1
|
Kamilari E, O'Connor PM, de Farias FM, Johnson CN, Buttimer C, Deliephan A, Hill D, Fursenko O, Wiese J, Stanton C, Hill C, Ross RP. Bacillus safensis APC 4099 has broad-spectrum antimicrobial activity against both bacteria and fungi and produces several antimicrobial peptides, including the novel circular bacteriocin safencin E. Appl Environ Microbiol 2025; 91:e0194224. [PMID: 39745440 PMCID: PMC7617318 DOI: 10.1128/aem.01942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Bacillus safensis APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites. Specifically, a novel, anionic, 6 kDa circular bacteriocin, named safencin E, was detected, showing 52.5% similarity to butyrivibriocin AR10. Additionally, gene clusters coding for the biosynthesis of bacteriocins such as pumilarin and plantazolicin and biosynthetic pathways for secondary metabolites, including pumilacidin A, bacilysin, and bacillibactin, were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis detected molecular masses correlating to safencin E, plantazolicin, pumilarin, and pumilacidin A from the cell-free supernatant, cell extracts, or both. Overall, the broad-spectrum antimicrobial activity of B. safensis APC 4099 indicates that this strain is a promising candidate for the biological control of food ecosystems and thus has the potential to enhance food safety. IMPORTANCE The present article highlights the importance of the strain Bacillus safensis APC 4099 as a potential biocontrol agent. The strain possesses biosynthetic gene clusters coding for various antimicrobial peptides and secondary metabolites, including a novel circular bacteriocin, safencin E, and the bacteriocins pumilarin and plantazolicin. This diversity in the production of antimicrobial peptides renders the producer with broad-spectrum antimicrobial activity, ranging from gram-positive pathogenic and spoilage bacteria to spoilage molds. Considering that 1.3 billion tons of food appropriate for human consumption is lost or wasted annually, identifying strains or novel antimicrobial peptides capable of biopreservation is highly relevant. This strain and its bioactive compounds offer a solution to this global problem as biocontrol agents for food ecosystems against spoilage and pathogenic microbes.
Collapse
Affiliation(s)
- E. Kamilari
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - P. M. O'Connor
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - F. Miceli de Farias
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - C. N. Johnson
- Department of Biochemistry & Microbiology, Center for Health Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - C. Buttimer
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - A. Deliephan
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - D. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - O. Fursenko
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - J. Wiese
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - C. Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
2
|
Xue Y, Kang X. Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy. NPJ Biofilms Microbiomes 2025; 11:21. [PMID: 39880834 PMCID: PMC11779841 DOI: 10.1038/s41522-025-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period. The mature biofilm, established within 48 h, undergoes significant degradation in following 72 h. The steepest decline of proteins precedes that of exopolysaccharides, likely reflecting their distinct spatial distribution. Exopolysaccharide sugar units display clustered temporal patterns, suggesting the presence of distinct polysaccharide types. A sharp rise in aliphatic carbon signals on day 4 probably corresponds to a surge in biosurfactant production. Different dynamic regimes respond differently to dispersal: the mobile domain exhibits increased rigidity, while the rigid domain remains stable. These findings provide novel insights and perspectives on the complex process of biofilm dispersal.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Zarazúa-Osorio B, Srivastava P, Marathe A, Zahid SH, Fujita M. Autoregulation of the Master Regulator Spo0A Controls Cell-Fate Decisions in Bacillus subtilis. Mol Microbiol 2025. [PMID: 39812382 DOI: 10.1111/mmi.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Spo0A in Bacillus subtilis is activated by phosphorylation (Spo0A~P) upon starvation and differentially controls a set of genes involved in biofilm formation and sporulation. The spo0A gene is transcribed by two distinct promoters, a σA-recognized upstream promoter Pv during growth, and a σH-recognized downstream promoter Ps during starvation, and appears to be autoregulated by four Spo0A~P binding sites (0A1-4 boxes) localized between two promoters. However, the autoregulatory mechanisms and their impact on differentiation remain elusive. Here, we determined the relative affinity of Spo0A~P for each 0A box and dissected each promoter in combination with the systematic 0A box mutations. The data revealed that (1) the Pv and Ps promoters are on and off, respectively, under nutrient-rich conditions without Spo0A~P, (2) the Ps promoter is activated by first 0A3 and then 0A1 during early starvation with low Spo0A~P, (3) during later starvation with high Spo0A~P, the Pv promoter is repressed by first 0A1 and then 0A2 and 0A4, and (4) during prolonged starvation, both promoters are silenced by all 0A boxes with very high Spo0A~P. Our results indicate that the autoregulation of spo0A is one of the key determinants to achieve a developmental increase in Spo0A~P, leading to a temporal window for entry into biofilm formation or sporulation.
Collapse
Affiliation(s)
| | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Syeda Hira Zahid
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Badha VS, Niepa THR, Gharbi MA. Biosensing of Bacterial Secretions via Topological Defects at Smectic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22754-22761. [PMID: 39431287 DOI: 10.1021/acs.langmuir.4c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Characterizing the anchoring properties of smectic liquid crystals (LCs) in contact with bacterial solutions is crucial for developing biosensing platforms. In this study, we investigate the anchoring properties of a smectic LC when exposed to Bacillus subtilis and Escherichia coli bacterial suspensions using interfaces with known anchoring properties. By monitoring the optical response of the smectic film, we successfully distinguish different types of bacteria, leveraging the distinct changes in the LC's response. Through a comprehensive analysis of the interactions between bacterial proteins and the smectic interface, we elucidate the potential underlying mechanisms responsible for these optical changes. Additionally, we introduce the utilization of topological defects, the focal conic domains (FCDs), at the smectic interface as an indicative measure of the bacterial concentration. Our findings contribute to the understanding of bacteria-LC interactions and demonstrate the significant potential of smectic LCs and their defects for biosensing applications, paving the way for advancements in pathogen detection and protein-based sensing.
Collapse
Affiliation(s)
- Vajra S Badha
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Tagbo H R Niepa
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mohamed Amine Gharbi
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
6
|
Dogsa I, Bellich B, Blaznik M, Lagatolla C, Ravenscroft N, Rizzo R, Stopar D, Cescutti P. Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms. NPJ Biofilms Microbiomes 2024; 10:98. [PMID: 39358392 PMCID: PMC11447030 DOI: 10.1038/s41522-024-00555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]n, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.
Collapse
Affiliation(s)
- Iztok Dogsa
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Ljubljana, Slovenia
| | - Barbara Bellich
- Department of Advanced Translational Diagnostics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- University of Trieste, Department of Life Sciences, Via L. Giorgieri 1, Trieste, Italy
| | - Mojca Blaznik
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Ljubljana, Slovenia
| | - Cristina Lagatolla
- University of Trieste, Department of Life Sciences, Via L. Giorgieri 1, Trieste, Italy
| | - Neil Ravenscroft
- University of Cape Town, Department of Chemistry, Rondebosch, South Africa
| | - Roberto Rizzo
- University of Trieste, Department of Life Sciences, Via L. Giorgieri 1, Trieste, Italy
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Ljubljana, Slovenia
| | - Paola Cescutti
- University of Trieste, Department of Life Sciences, Via L. Giorgieri 1, Trieste, Italy.
| |
Collapse
|
7
|
Miao S, Liang J, Xu Y, Yu G, Shao M. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J Cell Physiol 2024; 239:e30974. [PMID: 36790954 DOI: 10.1002/jcp.30974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Bacillus species act as plant growth-promoting rhizobacteria (PGPR) that can produce a large number of bioactive metabolites. Bacillaene, a linear polyketide/nonribosomal peptide produced by Bacillus strains, is synthesized by the trans-acyltransferase polyketide synthetase. The complexity of the chemical structure, particularity of biosynthesis, potent bioactivity, and the important role of competition make Bacillus an ideal antibiotic weapon to resist other microbes and maintain the optimal rhizosphere environment. This review provides an updated view of the structural features, biological activity, biosynthetic regulators of biosynthetic pathways, and the important competitive role of bacillaene during Bacillus survival.
Collapse
Affiliation(s)
- Shuang Miao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Jianhao Liang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Yuan Xu
- College of Pharmaceutical Engineering, XinYang College Of Agriculture And Forestry, Xinyang, P.R. China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Mingwei Shao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| |
Collapse
|
8
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
9
|
Xu S, Liu Z, Ren P, Liu Y, Xiao F, Li W. BmfR, a novel GntR family regulator, regulates biofilm formation in marine-derived, Bacillus methylotrophicus B-9987. Microbiol Res 2024; 287:127859. [PMID: 39098095 DOI: 10.1016/j.micres.2024.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.
Collapse
Affiliation(s)
- Shanshan Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Pengfei Ren
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yang Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
10
|
Bamford NC, Morris RJ, Prescott A, Murphy P, Erskine E, MacPhee CE, Stanley-Wall NR. TasA Fibre Interactions Are Necessary for Bacillus subtilis Biofilm Structure. Mol Microbiol 2024; 122:598-609. [PMID: 39344640 DOI: 10.1111/mmi.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
The extracellular matrix of biofilms provides crucial structural support to the community and protection from environmental perturbations. TasA, a key Bacillus subtilis biofilm matrix protein, forms both amyloid and non-amyloid fibrils. Non-amyloid TasA fibrils are formed via a strand-exchange mechanism, whereas the amyloid-like form involves non-specific self-assembly. We performed mutagenesis of the N-terminus to assess the role of non-amyloid fibrils in biofilm development. We find that the N-terminal tail is essential for the formation of structured biofilms, providing evidence that the strand-exchange fibrils are the active form in the biofilm matrix. Furthermore, we demonstrate that fibre formation alone is not sufficient to give structure to the biofilm. We build an interactome of TasA with other extracellular protein components, and identify important interaction sites. Our results provide insight into how protein-matrix interactions modulate biofilm development.
Collapse
Affiliation(s)
- Natalie C Bamford
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ryan J Morris
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Alan Prescott
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paul Murphy
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elliot Erskine
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Cait E MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Engelhardt IC, Holden N, Daniell TJ, Dupuy LX. Mobility and growth in confined spaces are important mechanisms for the establishment of Bacillus subtilis in the rhizosphere. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001477. [PMID: 39106481 PMCID: PMC11574552 DOI: 10.1099/mic.0.001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024]
Abstract
The rhizosphere hosts complex and abundant microbiomes whose structure and composition are now well described by metagenomic studies. However, the dynamic mechanisms that enable micro-organisms to establish along a growing plant root are poorly characterized. Here, we studied how a motile bacterium utilizes the microhabitats created by soil pore space to establish in the proximity of plant roots. We have established a model system consisting of Bacillus subtilis and lettuce seedlings co-inoculated in transparent soil microcosms. We carried out live imaging experiments and developed image analysis pipelines to quantify the abundance of the bacterium as a function of time and position in the pore space. Results showed that the establishment of the bacterium in the rhizosphere follows a precise sequence of events where small islands of mobile bacteria were first seen forming near the root tip within the first 12-24 h of inoculation. Biofilm was then seen forming on the root epidermis at distances of about 700-1000 µm from the tip. Bacteria accumulated predominantly in confined pore spaces within 200 µm from the root or the surface of a particle. Using probabilistic models, we could map the complete sequence of events and propose a conceptual model of bacterial establishment in the pore space. This study therefore advances our understanding of the respective role of growth and mobility in the efficient colonization of bacteria in the rhizosphere.
Collapse
Affiliation(s)
| | - Nicola Holden
- Department of Rural Land Use, Scotland’s Rural College, Aberdeen AB21 9YA, UK
| | - Tim J. Daniell
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lionel X. Dupuy
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
12
|
Rosazza T, Earl C, Eigentler L, Davidson FA, Stanley-Wall NR. Reciprocal sharing of extracellular proteases and extracellular matrix molecules facilitates Bacillus subtilis biofilm formation. Mol Microbiol 2024; 122:184-200. [PMID: 38922753 DOI: 10.1111/mmi.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Extracellular proteases are a class of public good that support growth of Bacillus subtilis when nutrients are in a polymeric form. Bacillus subtilis biofilm matrix molecules are another class of public good that are needed for biofilm formation and are prone to exploitation. In this study, we investigated the role of extracellular proteases in B. subtilis biofilm formation and explored interactions between different public good producer strains across various conditions. We confirmed that extracellular proteases support biofilm formation even when glutamic acid provides a freely available nitrogen source. Removal of AprE from the NCIB 3610 secretome adversely affects colony biofilm architecture, while sole induction of WprA activity into an otherwise extracellular protease-free strain is sufficient to promote wrinkle development within the colony biofilm. We found that changing the nutrient source used to support growth affected B. subtilis biofilm structure, hydrophobicity and architecture. We propose that the different phenotypes observed may be due to increased protease dependency for growth when a polymorphic protein presents the sole nitrogen source. We however cannot exclude that the phenotypic changes are due to alternative matrix molecules being made. Co-culture of biofilm matrix and extracellular protease mutants can rescue biofilm structure, yet reliance on extracellular proteases for growth influences population coexistence dynamics. Our findings highlight the intricate interplay between these two classes of public goods, providing insights into microbial social dynamics during biofilm formation across different ecological niches.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris Earl
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
13
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
14
|
Nishisaka CS, Ventura JP, Bais HP, Mendes R. Role of Bacillus subtilis exopolymeric genes in modulating rhizosphere microbiome assembly. ENVIRONMENTAL MICROBIOME 2024; 19:33. [PMID: 38745256 DOI: 10.1186/s40793-024-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps-TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. RESULTS qPCR revealed that the B. subtilis UD1022eps-TasA- strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. CONCLUSION This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.
Collapse
Affiliation(s)
- Caroline Sayuri Nishisaka
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - João Paulo Ventura
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center (BPI), Newark, DE, USA
| | | |
Collapse
|
15
|
Xue Y, Yu C, Ouyang H, Huang J, Kang X. Uncovering the Molecular Composition and Architecture of the Bacillus subtilis Biofilm via Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:11906-11923. [PMID: 38629727 DOI: 10.1021/jacs.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Yu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Han Ouyang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
16
|
Zhou Y, Li J, Li Z, Yin H, Zhu S, Chen Z. Rapid and robust bacterial species identification using hyperspectral microscopy and gram staining techniques. JOURNAL OF BIOPHOTONICS 2024; 17:e202300449. [PMID: 38176397 DOI: 10.1002/jbio.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Gram staining can classify bacterial species into two large groups based on cell wall differences. Our study revealed that within the same gram group (gram-positive or gram-negative), subtle cell wall variations can alter staining outcomes, with the peptidoglycan layer and lipid content significantly influencing this effect. Thus, bacteria within the same group can also be differentiated by their spectra. Using hyperspectral microscopy, we identified six species of intestinal bacteria with 98.1% accuracy. Our study also demonstrated that selecting the right spectral band and background calibration can enhance the model's robustness and facilitate precise identification of varying sample batches. This method is suitable for analyzing bacterial community pathologies.
Collapse
Affiliation(s)
- Yanzhong Zhou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jieming Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Zhen Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Hao Yin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Siqi Zhu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Zhenqiang Chen
- Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Guangzhou, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Bakalakos M, Ampadiotaki MM, Vlachos C, Sipsas N, Pneumaticos S, Vlamis J. Molecular Mechanisms of Biofilm Formation on Orthopaedic Implants: Review of the Literature. MAEDICA 2024; 19:129-136. [PMID: 38736937 PMCID: PMC11079743 DOI: 10.26574/maedica.2021.19.1.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Orthopaedic implant-associated infections (OIAIs) is one of the most catastrophic complications following joint arthroplasty or fracture fixation. Given the increasing number of orthopaedic implants which are used annually, periprosthetic infections emerge as a global problem. Their diagnosis and consequent therapeutic management remain challenging for clinicians. Biofilm formation is a complex and only partially understood process that has not been extensively studied. Understanding the underlying mechanisms involved in biofilm formation is crucial in the amelioration of both diagnosis and therapeutic management of OIAIs. We performed a literature review of the molecular mechanisms of biofilm formation and discussed the four most common and thoroughly researched microbes of biofilm-related OIAIs.
Collapse
Affiliation(s)
- Matthaios Bakalakos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | | | - Christos Vlachos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | - Nikolaos Sipsas
- Infectious Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros Pneumaticos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| | - John Vlamis
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, Greece
| |
Collapse
|
18
|
Morris RJ, Bamford NC, Bromley KM, Erskine E, Stanley-Wall NR, MacPhee CE. Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4164-4173. [PMID: 38351711 PMCID: PMC10905994 DOI: 10.1021/acs.langmuir.3c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.
Collapse
Affiliation(s)
- Ryan J. Morris
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| | - Natalie C. Bamford
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Keith M. Bromley
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| | - Elliot Erskine
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Nicola R. Stanley-Wall
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Cait E. MacPhee
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| |
Collapse
|
19
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
20
|
Krause T, Keshavarzi B, Heitkam S, Ansorge-Schumacher MB. Foam fractionation Tags (F-Tags) enabling surfactant-free, activity-preserving recovery of enzymes. Appl Microbiol Biotechnol 2024; 108:140. [PMID: 38231394 PMCID: PMC10794386 DOI: 10.1007/s00253-023-12837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 01/18/2024]
Abstract
Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to β-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.
Collapse
Affiliation(s)
- Thomas Krause
- Department of Molecular Biotechnology, TU Dresden, 01062, Dresden, Germany
| | - Behnam Keshavarzi
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062, Dresden, Germany
| | - Sascha Heitkam
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062, Dresden, Germany
| | | |
Collapse
|
21
|
Haystead J, Gilmour K, Sherry A, Dade-Robertson M, Zhang M. Effect of (in)organic additives on microbially induced calcium carbonate precipitation. J Appl Microbiol 2024; 135:lxad309. [PMID: 38111211 DOI: 10.1093/jambio/lxad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
AIM This study aimed to understand the morphological effects of (in)organic additives on microbially induced calcium carbonate precipitation (MICP). METHODS AND RESULTS MICP was monitored in real time in the presence of (in)organic additives: bovine serum albumin (BSA), biofilm surface layer protein A (BslA), magnesium chloride (MgCl2), and poly-l-lysine. This monitoring was carried out using confocal microscopy to observe the formation of CaCO3 from the point of nucleation, in comparison to conditions without additives. Complementary methodologies, namely scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction, were employed to assess the visual morphology, elemental composition, and crystalline structures of CaCO3, respectively, following the crystals' formation. The results demonstrated that in the presence of additives, more CaCO3 crystals were produced at 100 min compared to the reaction without additives. The inclusion of BslA resulted in larger crystals than reactions containing other additives, including MgCl2. BSA induced a significant number of crystals from the early stages of the reaction (20 min) but did not have a substantial impact on crystal size compared to conditions without additives. All additives led to a higher content of calcite compared to vaterite after a 24-h reaction, with the exception of MgCl2, which produced a substantial quantity of magnesium calcite. CONCLUSIONS The work demonstrates the effect of several (in)organic additives on MICP and sets the stage for further research to understand additive effects on MICP to achieve controlled CaCO3 precipitation.
Collapse
Affiliation(s)
- Jamie Haystead
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Katie Gilmour
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Martyn Dade-Robertson
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, The Quadrangle, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Hub for Biotechnology in the Built Environment, Department of Architecture and Built Environment, Northumbria University, NE1 8ST, United Kingdom
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
22
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
23
|
Yu C, Qiao J, Ali Q, Jiang Q, Song Y, Zhu L, Gu Q, Borriss R, Dong S, Gao X, Wu H. degQ associated with the degS/degU two-component system regulates biofilm formation, antimicrobial metabolite production, and biocontrol activity in Bacillus velezensis DMW1. MOLECULAR PLANT PATHOLOGY 2023; 24:1510-1521. [PMID: 37731193 PMCID: PMC10632791 DOI: 10.1111/mpp.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.
Collapse
Affiliation(s)
- Chenjie Yu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Junqing Qiao
- Jiangsu Academy of Agricultural SciencesInstitute of Plant ProtectionNanjingChina
| | - Qurban Ali
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qifan Jiang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Yan Song
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Linli Zhu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Rainer Borriss
- Institut für BiologieHumboldt University BerlinBerlinGermany
| | - Suomeng Dong
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
24
|
Arnaouteli S, Bamford NC, Brandani GB, Morris RJ, Schor M, Carrington JT, Hobley L, van Aalten DMF, Stanley-Wall NR, MacPhee CE. Lateral interactions govern self-assembly of the bacterial biofilm matrix protein BslA. Proc Natl Acad Sci U S A 2023; 120:e2312022120. [PMID: 37903266 PMCID: PMC7615278 DOI: 10.1073/pnas.2312022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.
Collapse
Affiliation(s)
- Sofia Arnaouteli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, DundeeDD5 4EH, United Kingdom
| | - Natalie C. Bamford
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, DundeeDD5 4EH, United Kingdom
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto606 8501, Japan
| | - Ryan J. Morris
- National Biofilms Innovation Centre, School of Physics & Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | - Marieke Schor
- UB Education, Content & Support, Maastricht University, Maastricht6211 LK, Netherlands
| | - Jamie T. Carrington
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Laura Hobley
- School of Biosciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, DundeeDD5 4EH, United Kingdom
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus8000, Denmark
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, DundeeDD5 4EH, United Kingdom
| | - Cait E. MacPhee
- National Biofilms Innovation Centre, School of Physics & Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
25
|
Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y, Dorfmueller HC, Ferguson MAJ, Stanley-Wall NR, Imperiali B. Defining early steps in Bacillus subtilis biofilm biosynthesis. mBio 2023; 14:e0094823. [PMID: 37650625 PMCID: PMC10653937 DOI: 10.1128/mbio.00948-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.
Collapse
Affiliation(s)
- Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yusra Al-Sammarraie
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Suresh Babu AR, Sharma A, Athira MP, Alajangi HK, Naresh Raj AR, Gartia J, Singh G, Barnwal RP. Evaluation of antibiofilm properties of dehydroacetic acid (DHA) grafted spiro-oxindolopyrrolidines synthesized via multicomponent 1,3-dipolar cycloaddition reaction. Sci Rep 2023; 13:15289. [PMID: 37714933 PMCID: PMC10504327 DOI: 10.1038/s41598-023-42528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
The current work involves the use of dehydroacetic acid based chalcone derivatives for the synthesis of spirooxindole grafted pyrrolidine moieties. All the synthesized compounds have been characterized using spectroscopic techniques such as NMR (1H-NMR and 13C-NMR), IR, mass and elemental analysis. Molecular mechanics studies were performed to comprehend the regioselectivity in the product formation. Molecular docking of the synthesized compounds was performed with few bacterial proteins of Bacillus subtilis and Pseudomonas aeruginosa responsible for biofilm formation followed by molecular dynamics simulations with the potential lead compound. Further, to corroborate the results obtained via in silico study, anti-biofilm activity etc. of the synthesized compounds (4a-e) was checked for effectiveness against biofilm formation. Taken together, this study opens up to explore these compounds' multiple roles in diverse fields in the arena of medical sciences.
Collapse
Affiliation(s)
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - M P Athira
- Department of Chemistry, IISER, Mohali, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Hema K Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - A R Naresh Raj
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - Janeka Gartia
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
27
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
28
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
29
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
30
|
Zhou C, Zhou Y, Zheng Y, Yu Y, Yang K, Chen Z, Chen X, Wen K, Chen Y, Bai S, Song J, Wu T, Lei E, Wan M, Cai Q, Ma L, Wong WL, Bai Y, Zhang C, Feng X. Amphiphilic Nano-Swords for Direct Penetration and Eradication of Pathogenic Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20458-20473. [PMID: 37039625 DOI: 10.1021/acsami.3c03091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacterial biofilms are major causes of persistent and recurrent infections and implant failures. Biofilms are formable by most clinically important pathogens worldwide, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, causing recalcitrance to standard antibiotic therapy or anti-biofilm strategies due to amphiphilic impermeable extracellular polymeric substances (EPS) and the presence of resistant and persistent bacteria within the biofilm matrix. Herein, we report our design of an oligoamidine-based amphiphilic "nano-sword" with high structural compacity and rigidity. Its rigid, amphiphilic structure ensures effective penetration into EPS, and the membrane-DNA dual-targeting mechanism exerts strong bactericidal effect on the dormant bacterial persisters within biofilms. The potency of this oligoamidine is shown in two distinct modes of application: it may be used as a coating agent for polycaprolactone to fully inhibit surface biofilm growth in an implant-site mimicking micro-environment; meanwhile, it cures model mice of biofilm infections in various ex vivo and in vivo studies.
Collapse
Affiliation(s)
- Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xianhui Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yajie Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qingyun Cai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
31
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
32
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
33
|
Morris RJ, Stevenson D, Sukhodub T, Stanley-Wall NR, MacPhee CE. Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-γ-glutamic acid production. NPJ Biofilms Microbiomes 2022; 8:98. [PMID: 36528619 PMCID: PMC9759580 DOI: 10.1038/s41522-022-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.
Collapse
Affiliation(s)
- Ryan J. Morris
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| | - David Stevenson
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Tetyana Sukhodub
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Nicola R. Stanley-Wall
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Cait E. MacPhee
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| |
Collapse
|
34
|
Charlton SGV, Kurz DL, Geisel S, Jimenez-Martinez J, Secchi E. The role of biofilm matrix composition in controlling colony expansion and morphology. Interface Focus 2022; 12:20220035. [PMID: 36330326 PMCID: PMC9560791 DOI: 10.1098/rsfs.2022.0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 08/01/2023] Open
Abstract
Biofilms are biological viscoelastic gels composed of bacterial cells embedded in a self-secreted polymeric extracellular matrix (ECM). In environmental settings, such as in the rhizosphere and phyllosphere, biofilm colonization occurs at the solid-air interface. The biofilms' ability to colonize and expand over these surfaces depends on the formation of osmotic gradients and ECM viscoelastic properties. In this work, we study the influence of biofilm ECM components on its viscoelasticity and expansion, using the model organism Bacillus subtilis and deletion mutants of its three major ECM components, TasA, EPS and BslA. Using a multi-scale approach, we quantified macro-scale viscoelasticity and expansion dynamics. Furthermore, we used a microsphere assay to visualize the micro-scale expansion patterns. We find that the viscoelastic phase angle Φ is likely the best viscoelastic parameter correlating to biofilm expansion dynamics. Moreover, we quantify the sensitivity of the biofilm to changes in substrate water potential as a function of ECM composition. Finally, we find that the deletion of ECM components significantly increases the coherence of micro-scale colony expansion patterns. These results demonstrate the influence of ECM viscoelasticity and substrate water potential on the expansion of biofilm colonies on wet surfaces at the air-solid interface, commonly found in natural environments.
Collapse
Affiliation(s)
- Samuel G. V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Dorothee L. Kurz
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Department Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Steffen Geisel
- Department of Materials, Soft Materials, ETH Zürich, Zürich, Switzerland
| | - Joaquin Jimenez-Martinez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Department Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Li G, Zuo YY. Molecular and colloidal self-assembly at the oil–water interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Park H, Schwartzman AF, Tang TC, Wang L, Lu TK. Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Mater Today Bio 2022; 18:100504. [PMID: 36504543 PMCID: PMC9729073 DOI: 10.1016/j.mtbio.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Natural materials such as bone, wood, and bamboo can inspire the fabrication of stiff, lightweight structural materials. Biofilms are one of the most dominant forms of life in nature. However, little is known about their physical properties as a structural material. Here we report an Escherichia coli biofilm having a Young's modulus close to 10 GPa with ultra-low density, indicating a high-performance structural material. The mechanical and structural characterization of the biofilm and its components illuminates its adaptable bottom-up design, consisting of lightweight microscale cells covered by a dense network of amyloid nanofibrils on the surface. We engineered E. coli such that 1) carbon nanotubes assembled on the biofilm, enhancing its stiffness to over 30 GPa, or that 2) the biofilm sensitively detected heavy metal as an example of an environmental toxin. These demonstrations offer new opportunities for developing responsive living structural materials to serve many real-world applications.
Collapse
Affiliation(s)
- Heechul Park
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan F. Schwartzman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tzu-Chieh Tang
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lei Wang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Corresponding author. Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Dong X, Tu C, Liu Y, Zhang R, Liu Y. Identification of the core c-di-GMP turnover proteins responsible for root colonization of Bacillus velezensis. iScience 2022; 25:105294. [PMID: 36300004 PMCID: PMC9589206 DOI: 10.1016/j.isci.2022.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Root colonization by beneficial rhizobacteria determines their plant beneficial effects. The messenger c-di-GMP is involved in the bacterial transition process between motility and biofilm, which are crucial to the colonization ability of the rhizobacteria. In this study, we identified three GGDEF domain-containing proteins (YdaK, YhcK, and YtrP) and two EAL domain-containing proteins (YuxH and YkuI) in beneficial rhizobacterium Bacillus velezensis SQR9. We found that deficiency of ytrP or ykuI in SQR9 led to impaired biofilm formation, while deficiency of yuxH led to weakened motility. Further investigation showed that YtrP, YuxH, and YkuI all contributed to the root colonization of SQR9 on cucumber root. Further bioinformatics analysis showed that YtrP and YuxH are conserved in plant beneficial Bacillus group, while they do not occur in animal pathogenic Bacillus. This research will be useful for enhancing the beneficial function of Bacillus spp. in agricultural application. C-di-GMP is involved in root colonization of B. velezensis YtrP and YkuI enhance the root colonization by regulating biofilm of B velezensis YuxH enhances the root colonization by affecting the motility of B. velezensis YtrP and YuxH are conserved in plant beneficial Bacillus group
Collapse
Affiliation(s)
- Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
| | - Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China,Corresponding author
| |
Collapse
|
38
|
Jautzus T, van Gestel J, Kovács ÁT. Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. THE ISME JOURNAL 2022; 16:2320-2328. [PMID: 35790818 PMCID: PMC9477810 DOI: 10.1038/s41396-022-01279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 04/29/2023]
Abstract
Many bacteria grow on surfaces in nature, where they form cell collectives that compete for space. Within these collectives, cells often secrete molecules that benefit surface spreading by, for example, reducing surface tension or promoting filamentous growth. Although we have a detailed understanding of how these molecules are produced, much remains unknown about their role in surface competition. Here we examine sliding motility in Bacillus subtilis and compare how secreted molecules, essential for sliding, affect intraspecific cooperation and competition on a surface. We specifically examine (i) the lipopeptide surfactin, (ii) the hydrophobin protein BslA, and (iii) exopolysaccharides (EPS). We find that these molecules have a distinct effect on surface competition. Whereas surfactin acts like a common good, which is costly to produce and benefits cells throughout the surface, BslA and EPS are cost-free and act locally. Accordingly, surfactin deficient mutants can exploit the wild-type strain in competition for space, while BslA and EPS mutants cannot. Supported by a mathematical model, we show that three factors are important in predicting the outcome of surface competition: the costs of molecule synthesis, the private benefits of molecule production, and the diffusion rate. Our results underscore the intricate extracellular biology that can drive bacterial surface competition.
Collapse
Affiliation(s)
- Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jordi van Gestel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
39
|
Dabiré Y, Somda NS, Somda MK, Compaoré CB, Mogmenga I, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH. Assessment of probiotic and technological properties of Bacillus spp. isolated from Burkinabe Soumbala. BMC Microbiol 2022; 22:228. [PMID: 36175837 PMCID: PMC9523936 DOI: 10.1186/s12866-022-02642-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Soumbala is a highly loved alkaline traditional fermented food condiment in Burkina Faso. It harbors various microbiota dominated by fermentative Bacillus spp. as functional microorganism with little confirmed health-promoting properties. METHODS The present study aimed to evaluate six Bacillus strains previously isolated and identified from soumbala. These strains were selected as presumptively safe bacteria for probiotic and technological characteristics. These strains were assessed for in vitro probiotic criteria (tolerance to acidic pH, gastric juice, 0.3% (m/v) bile salts, intestinal juice and 0.4% (w/v) phenol, cell surface hydrophobicity, auto-aggregation capacity, antimicrobial activity against foodborne pathogens, antibiotic susceptibility and biofilm production) and technological properties, including protease, amylase, lipase, and tannase activity, as well as poly-γ-glutamic acid (PGA) production and thermo-tolerance. RESULTS All tested Bacillus strains (B54, F20, F24, F21, F26 and F44) presented variable relevant probiotic properties (good tolerance to pH 2 and pH 4, gastric juice, bile salts, intestinal juice and phenol), with marked differences in hydrophobicity and auto-aggregation capacity ranging from 73.62-94.71% and 49.35-92.30%, respectively. They exhibited a broad spectrum of activity against foodborne pathogens depending on target pathogen, with the highest activity exhibited by strain F20 (29.52 mm) against B. cereus 39 (p < 0.001). They also showed good biofilm production as well as variable hydrolytic enzyme activities, including protease (43.00-60.67 mm), amylase (22.59-49.55 mm), lipase (20.02-24.57 mm), and tannase (0-10.67 mm). All tested Bacillus strains tolerated temperature up to 50 °C, while only strains F26 and F44 showed the best PGA production. CONCLUSION Overall, the tested cultures exhibiting potential probiotic and technological characteristics; particularly B. cereus F20, B. benzoevorans F21, B. cabrialessi F26, and B. tequilensis F44 could be a source of probiotic-starters of commercial interest in the production of high-quality soumbala.
Collapse
Affiliation(s)
- Yérobessor Dabiré
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso.
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria.
| | - Namwin Siourimè Somda
- Département Technologie Alimentaire (DTA), Centre National de Recherche Scientifique et Technologique (CNRST) / Institut de Recherche en Sciences Appliquées et Technologies (IRSAT) / Direction Régional de L'Ouest, 03 B.P.2393, Bobo - Dioulasso 03, Burkina Faso
| | - Marius K Somda
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| | - Clarisse B Compaoré
- Département Technologie Alimentaire (DTA), Centre National de Recherche Scientifique et Technologique (CNRST) / Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), 03 B.P. 7047, Ouagadougou 03, Burkina Faso
| | - Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria
| | - Alfred S Traoré
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire de Microbiologie et de Biotechnologie Microbienne (LAMBM), Département de Biochimie-Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
- Laboratoire des Sciences Biologiques Appliquées, Unité de Formation et de Recherche en Sciences et Technologies (UFR-ST), Université Aube Nouvelle, 01 P.B. 234, Bobo-Dioulasso 01, Burkina Faso
| | - Jerry O Ugwuanyi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka (UNN), Enugu state, 410001, Nigeria
| | - Mamoudou H Dicko
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Ecole Doctorale Sciences et Technologies (EDST), Université Joseph KI-ZERBO, 03 P.B. 7031, Ouagadougou 03, Burkina Faso
| |
Collapse
|
40
|
Enhancement of Vitamin K2 Efflux in Bacillus subtilis Natto via a Potential Protein Receptor for Increased Yield. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8407829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacillus subtilis is one of the few strains that can secrete synthetic menaquinone-7 (MK-7) to the outside of the cell, and its purpose and mechanism have not been clearly studied. As an amphiphilic protein naturally synthesized by Bacillus subtilis, the BslA protein may be involved in the inversion of extracellular vitamin K2 solubility. The protein structure in UniProt was used to search for the possible binding sites of MK-7, and the analysis of the higher ranking results of the genetic algorithm showed that the ASP166 residue was likely to be the binding site. They could form a stable hydrogen bond connection through ASP166, and approximately 7 proteins formed the conformation of a fixed naphthoquinone ring. We isolated and obtained the BslA protein by Ni-NTA affinity chromatography. Then, MK-7 was modified by BslA in vitro. A series of experiments, such as SEM, XPS, and WCA, showed that MK-7 and BslA proteins can realize self-assembly and transform from fat-soluble to water-soluble complexes. When the bslA protein in Bacillus subtilis natto was overexpressed, its MK-7 synthesis ability was further improved, especially the extracellular MK-7 content, which increased by 16%. This finding suggests that the BslA protein in Bacillus subtilis is likely to be involved in the extracellular secretion of MK-7 as a receptor.
Collapse
|
41
|
Porter M, Davidson FA, MacPhee CE, Stanley-Wall NR. Systematic microscopical analysis reveals obligate synergy between extracellular matrix components during Bacillus subtilis colony biofilm development. Biofilm 2022; 4:100082. [PMID: 36148433 PMCID: PMC9486643 DOI: 10.1016/j.bioflm.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Single-species bacterial colony biofilms often present recurring morphologies that are thought to be of benefit to the population of cells within and are known to be dependent on the self-produced extracellular matrix. However, much remains unknown in terms of the developmental process at the single cell level. Here, we design and implement systematic time-lapse imaging and quantitative analyses of the growth of Bacillus subtilis colony biofilms. We follow the development from the initial deposition of founding cells through to the formation of large-scale complex structures. Using the model biofilm strain NCIB 3610, we examine the movement dynamics of the growing biomass and compare them with those displayed by a suite of otherwise isogenic matrix-mutant strains. Correspondingly, we assess the impact of an incomplete matrix on biofilm morphologies and sessile growth rate. Our results indicate that radial expansion of colony biofilms results from the division of bacteria at the biofilm periphery rather than being driven by swelling due to fluid intake. Moreover, we show that lack of exopolysaccharide production has a negative impact on cell division rate, and the extracellular matrix components act synergistically to give the biomass the structural strength to produce aerial protrusions and agar substrate-deforming ability.
Collapse
|
42
|
Thornton EL, Paterson SM, Gidden Z, Horrocks MH, Laohakunakorn N, Regan L. Self-Assembling Protein Surfaces for In Situ Capture of Cell-Free-Synthesized Proteins. Front Bioeng Biotechnol 2022; 10:915035. [PMID: 35875503 PMCID: PMC9300835 DOI: 10.3389/fbioe.2022.915035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We present a new method for the surface capture of proteins in cell-free protein synthesis (CFPS). We demonstrate the spontaneous self-assembly of the protein BslA into functionalizable surfaces on the surface of a CFPS reaction chamber. We show that proteins can be covalently captured by such surfaces, using “Catcher/Tag” technology. Importantly, proteins of interest can be captured either when synthesised in situ by CFPS above the BslA surfaces, or when added as pure protein. The simplicity and cost efficiency of this method suggest that it will find many applications in cell-free-based methods.
Collapse
Affiliation(s)
- Ella Lucille Thornton
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Maria Paterson
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zoe Gidden
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Nadanai Laohakunakorn
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Nadanai Laohakunakorn, ; Lynne Regan,
| | - Lynne Regan
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Nadanai Laohakunakorn, ; Lynne Regan,
| |
Collapse
|
43
|
Zhang X, Jacobeen S, Zhang Q, Khau B, Yunker P, Qi HJ, Bhamla S, Russo PS. Reshaping sub-millimetre bubbles from spheres to tori. SOFT MATTER 2022; 18:4660-4666. [PMID: 35543353 PMCID: PMC9247010 DOI: 10.1039/d2sm00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.
Collapse
Affiliation(s)
- Xujun Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shane Jacobeen
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qiang Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brian Khau
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Peter Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - H Jerry Qi
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Paul S Russo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
44
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
45
|
Probing the growth and mechanical properties of Bacillus subtilis biofilms through genetic mutation strategies. Synth Syst Biotechnol 2022; 7:965-971. [PMID: 35756965 PMCID: PMC9194759 DOI: 10.1016/j.synbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial communities form biofilms on various surfaces by synthesizing a cohesive and protective extracellular matrix, and these biofilms protect microorganisms against harsh environmental conditions. Bacillus subtilis is a widely used experimental species, and its biofilms are used as representative models of beneficial biofilms. Specifically, B. subtilis biofilms are known to be rich in extracellular polymeric substances (EPS) and other biopolymers such as DNA and proteins like the amyloid protein TasA and the hydrophobic protein BslA. These materials, which form an interconnected, cohesive, three-dimensional polymer network, provide the mechanical stability of biofilms and mediate their adherence to surfaces among other functional contributions. Here, we explored how genetically-encoded components specifically contribute to regulate the growth status, mechanical properties, and antibiotic resistance of B. subtilis biofilms, thereby establishing a solid empirical basis for understanding how various genetic engineering efforts are likely to affect the structure and function of biofilms. We noted discrete contributions to biofilm morphology, mechanical properties, and survival from major biofilm components such as EPS, TasA and BslA. For example, EPS plays an important role in maintaining the stability of the mechanical properties and the antibiotic resistance of biofilms, whereas BslA has a significant impact on the resolution that can be obtained for printing applications. This work provides a deeper understanding of the internal interactions of biofilm components through systematic genetic manipulations. It thus not only broadens the application prospects of beneficial biofilms, but also serves as the basis of future strategies for targeting and effectively removing harmful biofilms.
Collapse
|
46
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
47
|
The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects. Microorganisms 2022; 10:microorganisms10040767. [PMID: 35456817 PMCID: PMC9025316 DOI: 10.3390/microorganisms10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Root colonization and plant probiotic function are important traits of plant growth-promoting rhizobacteria (PGPR). Bacillus velezensis SC60, a plant endophytic strain screened from Sesbania cannabina, has a strong colonization ability on various plant roots, which indicates that SC60 has a preferable adaptability to plants. However, the probiotic function of the strain SC60 is not well-understood. Promoting plant growth and suppressing soil-borne pathogens are key to the plant probiotic functions. In this study, the genetic mechanism of plant growth-promoting and antibacterial activity of the strain SC60 was analyzed by biological and bioinformatics methods. The complete genome size of strain SC60 was 3,962,671 bp, with 4079 predicted genes and an average GC content of 46.46%. SC60 was designated as Bacillus velezensis according to the comparative analysis, including average nucleotide polymorphism (ANI), digital DNA–DNA hybridization (dDDH), and phylogenetic analysis. Genomic secondary metabolite analyses indicated two clusters encoding potential new antimicrobials. The antagonism experiments revealed that strain SC60 had the ability to inhibit the growth of a variety of plant pathogens and its closely related strains of Bacillus spp., which was crucial to the rhizospheric competitiveness and growth-promoting effect of the strain. The present results further suggest that B. velezensis SC60 could be used as a PGPR strain to develop new biocontrol agents or microbial fertilizers.
Collapse
|
48
|
Bremer E, Hoffmann T, Dempwolff F, Bedrunka P, Bange G. The many faces of the unusual biofilm activator RemA. Bioessays 2022; 44:e2200009. [PMID: 35289951 DOI: 10.1002/bies.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.
Collapse
Affiliation(s)
- Erhard Bremer
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Dempwolff
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
49
|
Multiscale X-ray study of Bacillus subtilis biofilms reveals interlinked structural hierarchy and elemental heterogeneity. Proc Natl Acad Sci U S A 2022; 119:2118107119. [PMID: 35042817 PMCID: PMC8794879 DOI: 10.1073/pnas.2118107119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms are multicellular, soft microbial communities that are able to colonize synthetic surfaces as well as living organisms. To survive sudden environmental changes and efficiently share their common resources, cells in a biofilm divide into subgroups with distinct functions, leading to phenotypic heterogeneity. Here, by studying intact biofilms by synchrotron X-ray diffraction and fluorescence, we revealed correlations between biofilm macroscopic, architectural heterogeneity and the spatiotemporal distribution of extracellular matrix, spores, water, and metal ions. Our findings demonstrate that biofilm heterogeneity is not only affected by local genetic expression and cellular differentiation but also by passive effects resulting from the physicochemical properties of the molecules secreted by the cells, leading to differential distribution of nutrients that propagate through macroscopic length scales. Biofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial, for example, in agricultural as well as in food technology contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity, the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level; however, the molecular structures and elemental distribution across whole biofilms, as well as possible linkages between them, remain unexplored. Mapping X-ray diffraction across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores, and water. By simultaneously following the X-ray fluorescence signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese, and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and may possibly lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution, and sporulation across whole, intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.
Collapse
|
50
|
Sharma S, Meena M, Marwal A, Swapnil P. Biofilm matrix proteins. APPLICATION OF BIOFILMS IN APPLIED MICROBIOLOGY 2022:51-64. [DOI: 10.1016/b978-0-323-90513-8.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|