the expression of proteins associated with the oxidative stress pathway, including Nrf2, Keap1, HO-1, PI3K, and p-AKT.
Collapse
Affiliation(s)
- Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Zuo
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yuanjing Li
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Shusong Wang
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
4
|
Yao R, Li R, Huang Y. Zinc homeostasis in Schizosaccharomyces pombe. Arch Microbiol 2023; 205:126. [PMID: 36943461 DOI: 10.1007/s00203-023-03473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Most metal ions such as iron, calcium, zinc, or copper are essential for all eukaryotes. Organisms must maintain homeostasis of these metal ions because excess or deficiency of metal ions could cause damage to organisms. The steady state of many metal ions such as iron and copper has been well studied in detail. However, how to regulate zinc homeostasis in Schizosaccharomyces pombe is still confusing. In this review, we provide an overview of the molecular mechanisms that how S. pombe is able to maintain the balance of zinc levels in the changes of environment. In response to high levels of zinc, the transcription factor Loz1 represses the expression of several genes involved in the acquisition of zinc. Meanwhile, the CDF family proteins transport excess zinc to the secretory pathway. When zinc levels are limited, Loz1 was inactivated and could not inhibit the expression of zinc acquisition genes, and zinc stored in the secretory pathway is released for use by the cells. Besides, other factors that regulate zinc homeostasis are also discussed.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China.
| |
Collapse
|
5
|
Zhao B, He D, Gao S, Zhang Y, Wang L. Hypothetical protein FoDbp40 influences the growth and virulence of Fusarium oxysporum by regulating the expression of isocitrate lyase. Front Microbiol 2022; 13:1050637. [DOI: 10.3389/fmicb.2022.1050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Fungal growth is closely related to virulence. Finding the key genes and pathways that regulate growth can help elucidate the regulatory mechanisms of fungal growth and virulence in efforts to locate new drug targets. Fusarium oxysporum is an important plant pathogen and human opportunistic pathogen that has research value in agricultural and medicinal fields. A mutant of F. oxysporum with reduced growth was obtained by Agrobacterium tumefaciens-mediated transformation, the transferred DNA (T-DNA) interrupted gene in this mutant coded a hypothetical protein that we named FoDbp40. FoDbp40 has an unknown function, but we chose to explore its possible functions as it may play a role in fungal growth regulatory mechanisms. Results showed that F. oxysporum growth and virulence decreased after FoDbp40 deletion. FOXG_05529 (NCBI Gene ID, isocitrate lyase, ICL) was identified as a key gene that involved in the reduced growth of this mutant. Deletion of FoDbp40 results in a decrease of more than 80% in ICL expression and activity, succinate level, and energy level, plus a decrease in phosphorylated mammalian target of rapamycin level and an increase in phosphorylated 5′-adenosine monophosphate activated protein kinase level. In summary, our study found that the FoDbp40 regulates the expression of ICL at a transcriptional level and affects energy levels and downstream related pathways, thereby regulating the growth and virulence of F. oxysporum.
Collapse
|
6
|
Mohamed RA, Guo CT, Xu SY, Ying SH, Feng MG. Characterization of BbKlf1 as a novel transcription factor vital for asexual and infection cycles of Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:719-731. [PMID: 35851566 DOI: 10.1111/1758-2229.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.
Collapse
Affiliation(s)
- Rehab Abdelmonem Mohamed
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Chatfield-Reed K, Marno Jones K, Shah F, Chua G. Genetic-interaction screens uncover novel biological roles and regulators of transcription factors in fission yeast. G3 GENES|GENOMES|GENETICS 2022; 12:6655692. [PMID: 35924983 PMCID: PMC9434175 DOI: 10.1093/g3journal/jkac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
In Schizosaccharomyces pombe, systematic analyses of single transcription factor deletion or overexpression strains have made substantial advances in determining the biological roles and target genes of transcription factors, yet these characteristics are still relatively unknown for over a quarter of them. Moreover, the comprehensive list of proteins that regulate transcription factors remains incomplete. To further characterize Schizosaccharomyces pombe transcription factors, we performed synthetic sick/lethality and synthetic dosage lethality screens by synthetic genetic array. Examination of 2,672 transcription factor double deletion strains revealed a sick/lethality interaction frequency of 1.72%. Phenotypic analysis of these sick/lethality strains revealed potential cell cycle roles for several poorly characterized transcription factors, including SPBC56F2.05, SPCC320.03, and SPAC3C7.04. In addition, we examined synthetic dosage lethality interactions between 14 transcription factors and a miniarray of 279 deletion strains, observing a synthetic dosage lethality frequency of 4.99%, which consisted of known and novel transcription factor regulators. The miniarray contained deletions of genes that encode primarily posttranslational-modifying enzymes to identify putative upstream regulators of the transcription factor query strains. We discovered that ubiquitin ligase Ubr1 and its E2/E3-interacting protein, Mub1, degrade the glucose-responsive transcriptional repressor Scr1. Loss of ubr1+ or mub1+ increased Scr1 protein expression, which resulted in enhanced repression of flocculation through Scr1. The synthetic dosage lethality screen also captured interactions between Scr1 and 2 of its known repressors, Sds23 and Amk2, each affecting flocculation through Scr1 by influencing its nuclear localization. Our study demonstrates that sick/lethality and synthetic dosage lethality screens can be effective in uncovering novel functions and regulators of Schizosaccharomyces pombe transcription factors.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Kurtis Marno Jones
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Farah Shah
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
8
|
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS NANO 2022; 16:11428-11443. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
The regulation of intracellular ions' overload to interrupt normal bioprocesses and cause cell death has been developed as an efficient strategy (named as ion-interference therapy/IIT) to treat cancer. In this study, we design a multifunctional nanoplatform (called BSArGO@ZIF-8 NSs) by in situ growth of metal organic framework nanoparticles (ZIF-8 NPs) onto the graphene oxide (GO) surface, subsequently reduced by ascorbic acid and modified by bovine serum albumin. This nanocomplex causes the intracellular overload of Zn2+, an increase of reactive oxygen species (ROS), and exerts a broad-spectrum lethality to different kinds of cancer cells. BSArGO@ZIF-8 NSs can promote cell apoptosis by initiating bim (a pro-apoptotic protein)-mediated mitochondrial apoptotic events, up-regulating PUMA/NOXA expression, and down-regulating the level of Bid/p53AIP1. Meanwhile, Zn2+ excess triggers cellular dysfunction and mitochondria damage by activating the autophagy signaling pathways and disturbing the intracellular environmental homeostasis. Combined with the photothermal effect of reduced GO (rGO), BSArGO@ZIF-8 NSs mediated ion-interference and photothermal combined therapy leads to effective apoptosis and inhibits cell proliferation and angiogenesis, bringing a higher efficacy in tumor suppression in vivo. This designed Zn-based multifunctional nanoplatform will allow promoting further the development of IIT and the corresponding combined cancer therapy strategy.
Collapse
Affiliation(s)
- Chunxu Lv
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Wenyan Kang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shuo Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Pishan Yang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
9
|
Guo J, Yang Q, Wei S, Shao J, Zhao T, Guo L, Liu J, Chen J, Wang G. Low expression of PRDM5 predicts poor prognosis of esophageal squamous cell carcinoma. BMC Cancer 2022; 22:745. [PMID: 35799142 PMCID: PMC9264607 DOI: 10.1186/s12885-022-09787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The role of the PRDM5 in esophageal squamous cell carcinoma (ESCC) has not been revealed. This study investigated the relationship between PRDM5 expression and survival outcome in esophageal squamous cell carcinoma and explored the mechanism in tumor development. Methods In present study, expression of PRDM5 mRNA in esophageal squamous cell carcinoma patients was conducted using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The expression of PRDM5 was assessed by immunohistochemical staining. Kaplan-Meier curve and Cox regression analysis was performed to analyze the survival outcome and independent predictive factors. qRT-PCR and Methylation-specific PCR were performed to identify the mRNA level of PRDM5 and Methylation rate. Cibersort algorithm to analyze the relationship between PRDM5 expression and immune cell invasion. Western-blot was performed to confirm the expression of esophageal tumor tissues and adjacent tissues. Results The TCGA database and GEO database show that PRDM5 mRNA level in esophageal squamous cell carcinoma adjacent tissues was higher than that of cancer tissues, and ESCC patients with high expression of PRDM5 mRNA had better overall survival. Tissue microarray showed that the protein level of PRDM5 in the adjacent tissues of patients with ESCC was higher than that in cancer tissues, and the expression level of PRDM5 was significantly correlated with the grade of clinicopathological characteristics (P < 0.001). Patients with high expression of PRDM5 displayed a better OS and DFS. Cox regression analysis showed that PRDM5 was an independent risk factor and prognostic factor for ESCC patients (HR: 2.626, 95%CI: 1.824–3.781; P < 0.001). The protein level of PRDM5 matched with the transcriptional level, whereas the DNA methylation affected the transcriptional level. Cibersort showed that T cells CD4 memory resting, mast cells resting, eosinophils, M2 macrophages and mast cells activated were significantly positively correlated with PRDM5 expression (P < 0.05), while regulatory T cells, monocytes and dendritic cells negatively correlated with PRDM5 expression (P < 0.05). Conclusion PRDM5 can be used as a biomarker to predict the survival of ESCC patients. Furthermore, PRDM5 expression in ESCC cells may affect WNT/β-catenin signaling pathways, thus further affect the ESCC cell proliferation, migration, and invasion capacity. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09787-8.
Collapse
Affiliation(s)
- Jing Guo
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Sheng Wei
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Tianye Zhao
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Liyuan Guo
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jia Liu
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jia Chen
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Gaoren Wang
- Department of Radiation Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Abstract
Fungal pathogens now account for an unprecedented burden on human health. Like all microorganisms, these fungi must successfully forage for essential micronutrients such as zinc in order to proliferate. However, pathogenic microbes face an additional hurdle in securing zinc from their environment: the action of host nutritional immunity which strictly manipulates microbial access to this essential, but also potentially toxic trace metal. This review introduces the relevant pathogenic species and goes on to cover the molecular mechanisms of zinc uptake by human fungal pathogens. Fungi scavenge zinc from their environment via two basic mechanisms: via a family of cellular zinc importers-the ZIP transporters; and via a unique secreted zinc binding protein-the zincophore. However the genetic requirement of these systems for fungal virulence is highly species-specific. As well as zinc scarcity, potential intoxification with this heavy metal can occur and, unlike bacteria, fungi deal with environmental insult this via intraorganellar compartmentalization. Zinc availability also modulates the morphogenic behavior of a subset of pathogenic yeast species. This chapter will cover these different aspects of zinc availability on the physiology of human fungal pathogens with emphasis on the major pathogenic species Candida albicans.
Collapse
Affiliation(s)
- Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
11
|
Kandari D, Joshi H, Bhatnagar R. Zur: Zinc-Sensing Transcriptional Regulator in a Diverse Set of Bacterial Species. Pathogens 2021; 10:344. [PMID: 33804265 PMCID: PMC8000910 DOI: 10.3390/pathogens10030344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn) is the quintessential d block metal, needed for survival in all living organisms. While Zn is an essential element, its excess is deleterious, therefore, maintenance of its intracellular concentrations is needed for survival. The living organisms, during the course of evolution, developed proteins that can track the limitation or excess of necessary metal ions, thus providing survival benefits under variable environmental conditions. Zinc uptake regulator (Zur) is a regulatory transcriptional factor of the FUR superfamily of proteins, abundant among the bacterial species and known for its intracellular Zn sensing ability. In this study, we highlight the roles played by Zur in maintaining the Zn levels in various bacterial species as well as the fact that in recent years Zur has emerged not only as a Zn homeostatic regulator but also as a protein involved directly or indirectly in virulence of some pathogens. This functional aspect of Zur could be exploited in the ventures for the identification of newer antimicrobial targets. Despite extensive research on Zur, the insights into its overall regulon and its moonlighting functions in various pathogens yet remain to be explored. Here in this review, we aim to summarise the disparate functional aspects of Zur proteins present in various bacterial species.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
- Banaras Hindu University, Banaras 221005, India
| |
Collapse
|
12
|
Assunção LDP, Moraes D, Soares LW, Silva-Bailão MG, de Siqueira JG, Baeza LC, Báo SN, Soares CMDA, Bailão AM. Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Front Cell Infect Microbiol 2020; 10:573097. [PMID: 33330123 PMCID: PMC7734293 DOI: 10.3389/fcimb.2020.573097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.
Collapse
Affiliation(s)
- Leandro do Prado Assunção
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Dayane Moraes
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lucas Weba Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Mirelle Garcia Silva-Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Janaina Gomes de Siqueira
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lilian Cristiane Baeza
- Laboratory of Experimental Microbiology, State University of Western Paraná (Unioeste), Cascavel, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Institute of Biological Sciences, Brasília University (UnB), Brasilia, Brazil
| | - Célia Maria de Almeida Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Alexandre Melo Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| |
Collapse
|
13
|
Takahata S, Asanuma T, Mori M, Murakami Y. Construction and characterization of a zinc-inducible gene expression vector in fission yeast. Yeast 2020; 38:251-261. [PMID: 33245560 DOI: 10.1002/yea.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
Gene expression vectors are useful and important tools that are commonly used in a variety of experiments, including expression of foreign genes, functional analysis of genes of interest and complementation experiments. In this study, a hybrid promoter, combining the adh1+ upstream activating sequence (UAS) of fission yeast and the GAL10 core promoter of budding yeast, was constructed to enable high level expression depending on the presence of zinc in culture medium for fission yeast. When the hybrid promoter was cloned on the multicopy plasmid, it was fully induced and repressed within 10 h in the presence and absence of zinc, respectively. The kinetics of induction and reduction were similar to those of the endogenous adh1+ mRNA. In contrast, native adh1+ promoter lost its tight repression in zinc-depleted condition when it was cloned on the plasmid. Because adh1+ UAS-specific transcription factors have not yet been identified, we identified UAS elements involved in zinc sensing by characterizing this hybrid promoter. We also found that the expression level increased by the TATA box mutation, GATAA, in the presence of zinc.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Asanuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Li X, Tian L, Zhang L, Xu B, Zhang Y, Li Q. Clinical Significance of ZNF711 in Human Breast Cancer. Onco Targets Ther 2020; 13:6593-6601. [PMID: 32753895 PMCID: PMC7351981 DOI: 10.2147/ott.s251702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the clinicopathologic and prognostic significance of the zinc-finger protein 711 (ZNF711) in breast cancer (BCa). Materials and Methods The relevance of ZNF711 in BCa was analyzed using bioinformatics. The expression of ZNF711 was detected by immunohistochemistry in paraffin blocks of BCa. To evaluate its clinical significance, the correlation between the expression of ZNF711 and BCa clinical indicators, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2), was analyzed. Finally, the Kaplan-Meier method was applied to explore the prognostic value of ZNF711. Results ZNF711 expression was decreased in BCa and was negatively correlated with ER expression (P < 0.05) and positively correlated with HER-2 expression (P < 0.01), but there was no significant correlation between ZNF711 and PR expression. ZNF711 expression was not correlated with age, tumor diameter, or lymph node metastasis; however, ZNF711 expression was correlated with staging in BCa. Survival analysis results showed that the ZNF711-positive group patients had a poorer prognosis compared with the ZNF711-negative group. Conclusion The expression of ZNF711 was deceased in BCa and closely related to ER and HER-2 expression. Therefore, ZNF711 could not only serve as a predictor of BCa with poor prognosis but also as a potential biomarker for targeted therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Liu Tian
- Psychiatry and Mental Health Center, Shenyang Mental Health Center, Shenyang, Liaoning 110168, People's Republic of China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Baojin Xu
- Departments of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| |
Collapse
|
15
|
Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate. G3-GENES GENOMES GENETICS 2020; 10:1375-1391. [PMID: 32086247 PMCID: PMC7144085 DOI: 10.1534/g3.119.400986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Schizosaccharomyces pombe is a model unicellular eukaryote with ties to the basic research, oenology and industrial biotechnology sectors. While most investigations into S. pombe cell biology utilize Leupold’s 972h- laboratory strain background, recent studies have described a wealth of genetic and phenotypic diversity within wild populations of S. pombe including stress resistance phenotypes which may be of interest to industry. Here we describe the genomic and transcriptomic characterization of Wilmar-P, an S. pombe isolate used for bioethanol production from sugarcane molasses at industrial scale. Novel sequences present in Wilmar-P but not in the laboratory S. pombe genome included multiple coding sequences with near-perfect nucleotide identity to Schizosaccharomyces octosporus sequences. Wilmar-P also contained a ∼100kb duplication in the right arm of chromosome III, a region harboring ght5+, the predominant hexose transporter encoding gene. Transcriptomic analysis of Wilmar-P grown in molasses revealed strong downregulation of core environmental stress response genes and upregulation of hexose transporters and drug efflux pumps compared to laboratory S. pombe. Finally, examination of the regulatory network of Scr1, which is involved in the regulation of several genes differentially expressed on molasses, revealed expanded binding of this transcription factor in Wilmar-P compared to laboratory S. pombe in the molasses condition. Together our results point to both genomic plasticity and transcriptomic adaptation as mechanisms driving phenotypic adaptation of Wilmar-P to the molasses environment and therefore adds to our understanding of genetic diversity within industrial fission yeast strains and the capacity of this strain for commercial scale bioethanol production.
Collapse
|
16
|
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
18
|
Ruytinx J, Kafle A, Usman M, Coninx L, Zimmermann SD, Garcia K. Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
19
|
Genetic investigation of formaldehyde-induced DNA damage response in Schizosaccharomyces pombe. Curr Genet 2020; 66:593-605. [DOI: 10.1007/s00294-020-01057-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023]
|
20
|
Wilson S, Liu YH, Cardona-Soto C, Wadhwa V, Foster MP, Bird AJ. The Loz1 transcription factor from Schizosaccharomyces pombe binds to Loz1 response elements and represses gene expression when zinc is in excess. Mol Microbiol 2019; 112:1701-1717. [PMID: 31515876 PMCID: PMC6904500 DOI: 10.1111/mmi.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/07/2019] [Indexed: 12/14/2022]
Abstract
In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.
Collapse
Affiliation(s)
- Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
| | - Yi-Hsuan Liu
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Carlos Cardona-Soto
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Vibhuti Wadhwa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Amanda J. Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
21
|
Hu YM, Boehm DM, Chung H, Wilson S, Bird AJ. Zinc-dependent activation of the Pho8 alkaline phosphatase in Schizosaccharomyces pombe. J Biol Chem 2019; 294:12392-12404. [PMID: 31239353 PMCID: PMC6699849 DOI: 10.1074/jbc.ra119.007371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2019] [Revised: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Genome-wide analyses have revealed that during metal ion starvation, many cells undergo programmed changes in their transcriptome or proteome that lower the levels of abundant metalloproteins, conserving metal ions for more critical functions. Here we investigated how changes in cellular zinc status affect the expression and activity of the zinc-requiring Pho8 alkaline phosphatase from fission yeast (Schizosaccharomyces pombe). In S. pombe, Pho8 is a membrane-tethered and processed glycoprotein that resides in the vacuole. Using alkaline phosphatase activity assays along with various biochemical analyses, we found that Pho8 is active when zinc is plentiful and inactive when zinc is limited. Although Pho8 activity depended on zinc, we also found that higher levels of pho8 mRNAs and Pho8 protein accumulate in zinc-deficient cells. To gain a better understanding of the inverse relationship between pho8 mRNA levels and Pho8 activity, we examined the effects of zinc on the stability and processing of the Pho8 protein. We show that Pho8 is processed regardless of zinc status and that mature Pho8 accumulates under all conditions. We also noted that alkaline phosphatase activity is rapidly restored when zinc is resupplied to cells, even in the presence of the protein synthesis inhibitor cycloheximide. Our results suggest that S. pombe cells maintain inactive pools of Pho8 proteins under low-zinc conditions and that these pools facilitate rapid restoration of Pho8 activity when zinc ions become available.
Collapse
Affiliation(s)
- Ya-Mei Hu
- Department of Human Nutrition, Ohio State University, Columbus, Ohio 43210
| | - Derek M Boehm
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Hak Chung
- Ohio State University Interdisciplinary Nutrition Program, Ohio State University, Columbus, Ohio 43210
| | - Stevin Wilson
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio 43210; Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210; Center for RNA Biology, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
22
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
23
|
Ohtsuka H, Aiba H. Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Res 2018; 17:4085637. [PMID: 28934413 DOI: 10.1093/femsyr/fox066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Ecl1 family genes are conserved among yeast, in which their overexpression extends chronological lifespan. Ecl1 family genes were first identified in the fission yeast Schizosaccharomyces pombe; at the time, they were considered noncoding RNA owing to their short coding sequence of fewer than 300 base pairs. Schizosaccharomyces pombe carries three Ecl1 family genes, ecl1+, ecl2+ and ecl3+, whereas Saccharomyces cerevisiae has one, ECL1. Their overexpression extends chronological lifespan, increases oxidative stress resistance and induces sexual development in fission yeast. A recent study indicated that Ecl1 family genes play a significant role in responding to environmental zinc or sulfur depletion. In this review, we focus on Ecl1 family genes in fission yeast and describe the relationship between nutritional depletion and cellular output, as the latter depends on Ecl1 family genes. Furthermore, we present the roles and functions of Ecl1 family genes characterized to date.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
24
|
Choi S, Hu YM, Corkins ME, Palmer AE, Bird AJ. Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS Genet 2018. [PMID: 29529046 PMCID: PMC5864093 DOI: 10.1371/journal.pgen.1007262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have well characterized roles in transporting zinc into the lumens of intracellular compartments, relatively little is known about the mechanisms that maintain organelle zinc homeostasis. The fission yeast Schizosaccharomyces pombe is a useful model system to study organelle zinc homeostasis as it expresses three CDF family members that transport zinc out of the cytosol into intracellular compartments: Zhf1, Cis4, and Zrg17. Zhf1 transports zinc into the endoplasmic reticulum, and Cis4 and Zrg17 form a heterodimeric complex that transports zinc into the cis-Golgi. Here we have used the high and low affinity ZapCY zinc-responsive FRET sensors to examine cytosolic zinc levels in yeast mutants that lack each of these CDF proteins. We find that deletion of cis4 or zrg17 leads to higher levels of zinc accumulating in the cytosol under conditions of zinc deficiency, whereas deletion of zhf1 results in zinc accumulating in the cytosol when zinc is not limiting. We also show that the expression of cis4, zrg17, and zhf1 is independent of cellular zinc status. Taken together our results suggest that the Cis4/Zrg17 complex is necessary for zinc transport out of the cytosol under conditions of zinc-deficiency, while Zhf1 plays the dominant role in removing zinc from the cytosol when labile zinc is present. We propose that the properties and/or activities of individual CDF family members are fine-tuned to enable cells to control the flux of zinc out of the cytosol over a broad range of environmental zinc stress.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Ya-Mei Hu
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E Corkins
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Amanda J Bird
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
25
|
Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 2017; 45:11658-11672. [PMID: 28977437 PMCID: PMC5714235 DOI: 10.1093/nar/gkx762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel L Schneider
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
26
|
Corkins ME, Wilson S, Cocuron JC, Alonso AP, Bird AJ. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast. J Biol Chem 2017; 292:13823-13832. [PMID: 28667014 DOI: 10.1074/jbc.m117.798488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Glycolysis and the pentose phosphate pathway both play a central role in the degradation of glucose in all domains of life. Another metabolic route that can facilitate glucose breakdown is the gluconate shunt. In this shunt glucose dehydrogenase and gluconate kinase catalyze the two-step conversion of glucose into the pentose phosphate pathway intermediate 6-phosphogluconate. Despite the presence of these enzymes in many organisms, their only established role is in the production of 6-phosphogluconate for the Entner-Doudoroff pathway. In this report we performed metabolic profiling on a strain of Schizosaccharomyces pombe lacking the zinc-responsive transcriptional repressor Loz1 with the goal of identifying metabolic pathways that were altered by cellular zinc status. This profiling revealed that loz1Δ cells accumulate higher levels of gluconate. We show that the altered gluconate levels in loz1Δ cells result from increased expression of gcd1 By analyzing the activity of recombinant Gcd1 in vitro and by measuring gluconate levels in strains lacking enzymes of the gluconate shunt we demonstrate that Gcd1 encodes a novel NADP+-dependent glucose dehydrogenase that acts in a pathway with the Idn1 gluconate kinase. We also find that cells lacking gcd1 and zwf1, which encode the first enzyme in the pentose phosphate pathway, have a more severe growth phenotype than cells lacking zwf1 We propose that in S. pombe Gcd1 and Idn1 act together to shunt glucose into the pentose phosphate pathway, creating an alternative route for directing glucose into the pentose phosphate pathway that bypasses hexokinase and the rate-limiting enzyme glucose-6-phosphate dehydrogenase.
Collapse
Affiliation(s)
| | | | | | - Ana P Alonso
- From the Department of Molecular Genetics.,Center for Applied Plant Sciences
| | - Amanda J Bird
- From the Department of Molecular Genetics, .,Department of Human Nutrition, and.,the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
27
|
Singh N, Yadav KK, Rajasekharan R. Effect of zinc deprivation on the lipid metabolism of budding yeast. Curr Genet 2017; 63:977-982. [PMID: 28500379 DOI: 10.1007/s00294-017-0704-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Zinc is an essential micronutrient for all living cells. It serves as a structural and catalytic cofactor for numerous proteins, hence maintaining a proper level of cellular zinc is essential for normal functioning of the cell. Zinc homeostasis is sustained through various ways under severe zinc-deficient conditions. Zinc-dependent proteins play an important role in biological systems and limitation of zinc causes a drastic change in their expression. In budding yeast, a zinc-responsive transcription factor Zap1p controls the expression of genes required for uptake and mobilization of zinc under zinc-limiting conditions. It also regulates the polar lipid levels under zinc-limiting conditions to maintain membrane integrity. Deletion of ZAP1 causes an increase in triacylglyerol levels which is due to the increased biosynthesis of acetate that serves as a precursor for triacylglycerol biosynthesis. In this review, we expanded our recent work role of Zap1p in nonpolar lipid metabolism of budding yeast.
Collapse
Affiliation(s)
- Neelima Singh
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India
| | - Kamlesh Kumar Yadav
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India
| | - Ram Rajasekharan
- Department of Lipid Science, Council of Scientific and Industrial Research (CSIR), Central Food Technological Research Institute (CFTRI), Mysore, 570020, Karnataka, India.
| |
Collapse
|
28
|
Warnhoff K, Roh HC, Kocsisova Z, Tan CH, Morrison A, Croswell D, Schneider DL, Kornfeld K. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biol 2017; 15:e2000094. [PMID: 28095401 PMCID: PMC5240932 DOI: 10.1371/journal.pbio.2000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. Zinc is an essential nutrient for all life forms, and maintaining zinc homeostasis is critical for survival. However, little is known about how animals sense changes in zinc availability and make adjustments to maintain homeostasis. In particular, logic dictates there must be a mechanism for zinc sensing, but it has not been defined in animals. We discovered that the nuclear receptor transcription factor HIZR-1 is the master regulator of high zinc homeostasis in the roundworm Caenorhabditis elegans. In response to high dietary zinc, HIZR-1 activates transcription of multiple genes that encode a network of proteins that store and detoxify excess zinc. Furthermore, our results suggest HIZR-1 itself is the high zinc sensor, since it directly binds zinc ions in the ligand-binding domain that regulates transcriptional activation. These findings advance the understanding of zinc homeostasis and nuclear receptor biology. Nuclear receptors were initially characterized as receptors for hormones such as estrogen, indicating complex animals use these transcription factors to monitor their internal environment. However, nuclear receptors are present in simple organisms that lack endocrine signaling, suggesting these transcription factors might have a primordial function in sensing the external environment. Our results identify a new class of nuclear receptor ligands, the inorganic ion zinc, and a new function for nuclear receptors in directly sensing levels of a nutrient. We speculate that nutrient homeostasis mediated by direct binding of nutrients to the ligand-binding domain is a primordial function of nuclear receptors, whereas endocrine signaling in complex animals mediated by direct binding of hormones to the ligand-binding domain is a derived function of nuclear receptors that appeared later in evolution.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hyun C. Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Morrison
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Damari Croswell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
30
|
Zinc sensing and regulation in yeast model systems. Arch Biochem Biophys 2016; 611:30-36. [PMID: 26940262 DOI: 10.1016/j.abb.2016.02.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/23/2022]
Abstract
The Zap1 transcription factor of Saccharomyces cerevisiae and the Loz1 transcription factor of Schizosaccharomyces pombe both play a central role in zinc homeostasis by controlling the expression of genes necessary for zinc metabolism. Zap1 activates gene expression when cells are limited for zinc, while Loz1 is required for gene repression when zinc is in excess. In this review we highlight what is known about the underlying mechanisms by which these factors are regulated by zinc, and how transcriptional activation and repression in eukaryotic cells can be finely tuned according to intracellular zinc availability.
Collapse
|
31
|
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem 2015; 26:1103-15. [PMID: 26342943 DOI: 10.1016/j.jnutbio.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Micronutrients include the transition metal ions zinc, copper and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage and export. By tightly regulating the expression of these genes, each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, posttranscriptional and posttranslational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is known about how these metalloregulatory factors sense fluctuations in metal ion levels and how changes in gene expression maintain nutrient homeostasis.
Collapse
|
32
|
The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element. Mol Cell Biol 2015; 35:977-87. [PMID: 25582195 PMCID: PMC4333095 DOI: 10.1128/mcb.01298-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023] Open
Abstract
We previously identified the ZTRE (zinc transcriptional regulatory element) in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry of a band excised after electrophoretic mobility shift assay using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. Small interfering RNA (siRNA) targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5 gene), SLC30A10 (ZnT10 gene), and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered a large decrease in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.
Collapse
|
33
|
Roh HC, Dimitrov I, Deshmukh K, Zhao G, Warnhoff K, Cabrera D, Tsai W, Kornfeld K. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res 2014; 43:803-16. [PMID: 25552416 PMCID: PMC4333406 DOI: 10.1093/nar/gku1360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ivan Dimitrov
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krupa Deshmukh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Cabrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wendy Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
35
|
Ehrensberger KM, Corkins ME, Choi S, Bird AJ. The double zinc finger domain and adjacent accessory domain from the transcription factor loss of zinc sensing 1 (loz1) are necessary for DNA binding and zinc sensing. J Biol Chem 2014; 289:18087-96. [PMID: 24831008 DOI: 10.1074/jbc.m114.551333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
The Loz1 transcription factor from Schizosaccharomyces pombe plays an essential role in zinc homeostasis by repressing target gene expression in zinc-replete cells. To determine how Loz1 function is regulated by zinc, we employed a genetic screen to isolate mutants with impaired zinc-dependent gene expression and analyzed Loz1 protein truncations to map a minimal zinc-responsive domain. In the screen, we isolated 36 new loz1 alleles. 27 of these alleles contained mutations resulting in the truncation of the Loz1 protein. The remaining nine alleles contained point mutations leading to an amino acid substitution within a C-terminal double zinc finger domain. Further analysis of two of these substitutions revealed that they disrupted Loz1 DNA activity in vitro. By analyzing Loz1 protein truncations, we found that the last 96 amino acids of Loz1 was the smallest region that was able to confer partial zinc-dependent repression in vivo. This 96-amino acid region contains the double zinc finger domain and an accessory domain that enhances DNA binding. These results were further supported by the findings that MtfA, a transcription factor from Aspergillus nidulans that contains a related double zinc finger, is unable to complement loz1Δ, whereas a chimera of MtfA containing the Loz1 accessory domain is able to complement loz1Δ. Together, our studies indicate that the double zinc finger domain and adjacent accessory domain preceding zinc finger 1 are necessary for DNA binding and zinc-dependent repression.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- From the Department of Molecular Genetics, the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | | | | | - Amanda J Bird
- From the Department of Molecular Genetics, the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210the Department of Human Sciences, and
| |
Collapse
|