1
|
Pham C, Komaki Y, Deàs-Just A, Le Gac B, Mouffle C, Franco C, Chaperon A, Vialou V, Tsurugizawa T, Cauli B, Li D. Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis. eLife 2024; 13:RP95873. [PMID: 39508543 PMCID: PMC11542920 DOI: 10.7554/elife.95873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.
Collapse
Affiliation(s)
- Cuong Pham
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life ScienceKawasakiJapan
| | - Anna Deàs-Just
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Benjamin Le Gac
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Christine Mouffle
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Clara Franco
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Agnès Chaperon
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Vincent Vialou
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Faculty of Engineering, University of TsukubaTsukubaJapan
| | - Bruno Cauli
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Dongdong Li
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| |
Collapse
|
2
|
Yoshimaru D, Tsurugizawa T, Hayashi N, Hata J, Shibukawa S, Hagiya K, Oshiro H, Kishi N, Saito K, Okano H, Okano HJ. Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison. Sci Rep 2024; 14:26901. [PMID: 39505977 PMCID: PMC11541870 DOI: 10.1038/s41598-024-78246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomokazu Tsurugizawa
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Hayashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hinako Oshiro
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
3
|
Le Bihan D. From Brownian motion to virtual biopsy: a historical perspective from 40 years of diffusion MRI. Jpn J Radiol 2024:10.1007/s11604-024-01642-z. [PMID: 39289243 DOI: 10.1007/s11604-024-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
- Human Brain Research Center, Kyoto University, Kyoto, Japan.
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
4
|
Segeroth M, Wachsmuth L, Gagel M, Albers F, Hess A, Faber C. Disentangling the impact of cerebrospinal fluid formation and neuronal activity on solute clearance from the brain. Fluids Barriers CNS 2023; 20:43. [PMID: 37316849 DOI: 10.1186/s12987-023-00443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Despite recent attention, pathways and mechanisms of fluid transposition in the brain are still a matter of intense discussion and driving forces underlying waste clearance in the brain remain elusive. Consensus exists that net solute transport is a prerequisite for efficient clearance. The individual impact of neuronal activity and cerebrospinal fluid (CSF) formation, which both vary with brain state and anesthesia, remain unclear. METHODS To separate conditions with high and low neuronal activity and high and low CSF formation, different anesthetic regimens in naive rat were established, using Isoflurane (ISO), Medetomidine (MED), acetazolamide or combinations thereof. With dynamic contrast-enhanced MRI, after application of low molecular weight contrast agent (CA) Gadobutrol to cisterna magna, tracer distribution was monitored as surrogate for solute clearance. Simultaneous fiber-based Ca2+-recordings informed about the state of neuronal activity under different anesthetic regimen. T2-weighted MRI and diffusion-weighted MRI (DWI) provided size of subarachnoidal space and aqueductal flow as surrogates for CSF formation. Finally, a pathway and mechanism-independent two-compartment model was introduced to provide a measure of efficiency for solute clearance from the brain. RESULTS Anatomical imaging, DWI and Ca2+-recordings confirmed that conditions with distinct levels of neuronal activity and CSF formation were achieved. A sleep-resembling condition, with reduced neuronal activity and enhanced CSF formation was achieved using ISO+MED and an awake-like condition with high neuronal activity using MED alone. CA distribution in the brain correlated with the rate of CSF formation. The cortical brain state had major influence on tracer diffusion. Under conditions with low neuronal activity, higher diffusivity suggested enlargement of extracellular space, facilitating a deeper permeation of solutes into brain parenchyma. Under conditions with high neuronal activity, diffusion of solutes into parenchyma was hindered and clearance along paravascular pathways facilitated. Exclusively based on the measured time signal curves, the two-compartment model provided net exchange ratios, which were significantly larger for the sleep-resembling condition than for the awake-like condition. CONCLUSIONS Efficiency of solute clearance in brain changes with alterations in both state of neuronal activity and CSF formation. Our clearance pathway and mechanism agnostic kinetic model informs about net solute transport, solely based on the measured time signal curves. This rather simplifying approach largely accords with preclinical and clinical findings.
Collapse
Affiliation(s)
- Martin Segeroth
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Lydia Wachsmuth
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Mathias Gagel
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Franziska Albers
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW, Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany.
| |
Collapse
|
5
|
Roth BJ. Can MRI Be Used as a Sensor to Record Neural Activity? SENSORS (BASEL, SWITZERLAND) 2023; 23:1337. [PMID: 36772381 PMCID: PMC9918955 DOI: 10.3390/s23031337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Magnetic resonance provides exquisite anatomical images and functional MRI monitors physiological activity by recording blood oxygenation. This review attempts to answer the following question: Can MRI be used as a sensor to directly record neural behavior? It considers MRI sensing of electrical activity in the heart and in peripheral nerves before turning to the central topic: recording of brain activity. The primary hypothesis is that bioelectric current produced by a nerve or muscle creates a magnetic field that influences the magnetic resonance signal, although other mechanisms for detection are also considered. Recent studies have provided evidence that using MRI to sense neural activity is possible under ideal conditions. Whether it can be used routinely to provide functional information about brain processes in people remains an open question. The review concludes with a survey of artificial intelligence techniques that have been applied to functional MRI and may be appropriate for MRI sensing of neural activity.
Collapse
Affiliation(s)
- Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Tanaka K. Astroglia and Obsessive Compulsive Disorder. ADVANCES IN NEUROBIOLOGY 2021; 26:139-149. [PMID: 34888834 DOI: 10.1007/978-3-030-77375-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obsessive compulsive disorder (OCD) has a prevalence rate of 1-3% in the general population and has been ranked as one of the top ten leading causes of illness-related disability (American Psychiatric Association 2013; Kessler et al. 2005). OCD is characterized by persistent intrusive thoughts (obsessions) and repetitive behaviors (compulsions) (Leckman et al. 1997). There are various OCD-related disorders, including Tourette syndrome (TS), grooming disorders (e.g., skin-picking, trichotillomania), and autism spectrum disorders (ASD) that share considerable overlapping features with OCD (Browne et al. 2014). Although the neurobiological basis of OCD still remains obscure, neuroimaging studies in patients with OCD and OCD-related disorders have consistently identified hyperactivity in orbitofrontal cortex and striatum (Cerliani et al. 2015; Hou et al. 2014; Jung et al. 2017; Neuner et al. 2014). However, the cellular and synaptic abnormalities underlying this hyperactivity are unclear. The most prominent theory regarding the underlying mechanisms of OCD and OCD-related disorders is an increased excitation to inhibition (E/I) ratio due to increased glutamatergic excitation or reduced GABAergic inhibition (Albin and Mink 2006; Rubenstein and Merzenich 2003; Wu et al. 2012). A proper E/I ratio is achieved by factors expressed in neuron and glia. In astrocytes, both the glutamate transporter GLT1 and GABA transporter GAT-3 are critical for regulating the E/I balance (Aida et al. 2015; Aizawa et al. 2020; Boddum et al. 2016; Cui et al. 2014; Kersanté et al. 2013; Kiryk et al. 2008; Matos et al. 2018; Scimemi 2014; Sugimoto et al. 2018; Sugiyama et al. 2017; Tanaka et al. 1997; Zhao et al. 2018). Although astrocyte dysfunction has not been directly explored in OCD patients, several animal studies have found that astrocytes are involved in the pathophysiology of OCD. In this chapter, I highlight recent studies in which astrocyte dysfunction contributed to E/I imbalance, leading to pathological repetitive behaviors shared between patients with OCD, TS, and ASD.
Collapse
Affiliation(s)
- Kohichi Tanaka
- Tokyo Medical and Dental University, Department of Molecular Neuroscience, Medical Research Institute, Tokyo, Japan.
| |
Collapse
|
7
|
Impact of anesthesia on static and dynamic functional connectivity in mice. Neuroimage 2021; 241:118413. [PMID: 34293463 DOI: 10.1016/j.neuroimage.2021.118413] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
A few studies have compared the static functional connectivity between awake and lightly anesthetized states in rodents by resting-state fMRI. However, impact of light anesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under light anesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric and subcortical connections were key connections for anesthetized condition from awake state. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only under light anesthesia compared with awake state. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anesthesia. These results indicate that typical anesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.
Collapse
|
8
|
Callow DD, Won J, Pena GS, Jordan LS, Arnold-Nedimala NA, Kommula Y, Nielson KA, Smith JC. Exercise Training-Related Changes in Cortical Gray Matter Diffusivity and Cognitive Function in Mild Cognitive Impairment and Healthy Older Adults. Front Aging Neurosci 2021; 13:645258. [PMID: 33897407 PMCID: PMC8060483 DOI: 10.3389/fnagi.2021.645258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with Mild Cognitive Impairment (MCI) are at an elevated risk of dementia and exhibit deficits in cognition and cortical gray matter (GM) volume, thickness, and microstructure. Meanwhile, exercise training appears to preserve brain function and macrostructure may help delay or prevent the onset of dementia in individuals with MCI. Yet, our understanding of the neurophysiological effects of exercise training in individuals with MCI remains limited. Recent work suggests that the measures of gray matter microstructure using diffusion imaging may be sensitive to early cognitive and neurophysiological changes in the aging brain. Therefore, this study is aimed to determine the effects of exercise training in cognition and cortical gray matter microstructure in individuals with MCI vs. cognitively healthy older adults. Fifteen MCI participants and 17 cognitively intact controls (HC) volunteered for a 12-week supervised walking intervention. Following the intervention, MCI and HC saw improvements in cardiorespiratory fitness, performance on Trial 1 of the Rey Auditory Verbal Learning Test (RAVLT), a measure of verbal memory, and the Controlled Oral Word Association Test (COWAT), a measure of verbal fluency. After controlling for age, a voxel-wise analysis of cortical gray matter diffusivity showed individuals with MCI exhibited greater increases in mean diffusivity (MD) in the left insular cortex than HC. This increase in MD was positively associated with improvements in COWAT performance. Additionally, after controlling for age, the voxel-wise analysis indicated a main effect of Time with both groups experiencing an increase in left insular and left and right cerebellar MD. Increases in left insular diffusivity were similarly found to be positively associated with improvements in COWAT performance in both groups, while increases in cerebellar MD were related to gains in episodic memory performance. These findings suggest that exercise training may be related to improvements in neural circuits that govern verbal fluency performance in older adults through the microstructural remodeling of cortical gray matter. Furthermore, changes in left insular cortex microstructure may be particularly relevant to improvements in verbal fluency among individuals diagnosed with MCI.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Leslie S Jordan
- Department of Kinesiology, University of Maryland, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | | | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, United States.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
9
|
Tsurugizawa T, Tamada K, Debacker C, Zalesky A, Takumi T. Cranioplastic Surgery and Acclimation Training for Awake Mouse fMRI. Bio Protoc 2021; 11:e3972. [PMID: 33889666 DOI: 10.21769/bioprotoc.3972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/02/2022] Open
Abstract
MRI is a promising tool for translational research to link brain function and structure in animal models of disease to patients with neuropsychiatric disorders. However, given that mouse functional MRI (fMRI) typically relies on anesthetics to suppress head motion and physiological noise, it has been difficult to directly compare brain fMRI in anesthetized mice with that in conscious patients. Here, we developed a new system to acquire fMRI in awake mice, which includes a head positioner and dedicated radio frequency coil. The system was used to investigate functional brain networks in conscious mice, with the goal of enabling future studies to bridge fMRI of disease model animals with human fMRI. Cranioplastic surgery was performed to affix the head mount and the cupped-hand handling method was performed to minimize stress during MRI scanning. Here we describe the new mouse fMRI system, cranioplastic surgery and acclimation protocol. Graphic abstract: Awake fMRI system to investigate the neuronal activity in awaked mice.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-City, Ibaraki, Japan.,NeuroSpin/CEA-Saclay, Gif-sur-Yvette, France
| | - Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Clement Debacker
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
10
|
Nunes D, Gil R, Shemesh N. A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics. Neuroimage 2021; 231:117862. [PMID: 33592243 DOI: 10.1016/j.neuroimage.2021.117862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function in-vivo. However, the neurovascular coupling mechanisms underlying fMRI are somewhat "distant" from neural activity. Interestingly, evidence from Intrinsic Optical Signals (IOSs) indicates that neural activity is also coupled to (sub)cellular morphological modulations. Diffusion-weighted functional MRI (dfMRI) experiments have been previously proposed to probe such neuromorphological couplings, but the underlying mechanisms have remained highly contested. Here, we provide the first direct link between in vivo ultrafast dfMRI signals upon rat forepaw stimulation and IOSs in acute slices stimulated optogenetically. We reveal a hitherto unreported rapid onset (<100 ms) dfMRI signal component which (i) agrees with fast-rising IOSs dynamics; (ii) evidences a punctate quantitative correspondence to the stimulation period; and (iii) is rather insensitive to a vascular challenge. Our findings suggest that neuromorphological coupling can be detected via dfMRI signals, auguring well for future mapping of neural activity more directly compared with blood-oxygenation-level-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
11
|
Li Y, Han H, Shi K, Cui D, Yang J, Alberts IL, Yuan L, Zhao G, Wang R, Cai X, Teng Z. The Mechanism of Downregulated Interstitial Fluid Drainage Following Neuronal Excitation. Aging Dis 2020; 11:1407-1422. [PMID: 33269097 PMCID: PMC7673848 DOI: 10.14336/ad.2020.0224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (DECS) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation. We further studied aquaporin-4 gene (APQ4) knockout rats in which the changes of the brain ECS structure were reversed and found that the slowed DECS and ISF drainage persisted, confirming that the down-regulation of ISF drainage following neuronal excitation was mainly attributable to the release of neurotransmitters rather than to structural changes of the brain ECS. Meanwhile, the dynamic changes in the DECS were synchronized with the release and elimination processes of neurotransmitters following neuronal excitation. In conclusion, the downregulation of ISF drainage following neuronal excitation was found to be caused by the restricted diffusion in the brain ECS, and DECS mapping may be used to track the neuronal activity in the deep brain.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
- Department of Informatics, Technical University of Munich, Garching 85748, Germany.
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Ian Leigh Alberts
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xianjie Cai
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. J Neurosci Methods 2020; 346:108911. [DOI: 10.1016/j.jneumeth.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
|
13
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Abe Y, Takata N, Sakai Y, Hamada HT, Hiraoka Y, Aida T, Tanaka K, Bihan DL, Doya K, Tanaka KF. Diffusion functional MRI reveals global brain network functional abnormalities driven by targeted local activity in a neuropsychiatric disease mouse model. Neuroimage 2020; 223:117318. [PMID: 32882386 DOI: 10.1016/j.neuroimage.2020.117318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Norio Takata
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan; Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France; Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kenji F Tanaka
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
15
|
Fujiwara S, Mori Y, de la Mora DM, Akamatsu Y, Yoshida K, Shibata Y, Masuda T, Ogasawara K, Yoshioka Y. Feasibility of IVIM parameters from diffusion-weighted imaging at 11.7T MRI for detecting ischemic changes in common carotid artery occlusion rats. Sci Rep 2020; 10:8404. [PMID: 32439877 PMCID: PMC7242437 DOI: 10.1038/s41598-020-65310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate whether intravoxel incoherent motion (IVIM) parameters can identify ischemic changes in the rat cerebral cortex using a preclinical ultra-high-field 11.7 Tesla magnetic resonance imaging (11.7TMRI) scanner. In nine female Wistar rats (eight weeks old), diffusion-weighted imaging (DWI) for IVIM analysis was successfully performed before (Pre) and after unilateral (UCCAO) and bilateral (BCCAO) common carotid artery occlusion. From the acquired DWI signals averaged in six regions of interest (ROI) placed on the cortex, volume fraction of perfusion compartment (F), pseudo diffusion coefficient (D*), F × D* and apparent diffusion coefficient (ADC) were determined as IVIM parameters in the following three DWI signal models: the bi-exponential, kurtosis, and tri-exponential model. For a subgroup analysis, four rats that survived two weeks after BCCAO were assigned to the long survival (LS) group, whereas the non-LS group consisted of the remaining five animals. Each IVIM parameter change among three phases (Pre, UCCAO and BCCAO) was statistically examined in each ROI. Then, the change in each rat group was also examined for subgroup analysis. All three models were able to identify cerebral ischemic change and damage as IVIM parameter change among three phases. Furthermore, the kurtosis model could identify the parameter changes in more regions than the other two models. In the subgroup analysis with the kurtosis model, ADC in non-LS group significantly decreased between UCCAO and BCCAO but not in LS group. IVIM parameters at 11.7TMRI may help us to detect the subtle ischemic change; in particular, with the kurtosis model.
Collapse
Affiliation(s)
- Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | | | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yuji Shibata
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tomoyuki Masuda
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), NICT and Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Komaki Y, Debacker C, Djemai B, Ciobanu L, Tsurugizawa T, Bihan DL. Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex. PLoS One 2020; 15:e0228759. [PMID: 32437449 PMCID: PMC7241787 DOI: 10.1371/journal.pone.0228759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed. Those results further confirm the implications of astrocytes in the neurovascular coupling mechanism underlying BOLD fMRI, but not in the DfMRI responses which remained unsensitive to astrocyte function perturbation.
Collapse
Affiliation(s)
- Yuji Komaki
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Boucif Djemai
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
17
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography. Neuroimage 2020; 209:116525. [DOI: 10.1016/j.neuroimage.2020.116525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
|
18
|
Tsurugizawa T, Tamada K, Ono N, Karakawa S, Kodama Y, Debacker C, Hata J, Okano H, Kitamura A, Zalesky A, Takumi T. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. SCIENCE ADVANCES 2020; 6:eaav4520. [PMID: 32076634 PMCID: PMC7002125 DOI: 10.1126/sciadv.aav4520] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
MRI has potential as a translational approach from rodents to humans. However, given that mouse functional MRI (fMRI) uses anesthetics for suppression of motion, it has been difficult to directly compare the result of fMRI in "unconsciousness" disease model mice with that in "consciousness" patients. We develop awake fMRI to investigate brain function in 15q dup mice, a copy number variation model of autism. Compared to wild-type mice, we find that 15q dup is associated with whole-brain functional hypoconnectivity and diminished fMRI responses to odors of stranger mice. Ex vivo diffusion MRI reveals widespread anomalies in white matter ultrastructure in 15q dup mice, suggesting a putative anatomical substrate for these functional hypoconnectivity. We show that d-cycloserine (DCS) treatment partially normalizes these anormalies in the frontal cortex of 15q dup mice and rescues some social behaviors. Our results demonstrate the utility of awake rodent fMRI and provide a rationale for further investigation of DCS therapy.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette 91191, France
- Corresponding author. (T.Ts.); (T.Ta.)
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Nobukazu Ono
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Sachise Karakawa
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Yuko Kodama
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Clement Debacker
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Junichi Hata
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8585, Japan
| | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8585, Japan
| | - Akihiko Kitamura
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
- Corresponding author. (T.Ts.); (T.Ta.)
| |
Collapse
|
19
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Albers F, Wachsmuth L, Schache D, Lambers H, Faber C. Functional MRI Readouts From BOLD and Diffusion Measurements Differentially Respond to Optogenetic Activation and Tissue Heating. Front Neurosci 2019; 13:1104. [PMID: 31708721 PMCID: PMC6821691 DOI: 10.3389/fnins.2019.01104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Functional blood-oxygenation-level-dependent (BOLD) MRI provides a brain-wide readout that depends on the hemodynamic response to neuronal activity. Diffusion fMRI has been proposed as an alternative to BOLD fMRI and has been postulated to directly rely on neuronal activity. These complementary functional readouts are versatile tools to be combined with optogenetic stimulation to investigate networks of the brain. The cell-specificity and temporal precision of optogenetic manipulations promise to enable further investigation of the origin of fMRI signals. The signal characteristics of the diffusion fMRI readout vice versa may better resolve network effects of optogenetic stimulation. However, the light application needed for optogenetic stimulation is accompanied by heat deposition within the tissue. As both diffusion and BOLD are sensitive to temperature changes, light application can lead to apparent activations confounding the interpretation of fMRI data. The degree of tissue heating, the appearance of apparent activation in different fMRI sequences and the origin of these phenomena are not well understood. Here, we disentangled apparent activations in BOLD and diffusion measurements in rats from physiological activation upon sensory or optogenetic stimulation. Both, BOLD and diffusion fMRI revealed similar signal shapes upon sensory stimulation that differed clearly from those upon heating. Apparent activations induced by high-intensity light application were dominated by T2∗-effects and resulted in mainly negative signal changes. We estimated that even low-intensity light application used for optogenetic stimulation reduces the BOLD response close to the fiber by up to 0.4%. The diffusion fMRI signal contained T2, T2∗ and diffusion components. The apparent diffusion coefficient, which reflects the isolated diffusion component, showed negative changes upon both optogenetic and electric forepaw stimulation. In contrast, positive changes were detected upon high-intensity light application and thus ruled out heating as a major contributor to the diffusion fMRI signal.
Collapse
Affiliation(s)
- Franziska Albers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Daniel Schache
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Henriette Lambers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
21
|
Lizarbe B, Fernández-Pérez A, Caz V, Largo C, Vallejo M, López-Larrubia P, Cerdán S. Systemic Glucose Administration Alters Water Diffusion and Microvascular Blood Flow in Mouse Hypothalamic Nuclei - An fMRI Study. Front Neurosci 2019; 13:921. [PMID: 31551685 PMCID: PMC6733885 DOI: 10.3389/fnins.2019.00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
The hypothalamus is the principal regulator of global energy balance, enclosing additionally essential neuronal centers for glucose-sensing and osmoregulation. Disturbances in these tightly regulated neuronal networks are thought to underlie the development of severe pandemic syndromes, including obesity and diabetes. In this work, we investigate in vivo the response of individual hypothalamic nuclei to the i.p. administration of glucose or vehicle solutions, using two groups of adult male C57BL6/J fasted mice and a combination of non-invasive T2∗-weighted and diffusion-weighted functional magnetic resonance imaging (fMRI) approaches. MRI parameters were assessed in both groups of animals before, during and in a post-stimulus phase, following the administration of glucose or vehicle solutions. Hypothalamic nuclei depicted different patterns of activation characterized by: (i) generalized glucose-induced increases of neuronal activation and perfusion-markers in the lateral hypothalamus, arcuate and dorsomedial nuclei, (ii) cellular shrinking events and decreases in microvascular blood flow in the dorsomedial, ventromedial and lateral hypothalamus, following the administration of vehicle solutions and (iii) increased neuronal activity markers and decreased microperfusion parameters in the ARC nuclei of vehicle-administered animals. Immunohistochemical studies performed after the post-stimulus phase confirmed the presence of c-Fos immunoreactive neurons in the arcuate nucleus (ARC) from both animal groups, with significantly higher numbers in the glucose-treated animals. Together, our results reveal that fMRI methods are able to detect in vivo diverse patterns of glucose or vehicle-induced effects in the different hypothalamic nuclei.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Caz
- Departamento de Cirugía Experimental, Instituto de Investigación Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Carlota Largo
- Departamento de Cirugía Experimental, Instituto de Investigación Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| |
Collapse
|
22
|
De Luca A, Schlaffke L, Siero JCW, Froeling M, Leemans A. On the sensitivity of the diffusion MRI signal to brain activity in response to a motor cortex paradigm. Hum Brain Mapp 2019; 40:5069-5082. [PMID: 31410939 PMCID: PMC6865683 DOI: 10.1002/hbm.24758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion functional magnetic resonance imaging (dfMRI) is a promising technique to map functional activations by acquiring diffusion‐weighed spin‐echo images. In previous studies, dfMRI showed higher spatial accuracy at activation mapping compared to classic functional MRI approaches. However, it remains unclear whether dfMRI measures result from changes in the intracellular/extracellular environment, perfusion, and/or T2 values. We designed an acquisition/quantification scheme to disentangle such effects in the motor cortex during a finger‐tapping paradigm. dfMRI was acquired at specific diffusion weightings to selectively suppress perfusion and free‐water diffusion, then time series of the apparent diffusion coefficient (ADC‐fMRI) and of intravoxel incoherent motion (IVIM) effects were derived. ADC‐fMRI provided ADC estimates sensitive to changes in perfusion and free‐water volume, but not to T2/T2* values. With IVIM modeling, we isolated the perfusion contribution to ADC, while suppressing T2 effects. Compared to conventional gradient‐echo blood oxygenation level‐dependent fMRI, activation maps obtained with dfMRI and ADC‐fMRI had smaller clusters, and the spatial overlap between the three techniques was below 50%. Increases of perfusion fractions were observed during task in both dfMRI and ADC‐fMRI activations. Perfusion effects were more prominent with ADC‐fMRI than with dfMRI but were significant in less than 25% of activation regions. IVIM modeling suggests that the sensitivity to task of dfMRI derives from a decrease of intracellular/extracellular diffusion and an increase of the pseudo‐diffusion signal fraction, leading to different, more confined spatial activation patterns compared to classic functional MRI.
Collapse
Affiliation(s)
- Alberto De Luca
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jeroen C W Siero
- Department of Radiology, UMC Utrecht, Utrecht, The Netherlands.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Oh MI, Gupta M, Weaver DF. Understanding Water Structure in an Ion-Pair Solvation Shell in the Vicinity of a Water/Membrane Interface. J Phys Chem B 2019; 123:3945-3954. [DOI: 10.1021/acs.jpcb.9b01331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myong In Oh
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
24
|
Liu C, Özarslan E. Multimodal integration of diffusion MRI for better characterization of tissue biology. NMR IN BIOMEDICINE 2019; 32:e3939. [PMID: 30011138 DOI: 10.1002/nbm.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The contrast in diffusion-weighted MR images is due to variations of diffusion properties within the examined specimen. Certain microstructural information on the underlying tissues can be inferred through quantitative analyses of the diffusion-sensitized MR signals. In the first part of the paper, we review two types of approach for characterizing diffusion MRI signals: Bloch's equations with diffusion terms, and statistical descriptions. Specifically, we discuss expansions in terms of cumulants and orthogonal basis functions, the confinement tensor formalism and tensor distribution models. Further insights into the tissue properties may be obtained by integrating diffusion MRI with other techniques, which is the subject of the second part of the paper. We review examples involving magnetic susceptibility, structural tensors, internal field gradients, transverse relaxation and functional MRI. Integrating information provided by other imaging modalities (MR based or otherwise) could be a key to improve our understanding of how diffusion MRI relates to physiology and biology.
Collapse
Affiliation(s)
- Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun 2019; 10:952. [PMID: 30862827 PMCID: PMC6414607 DOI: 10.1038/s41467-019-08750-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spleen to modulate the cholinergic anti-inflammatory pathway (CAP), and US stimulation is shown to reduce cytokine response to endotoxin to the same levels as implant-based vagus nerve stimulation (VNS). Next, hepatic U/S stimulation is shown to modulate pathways that regulate blood glucose and is as effective as VNS in suppressing the hyperglycemic effect of endotoxin exposure. This response to hepatic U/S is only found when targeting specific sub-organ locations known to contain glucose sensory neurons, and both molecular (i.e. neurotransmitter concentration and cFOS expression) and neuroimaging results indicate US induced signaling to metabolism-related hypothalamic sub-nuclei. These data demonstrate that U/S stimulation within organs provides a new method for site-selective neuromodulation to regulate specific physiological functions. Stimulation of peripheral nerve activity may be used to treat metabolic and inflammatory disorders, but current approaches need implanted devices. Here, the authors present a non-invasive approach, and show that ultrasound-mediated stimulation can be targeted to specific sub-organ locations in preclinical models and alter the response of metabolic and inflammatory neural pathways.
Collapse
|
26
|
The impact of fasting on resting state brain networks in mice. Sci Rep 2019; 9:2976. [PMID: 30814613 PMCID: PMC6393589 DOI: 10.1038/s41598-019-39851-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Fasting is known to influence learning and memory in mice and alter the neural networks that subserve these cognitive functions. We used high-resolution functional MRI to study the impact of fasting on resting-state functional connectivity in mice following 12 h of fasting. The cortex and subcortex were parcellated into 52 subregions and functional connectivity was measured between each pair of subregions in groups of fasted and non-fasted mice. Functional connectivity was globally increased in the fasted group compared to the non-fasted group, with the most significant increases evident between the hippocampus (bilateral), retrosplenial cortex (left), visual cortex (left) and auditory cortex (left). Functional brain networks in the non-fasted group comprised five segregated modules of strongly interconnected subregions, whereas the fasted group comprised only three modules. The amplitude of low frequency fluctuations (ALFF) was decreased in the ventromedial hypothalamus in the fasted group. Correlation in gamma oscillations derived from local field potentials was increased between the left visual and retrosplenial cortices in the fasted group and the power of gamma oscillations was reduced in the ventromedial hypothalamus. These results indicate that fasting induces profound changes in functional connectivity, most likely resulting from altered coupling of neuronal gamma oscillations.
Collapse
|
27
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
28
|
Paquette T, Jeffrey-Gauthier R, Leblond H, PichÉ M. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Anat Rec (Hoboken) 2018; 301:1585-1595. [PMID: 29752872 DOI: 10.1002/ar.23854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in the brain and spinal cord are tightly linked and interrelated. The objective of this topical review is to discuss work on neurovascular coupling during nociceptive processing in order to highlight supporting evidence and limitations for the use of cerebral and spinal fMRI to investigate pain mechanisms and spinal nociceptive processes. Work on functional neuroimaging of pain is presented and discussed in relation to available neurovascular coupling studies and related issues. Perspectives on future work are also discussed with an emphasis on differences between the brain and the spinal cord and on different approaches that may be useful to improve current methods, data analyses and interpretation. In summary, this review highlights the lack of data on neurovascular coupling during nociceptive stimulation and indicates that hemodynamic and BOLD responses measured with fMRI may be biased by nonspecific vascular changes. Future neuroimaging studies on nociceptive and pain-related processes would gain further understanding of neurovascular coupling in the brain and spinal cord and should take into account the effects of systemic vascular changes that may affect hemodynamic responses. Anat Rec, 301:1585-1595, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Renaud Jeffrey-Gauthier
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu PichÉ
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
29
|
Pan WJ, Lee SY, Billings J, Nezafati M, Majeed W, Buckley E, Keilholz S. Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain. Neuroimage 2018; 179:207-214. [PMID: 29908312 DOI: 10.1016/j.neuroimage.2018.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
Optical studies of ex vivo brain slices where blood is absent show that neural activity is accompanied by significant intrinsic optical signals (IOS) related to activity-dependent scattering changes in neural tissue. However, the neural scattering signals have been largely ignored in vivo in widely-used IOS methods where absorption contrast from hemoglobin was employed. Changes in scattering were observed on a time scale of seconds in previous brain slice IOS studies, similar to the time scale for the hemodynamic response. Therefore, potential crosstalk between the scattering and absorption changes may not be ignored if they have comparable contributions to IOS. In vivo, the IOS changes linked to neural scattering have been elusive. To isolate neural scattering signals in vivo, we employed 2 implantable optodes for small-separation (2 mm) transmission measurements of local brain tissue in anesthetized rats. This unique geometry enables us to separate neuronal activity-related changes in neural tissue scattering from changes in blood absorption based upon the direction of the signal change. The changes in IOS scattering and absorption in response to up-states of spontaneous neuronal activity in cortical or subcortical structures have strong correlation to local field potentials, but significantly different response latencies. We conclude that activity-dependent neural tissue scattering in vivo may be an additional source of contrast for functional brain studies that provides complementary information to other optical or MR-based systems that are sensitive to hemodynamic contrast.
Collapse
Affiliation(s)
- Wen-Ju Pan
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA.
| | - Seung Yup Lee
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Jacob Billings
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Maysam Nezafati
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Waqas Majeed
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Erin Buckley
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Shella Keilholz
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Takata N, Sugiura Y, Yoshida K, Koizumi M, Hiroshi N, Honda K, Yano R, Komaki Y, Matsui K, Suematsu M, Mimura M, Okano H, Tanaka KF. Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia 2018; 66:2013-2023. [PMID: 29845643 DOI: 10.1002/glia.23454] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the brain. A recent study demonstrated, however, unexpected BOLD signal generation without neuronal excitation, which led us to hypothesize the presence of another cellular source for BOLD signal generation. Collective assessment of optogenetic activation of astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and histochemical detection of neuronal activation, coherently suggested astrocytes as another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied oxygen consumption without modulation of neuronal activity. Imaging mass spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our data provide causal evidence that astrocytic activation alone is able to evoke BOLD signal response, which may lead to reconsideration of current interpretation of BOLD signal as a marker of neuronal activation.
Collapse
Affiliation(s)
- Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Miwako Koizumi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Nishida Hiroshi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryutaro Yano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
31
|
Magnetic Resonance Imaging technology-bridging the gap between noninvasive human imaging and optical microscopy. Curr Opin Neurobiol 2018; 50:250-260. [PMID: 29753942 DOI: 10.1016/j.conb.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) have provided substantial gains in the sensitivity and specificity of functional neuroimaging. Mounting evidence demonstrates that the hemodynamic changes utilized in functional MRI can be far more spatially and thus neuronally specific than previously believed. This has motivated a push toward novel, high-resolution MR imaging strategies that can match this biological resolution limit while recording from the entire human brain. Although sensitivity increases are a necessary component, new MR encoding technologies are required to convert improved sensitivity into higher resolution. These new sampling strategies improve image acquisition efficiency and enable increased image encoding in the time-frame needed to follow hemodynamic changes associated with brain activation.
Collapse
|
32
|
Lucia FS, Pacheco-Torres J, González-Granero S, Canals S, Obregón MJ, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Arrests Myelination in the Anterior Commissure of Rats. A Magnetic Resonance Image and Electron Microscope Study. Front Neuroanat 2018; 12:31. [PMID: 29755326 PMCID: PMC5935182 DOI: 10.3389/fnana.2018.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico S. Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Sant Joan d’Alacant, Alicante, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de València, Valencia, Spain
| | - Santiago Canals
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - María-Jesús Obregón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de València, Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
33
|
Weickenmeier J, Kurt M, Ozkaya E, de Rooij R, Ovaert TC, Ehman RL, Butts Pauly K, Kuhl E. Brain stiffens post mortem. J Mech Behav Biomed Mater 2018; 84:88-98. [PMID: 29754046 PMCID: PMC6751406 DOI: 10.1016/j.jmbbm.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer’s disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain–unlike any other organ–is a dynamic property that is highly sensitive to the metabolic environment Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain’s response to high impact loading.
Collapse
Affiliation(s)
- J Weickenmeier
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - M Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - E Ozkaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - R de Rooij
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - T C Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - R L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - K Butts Pauly
- Department of Radiology Stanford University Stanford, CA 94305, USA
| | - E Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Klein JC, Rolinski M, Griffanti L, Szewczyk-Krolikowski K, Baig F, Ruffmann C, Groves AR, Menke RAL, Hu MT, Mackay C. Cortical structural involvement and cognitive dysfunction in early Parkinson's disease. NMR IN BIOMEDICINE 2018; 31:e3900. [PMID: 29436039 DOI: 10.1002/nbm.3900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance imaging (MRI) studies in early Parkinson's disease (PD) have shown promise in the detection of disease-related brain changes in the white and deep grey matter. We set out to establish whether intrinsic cortical involvement in early PD can be detected with quantitative MRI. We collected a rich, multi-modal dataset, including diffusion MRI, T1 relaxometry and cortical morphometry, in 20 patients with early PD (disease duration, 1.9 ± 0.97 years, Hoehn & Yahr 1-2) and in 19 matched controls. The cortex was reconstructed using FreeSurfer. Data analysis employed linked independent component analysis (ICA), a novel data-driven technique that allows for data fusion and extraction of multi-modal components before further analysis. For comparison, we performed standard uni-modal analysis with a general linear model (GLM). Linked ICA detected multi-modal cortical changes in early PD (p = 0.015). These comprised fractional anisotropy reduction in dorsolateral prefrontal, cingulate and premotor cortex and the superior parietal lobule, mean diffusivity increase in the mesolimbic, somatosensory and superior parietal cortex, sparse diffusivity decrease in lateral parietal and right prefrontal cortex, and sparse changes to the cortex area. In PD, the amount of cortical dysintegrity correlated with diminished cognitive performance. Importantly, uni-modal analysis detected no significant group difference on any imaging modality. We detected microstructural cortical pathology in early PD using a data-driven, multi-modal approach. This pathology is correlated with diminished cognitive performance. Our results indicate that early degenerative processes leave an MRI signature in the cortex of patients with early PD. The cortical imaging findings are behaviourally meaningful and provide a link between cognitive status and microstructural cortical pathology in patients with early PD.
Collapse
Affiliation(s)
- J C Klein
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB Centre, University of Oxford, Oxford, UK
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - M Rolinski
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - L Griffanti
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB Centre, University of Oxford, Oxford, UK
| | - K Szewczyk-Krolikowski
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - F Baig
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - C Ruffmann
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - A R Groves
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB Centre, University of Oxford, Oxford, UK
| | - R A L Menke
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB Centre, University of Oxford, Oxford, UK
| | - M T Hu
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - C Mackay
- Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Ianuş A, Shemesh N. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping. Magn Reson Med 2017; 79:2198-2204. [PMID: 28868785 PMCID: PMC5836954 DOI: 10.1002/mrm.26894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023]
Abstract
Purpose Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T2. The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion‐weighted images necessary for quantitative diffusivity mapping are acquired in a single‐shot experiment. Methods A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof‐of‐concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Results Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two‐shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal‐to‐noise considerations identified the regimes in which INDI is most beneficial. Conclusions The INDI method accelerates diffusion MRI acquisition to single‐shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T2 bias. Magn Reson Med 79:2198–2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Andrada Ianuş
- Champalimaud Neuroscience Programme, Champalimaud Centre for the UnknownLisbonPortugal
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonUnited Kingdom
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the UnknownLisbonPortugal
| |
Collapse
|
36
|
Tsurugizawa T, Abe Y, Le Bihan D. Water apparent diffusion coefficient correlates with gamma oscillation of local field potentials in the rat brain nucleus accumbens following alcohol injection. J Cereb Blood Flow Metab 2017; 37:3193-3202. [PMID: 28058981 PMCID: PMC5584694 DOI: 10.1177/0271678x16685104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Ethanol is a vasoactive agent as well as psychoactive drug. The neurovascular response, coupled with neuronal activity, can be disturbed by alcohol intake. Hence, blood oxygenation level-dependent (BOLD) fMRI, which relies on neurovascular coupling, might not be reliable to reflect alcohol-induced neuronal responses. Recently, diffusion fMRI has been shown to be more sensitive to neural activity than BOLD fMRI even when neurovascular coupling is disrupted. Especially, the apparent diffusion coefficient (ADC) is sensitive to changes occurring in the cellular tissue structure upon activation. In the present study, we compared BOLD fMRI signals, ADC, and local field potentials (LFPs) in the nucleus accumbens (NAc) following injection of an ethanol solution (0.4 g/kg body weight) in rats under medetomidine anesthesia. An increase in the gamma oscillation power of LFP and an ADC decrease were observed 5 min after the injection of EtOH. The BOLD signals showed a negative slow drift, similar to mean arterial pressure with a peak approximately 10 min after the injection. These results confirm that DfMRI can be a better marker of the neuronal activity than BOLD fMRI, especially when the brain hemodynamic status is changed by vasoactive drugs such as ethanol.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| | - Yoshifumi Abe
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Abe Y, Van Nguyen K, Tsurugizawa T, Ciobanu L, Le Bihan D. Modulation of water diffusion by activation-induced neural cell swelling in Aplysia Californica. Sci Rep 2017; 7:6178. [PMID: 28733682 PMCID: PMC5522485 DOI: 10.1038/s41598-017-05586-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/31/2017] [Indexed: 01/26/2023] Open
Abstract
Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as a method for functional neuroimaging studies, as an alternative to blood oxygenation level dependent (BOLD)-fMRI. DfMRI is thought to more directly reflect neural activation, but its exact mechanism remains unclear. It has been hypothesized that the water apparent diffusion coefficient (ADC) decrease observed upon neural activation results from swelling of neurons or neuron parts. To elucidate the origin of the DfMRI response at cellular level we performed diffusion MR microscopy at 17.2 T in Aplysia californica buccal ganglia and compared the water ADCs at cellular and ganglia levels before and after neuronal activation induced by perfusion with a solution containing dopamine. Neural cell swelling, evidenced from optical microscopy imaging, resulted in an intracellular ADC increase and an ADC decrease at ganglia level. Furthermore, the intracellular ADC increase was found to have a significant positive correlation with the increase in cell size. Our results strongly support the hypothesis that the ADC decrease observed with DfMRI upon neuronal activation at tissue level reflects activation-induced neural cell swelling.
Collapse
Affiliation(s)
- Yoshifumi Abe
- NeuroSpin, Bât 145, Joliot Institute, CEA-Paris-Saclay Center, Point Courrier 156, 91191, Gif-sur-Yvette, France
| | - Khieu Van Nguyen
- NeuroSpin, Bât 145, Joliot Institute, CEA-Paris-Saclay Center, Point Courrier 156, 91191, Gif-sur-Yvette, France.,University Paris-Saclay, 15 rue Georges Clemenceau, 91400, Orsay, France
| | - Tomokazu Tsurugizawa
- NeuroSpin, Bât 145, Joliot Institute, CEA-Paris-Saclay Center, Point Courrier 156, 91191, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin, Bât 145, Joliot Institute, CEA-Paris-Saclay Center, Point Courrier 156, 91191, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Bât 145, Joliot Institute, CEA-Paris-Saclay Center, Point Courrier 156, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
38
|
Abe Y, Tsurugizawa T, Le Bihan D. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol 2017; 15:e2001494. [PMID: 28406906 PMCID: PMC5390968 DOI: 10.1371/journal.pbio.2001494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Diffusion functional MRI (DfMRI) reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level—dependent (BOLD) functional MRI (fMRI). Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs), especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM) exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (−80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF]) led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI. It has been reported that neuronal activation results in a decrease of water diffusion in activated neural tissue. This new approach, known as diffusion functional MRI (DfMRI), has high potential for functional imaging of the brain, as the currently widespread blood oxygenation level—dependent (BOLD)-functional MRI (fMRI) method, which is based on neurovascular coupling, remains an indirect marker of neuronal activation. Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity, especially in regions involved in wakefulness. Electrical stimulation of the central medial (CM) thalamic nucleus exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion of the CM with furosemide—a specific blocker of neuronal swelling—led the ADC to increase further locally and increased the current threshold for waking the animals. Conversely, induction of cell swelling in the CM through infusion of a hypotonic solution led to a local ADC decrease and a lower current threshold to wake the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.
Collapse
Affiliation(s)
- Yoshifumi Abe
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Tomokazu Tsurugizawa
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
39
|
Cao P, Wu EX. In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR IN BIOMEDICINE 2017; 30:e3481. [PMID: 26797798 DOI: 10.1002/nbm.3481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Diffusion MRS of non-water molecules offers great potential in directly revealing various tissue microstructures and physiology at both cellular and subcellular levels. In brain, 1 H diffusion MRS has been demonstrated as a new tool for probing normal tissue microstructures and their pathological changes. In skeletal muscle, 1 H diffusion MRS could characterize slow and restricted intramyocellular lipid diffusion, providing a sensitive marker for metabolic alterations, while 31 P diffusion MRS can measure ATP and PCr diffusion, which may reflect the capacity of cellular energy transport, complementing the information from frequently used 31 P MRS in muscle. In intervertebral disk, 1 H diffusion MRS can directly monitor extracellular matrix integrity by quantifying the mobility of macromolecules such as proteoglycans and collagens. In tumor tissue, 13 C diffusion MRS could probe intracellular glycolytic metabolism, while 1 H diffusion MRS may separate the spectrally overlapped lactate and lipid resonances. In this review, recent diffusion MRS studies of these biologically relevant non-water molecules under normal and diseased conditions will be presented. Technical considerations for diffusion MRS experiments will be discussed. With advances in MRI hardware and diffusion methodology, diffusion MRS of non-water molecules is expected to provide increasingly valuable and biologically specific information on tissue microstructures and physiology, complementing the traditional diffusion MRI of small and ubiquitous water molecules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peng Cao
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Uchida S, Bois S, Guillemot JP, Leblond H, Piché M. Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat. Neuroscience 2017; 343:250-259. [DOI: 10.1016/j.neuroscience.2016.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
|
41
|
Arrubla J, Farrher E, Strippelmann J, Tse DHY, Grinberg F, Shah NJ, Neuner I. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res 2017; 95:1796-1808. [PMID: 28117486 DOI: 10.1002/jnr.24010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and β-1 electrical generators. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Arrubla
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Strippelmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Desmond H Y Tse
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 11, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Tsurugizawa T, Takahashi Y, Kato F. Distinct effects of isoflurane on basal BOLD signals in tissue/vascular microstructures in rats. Sci Rep 2016; 6:38977. [PMID: 27976678 PMCID: PMC5157011 DOI: 10.1038/srep38977] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Isoflurane is a well-known volatile anesthetic. However, it remains equivocal whether its effects on BOLD signal differ depending on the types of intracranial structures, such as capillaries and large blood vessels. We compared dose-dependent effect of isoflurane on the basal BOLD signals in distinct cerebral structures (tissue structure or large vessels) using high resolution T2*-images at 9.4 T MRI system in rat somatosensory cortex. The local field potential (LFP) in the somatosensory cortex and mean arterial pressure (MAP) were also investigated. Isoflurane induced inverted U-shaped dose-dependent change in BOLD signal in large vessels and tissue regions: BOLD signal under 2.0% and 2.5% isoflurane significantly increased from the maintenance dose (1.5%) and that under 3.0% was similar to maintenance dose. Remarkably, BOLD signal increase in tissue regions under 2.5% was significantly smaller than that in large vessels. The MAP decreased monotonically due to the dose of isoflurane and the LFP was strongly suppressed under high dose (2.5% and 3.0%). These results indicate that isoflurane-induced alteration of MAP and neuronal activity affected BOLD signal and, especially, BOLD signal in the tissue regions was more affected by the neuronal activity.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan.,Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Bat 145, Point Courrier 156, Gif-sur-Yvette 91191, France
| | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
43
|
Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: Technique and applications. World J Radiol 2016; 8:785-798. [PMID: 27721941 PMCID: PMC5039674 DOI: 10.4329/wjr.v8.i9.785] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/11/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Diffusion weighted imaging (DWI) is a method of signal contrast generation based on the differences in Brownian motion. DWI is a method to evaluate the molecular function and micro-architecture of the human body. DWI signal contrast can be quantified by apparent diffusion coefficient maps and it acts as a tool for treatment response evaluation and assessment of disease progression. Ability to detect and quantify the anisotropy of diffusion leads to a new paradigm called diffusion tensor imaging (DTI). DTI is a tool for assessment of the organs with highly organised fibre structure. DWI forms an integral part of modern state-of-art magnetic resonance imaging and is indispensable in neuroimaging and oncology. DWI is a field that has been undergoing rapid technical evolution and its applications are increasing every day. This review article provides insights in to the evolution of DWI as a new imaging paradigm and provides a summary of current role of DWI in various disease processes.
Collapse
|
44
|
Williams RJ, Reutens DC, Hocking J. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex. Front Neurosci 2016; 10:279. [PMID: 27445654 PMCID: PMC4923189 DOI: 10.3389/fnins.2016.00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 11/24/2022] Open
Abstract
Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute and Department of Radiology, University of CalgaryCalgary, AB, Canada; Centre for Advanced Imaging, The University of QueenslandSt. Lucia, QLD, Australia; Queensland Brain Institute, The University of QueenslandSt. Lucia, QLD, Australia; Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Julia Hocking
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology Kelvin Grove, QLD, Australia
| |
Collapse
|
45
|
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc Natl Acad Sci U S A 2016; 113:E1728-37. [PMID: 26941239 DOI: 10.1073/pnas.1519890113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Collapse
|
46
|
Macey PM, Ogren JA, Kumar R, Harper RM. Functional Imaging of Autonomic Regulation: Methods and Key Findings. Front Neurosci 2016; 9:513. [PMID: 26858595 PMCID: PMC4726771 DOI: 10.3389/fnins.2015.00513] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function.
Collapse
Affiliation(s)
- Paul M Macey
- UCLA School of Nursing, University of California at Los AngelesLos Angeles, CA, USA; Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| | - Jennifer A Ogren
- Department of Neurobiology, University of California at Los Angeles Los Angeles, CA, USA
| | - Rajesh Kumar
- Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA; Department of Anesthesiology, University of California at Los AngelesLos Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine at University of California at Los AngelesLos Angeles, CA, USA; Department of Bioengineering, University of California at Los AngelesLos Angeles, CA, USA
| | - Ronald M Harper
- Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA; Department of Neurobiology, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
47
|
Transportation in the Interstitial Space of the Brain Can Be Regulated by Neuronal Excitation. Sci Rep 2015; 5:17673. [PMID: 26631412 PMCID: PMC4668547 DOI: 10.1038/srep17673] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/30/2015] [Indexed: 01/03/2023] Open
Abstract
The transportation of substances in the interstitial space (ISS) is crucial for the maintenance of brain homeostasis, however its link to neuronal activity remains unclear. Here, we report a marked reduction in substance transportation in the ISS after neuronal excitation. Using a tracer-based method, water molecules in the interstitial fluid (ISF) could be specifically visualized in magnetic resonance (MR) imaging. We first observed the flow of ISF in the thalamus and caudate nucleus of a rat. The ISF flow was then modulated using a painful stimulation model. We demonstrated that the flow of ISF slowed significantly following neuronal activity in the thalamus. This reduction in ISF flow continued for hours and was not accompanied by slow diffusion into the ISS. This observation suggests that the transportation of substances into the ISS can be regulated with a selective external stimulation.
Collapse
|
48
|
Bai R, Klaus A, Bellay T, Stewart C, Pajevic S, Nevo U, Merkle H, Plenz D, Basser PJ. Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI. NMR IN BIOMEDICINE 2015; 28:1726-1738. [PMID: 26510537 DOI: 10.1002/nbm.3424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Andreas Klaus
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim Bellay
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Stewart
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Sinisa Pajevic
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, NIH, Bethesda, Maryland, USA
| | - Uri Nevo
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Hellmut Merkle
- Laboratory for Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Williams RJ, Reutens DC, Hocking J. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI. Brain Behav 2015; 5:e00408. [PMID: 26664792 PMCID: PMC4667755 DOI: 10.1002/brb3.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. METHODS Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. RESULTS At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. CONCLUSIONS DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Collapse
Affiliation(s)
- Rebecca J Williams
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia ; Queensland Brain Institute The University of Queensland St Lucia Qld 4067 Australia ; Centre for Clinical Research The University of Queensland Brisbane Qld 4006 Australia ; Hotchkiss Brain Institute and Department of Radiology University of Calgary Calgary AB T2N 4N1 Canada
| | - David C Reutens
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia
| | - Julia Hocking
- School of Psychology and Counselling Queensland University of Technology Kelvin Grove Qld 4059 Australia
| |
Collapse
|
50
|
Abstract
Since its introduction in the mid-1980s, diffusion magnetic resonance imaging (MRI), which measures the random motion of water molecules in tissues, revealing their microarchitecture, has become a pillar of modern neuroimaging. Its main clinical domain has been the diagnosis of acute brain stroke and neurogical disorders, but it is also used in the body for the detection and management of cancer lesions. It can also produce stunning maps of white matter tracks in the brain, with the potential to aid in the understanding of some psychiatric disorders. However, in order to exploit fully the potential of this method, a deeper understanding of the mechanisms that govern the diffusion of water in tissues is needed.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Bâtiment 145, CEA Saclay-Center, Gif-sur-Yvette, France
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| |
Collapse
|