1
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
2
|
Amarante T, Cunha THR, Laudares C, Barboza APM, dos Santos AC, Pereira CL, Ornelas V, Neves BRA, Ferlauto AS, Lacerda RG. Carbon nanotube-cellulose ink for rapid solvent identification. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:535-543. [PMID: 37152475 PMCID: PMC10155625 DOI: 10.3762/bjnano.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
In this work, a conductive ink based on microfibrillated cellulose (MFC) and multiwalled carbon nanotubes (MWCNTs) was used to produce transducers for rapid liquid identification. The transducers are simple resistive devices that can be easily fabricated by scalable printing techniques. We monitored the electrical response due to the interaction between a given liquid with the carbon nanotube-cellulose film over time. Using principal component analysis of the electrical response, we were able to extract robust data to differentiate between the liquids. We show that the proposed liquid sensor can classify different liquids, including organic solvents (acetone, chloroform, and different alcohols) and is also able to differentiate low concentrations of glycerin in water (10-100 ppm). We have also investigated the influence of two important properties of the liquids, namely dielectric constant and vapor pressure, on the transduction of the MFC-MWCNT sensors. These results were corroborated by independent heat flow measurements (thermogravimetric analysis). The proposed MFC-MWCNT sensor platform may help paving the way to rapid, inexpensive, and robust liquid analysis and identification.
Collapse
Affiliation(s)
- Tiago Amarante
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Thiago H R Cunha
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Claudio Laudares
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Ana P M Barboza
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto - CEP 35400-000, Brazil
| | - Ana Carolina dos Santos
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Cíntia L Pereira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Vinicius Ornelas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Bernardo R A Neves
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - André S Ferlauto
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André - CEP 09210-580, Brazil
| | - Rodrigo G Lacerda
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| |
Collapse
|
3
|
Hua Y, Ahmadi Y, Kim KH. Molecularly imprinted polymers for sensing gaseous volatile organic compounds: opportunities and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119931. [PMID: 35977643 DOI: 10.1016/j.envpol.2022.119931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Chemical sensors that can detect volatile organic compounds (VOCs) are the subject of extensive research efforts. Among various sensing technologies, molecularly imprinted polymers (MIPs) are regarded as a highly promising option for their detection with many advantageous properties, e.g., specific binding-site for template molecules, high recognition specificity, ease of preparation, and chemical stability. This review covers recent advances in the sensing application of MIPs toward various types of VOCs (e.g., aliphatic and aromatic compounds). Particular emphasis has been placed on multiple approaches to the synthesis of MIP-based VOC sensors in association with their performance and sensing mechanisms. Current challenges and opportunities for new VOC-sensing applications are also discussed based on MIP technology.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
5
|
Castonguay AC, Yi N, Li B, Zhao J, Li H, Gao Y, Nova NN, Tiwari N, Zarzar LD, Cheng H. Direct Laser Writing of Microscale Metal Oxide Gas Sensors from Liquid Precursors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28163-28173. [PMID: 35686829 DOI: 10.1021/acsami.2c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabrication and processing approaches that facilitate the ease of patterning and the integration of nanomaterials into sensor platforms are of significant utility and interest. In this work, we report the use of laser-induced thermal voxels (LITV) to fabricate microscale, planar gas sensors directly from solutions of metal salts. LITV offers a facile platform to directly integrate nanocrystalline metal oxide and mixed metal oxide materials onto heating platforms, with access to a wide variety of compositions and morphologies including many transition metals and noble metals. The unique patterning and synthesis flexibility of LITV enable the fabrication of chemically and spatially tailorable microscale sensing devices. We investigate the sensing performance of a representative set of n-type and p-type LITV-deposited metal oxides and their mixtures (CuO, NiO, CuO/ZnO, and Fe2O3/Pt) in response to reducing and oxidizing gases (H2S, NO2, NH3, ethanol, and acetone). These materials show a broad range of sensitivities and notably a strong response of NiO to ethanol and acetone (407 and 301% R/R0 at 250 °C, respectively), along with a 5- to 20-fold sensitivity enhancement for CuO/ZnO to all gases measured over pure CuO, highlighting the opportunities of LITV for the creation of mixed-material microscale sensors.
Collapse
Affiliation(s)
- Alexander C Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Jiang Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Han Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
- Southeast Institute of China Unicom, Fuzhou, Fujian 350000, China
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Nabila N Nova
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Naveen Tiwari
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
6
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Andre RS, Ngo QP, Fugikawa-Santos L, Correa DS, Swager TM. Wireless Tags with Hybrid Nanomaterials for Volatile Amine Detection. ACS Sens 2021; 6:2457-2464. [PMID: 34110807 DOI: 10.1021/acssensors.1c00812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quality control in the production and processing of raw meat is currently one of the biggest concerns for food industry and would benefit from portable and wireless sensors capable of detecting the onset of spoilage. Raw meat is a natural source of biogenic and volatile amines as byproducts of decarboxylation reactions, and the levels of these compounds can be utilized as quality control parameters. We report herein a hybrid chemiresistor sensor based on inorganic nanofibers of SiO2:ZnO (an n-type material) and single-walled carbon nanotubes functionalized with 3,5-dinitrophenyls (a p-type material) with dosimetric sensitivity ∼40 times higher for amines than for other volatile organic compounds, which also provides excellent selectivity. The hybrid nanomaterial-based chemiresistor sensory material was used to convert radio-frequency identification tags into chemically actuated resonant devices, which constitute wireless sensors that can be potentially employed in packaging to report on the quality of meat. Specifically, the as-developed wireless tags report on cumulative amine exposure inside the meat package, showing a decrease in radio-frequency signals to the point wherein the sensor ceased to be smartphone-readable. These hybrid material-modified wireless tags offer a path to scalable, affordable, portable, and wireless chemical sensor technology for food quality monitoring without the need to open the packaging.
Collapse
Affiliation(s)
- Rafaela S. Andre
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, São Paulo, Brazil
| | - Quynh P. Ngo
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lucas Fugikawa-Santos
- Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), 13506-700 Rio Claro, São Paulo, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, São Paulo, Brazil
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Abstract
Skin-interfaced wearable electronics can find a broad spectrum of applications in healthcare, human-machine interface, robotics, and others. The state-of-the-art wearable electronics usually suffer from costly and complex fabrication procedures and nonbiodegradable polymer substrates. Paper, comprising entangled micro- or nano-scale cellulose fibers, is compatible with scalable fabrication techniques and emerges as a sustainable, inexpensive, disposable, and biocompatible substrate for wearable electronics. Given various attractive properties (e.g., breathability, flexibility, biocompatibility, and biodegradability) and rich tunability of surface chemistry and porous structures, paper offers many exciting opportunities for wearable electronics. In this review, we first introduce the intriguing properties of paper-based wearable electronics and strategies for cellulose modifications to satisfy specific demands. We then overview the applications of paper-based devices in biosensing, energy storage and generation, optoelectronics, soft actuators, and several others. Finally, we discuss some challenges that need to be addressed before practical uses and wide implementation of paper-based wearable electronics.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Samuel B Stoll
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA.,Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Zhao Y, Liu Y, Li Y, Hao Q. Development and Application of Resistance Strain Force Sensors. SENSORS 2020; 20:s20205826. [PMID: 33076279 PMCID: PMC7602478 DOI: 10.3390/s20205826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Resistance strain force sensors have been applied to monitor the strains in various parts and structures for industrial use. Here, we review the working principles, structural forms, and fabrication processes for resistance strain gauges. In particular, we focus on recent developments in resistance stress transfer for resistance strain force sensors and the creep effect due to sustained loads and/or temperature variations. Various error compensation methods to reduce the creep effect are analyzed to develop a metrology standard for resistance strain force sensors. Additionally, the current status of carbon nanotubes (CNTs), silicon carbide (SiC), gallium nitride (GaN), and other wide band gap semiconductors for a wide range of strain sensors are reviewed. The technical requirements and key issues of resistance strain force sensors for future applications are presented.
Collapse
Affiliation(s)
- Yinming Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (Q.H.)
- Beijing Changcheng Institute of Metrology & Measurement, Beijing 100095, China
| | - Yang Liu
- Key Laboratory of Micro/Nano Systems for Aerospace of Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yongqian Li
- Key Laboratory of Micro/Nano Systems for Aerospace of Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China;
- Correspondence:
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (Q.H.)
| |
Collapse
|
10
|
Abstract
Volatile organic compounds (VOCs) are pervasive in the environment. Since the early 1980s, substantial work has examined the detection of these materials, as they can indicate environmental changes that can affect human health. VOCs and similar compounds present a very specific sensing problem in that they are not reactive and often nonpolar, so it is difficult to find materials that selectively bind or adsorb them. A number of techniques are applied to vapor sensing. High resolution molecular separation approaches such as gas chromatography and mass spectrometry are well-characterized and offer high sensitivity, but are difficult to implement in portable, real-time monitors, whereas approaches such as chemiresistors are promising, but still in development. Gravimetric approaches, in which the mass of an adsorbed vapor is directly measured, have several potential advantages over other techniques but have so far lagged behind other approaches in performance and market penetration. This review aims to offer a comprehensive background on gravimetric sensing including underlying resonators and sensitizers, as well as a picture of applications and commercialization in the field.
Collapse
Affiliation(s)
- Christine K. McGinn
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Zachary A. Lamport
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Ioannis Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| |
Collapse
|
11
|
Tousignant MN, Rice NA, Peltekoff A, Sundaresan C, Miao C, Hamad WY, Lessard BH. Improving Thin-Film Properties of Poly(vinyl alcohol) by the Addition of Low-Weight Percentages of Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3550-3557. [PMID: 32163710 DOI: 10.1021/acs.langmuir.0c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increased demand for electronic devices, combined with a desire to minimize the environmental impact, necessitates the development of new eco-friendly materials. One promising approach is the incorporation of renewable and green materials that possess the desired mechanical and electrical properties while allowing for more ecologically friendly disposal of these devices. The addition of low-weight percentages (0.25-0.75 wt %) of cellulose nanocrystals (CNCs) was investigated as an environmentally friendly additive in aqueous dispersions of poly(vinyl alcohol) (PVA). It was found that these low CNC loadings were sufficient to induce a favorable increase in viscosity, which in turn dramatically enhanced the film quality of the PVA blends through an improvement in the critical radius of the spun film, overall film thickness, and homogeneity of the thin film. This corresponded to an increase in the number of functioning organic electronic devices that could be fabricated by spin coating, including metal-insulator-metal (MIM) capacitors and organic thin-film transistors (OTFTs). Most importantly, the incorporation of CNCs into PVA did not significantly alter the native dielectric properties of the polymer thin films when incorporated into both MIM capacitors and OTFTs.
Collapse
Affiliation(s)
- Mathieu N Tousignant
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Nicole A Rice
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Alexander Peltekoff
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- Institute for Microstructural Sciences (IMS), National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Chuanwei Miao
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Wadood Y Hamad
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
12
|
Bhardwaj R, Selamneni V, Thakur UN, Sahatiya P, Hazra A. Detection and discrimination of volatile organic compounds by noble metal nanoparticle functionalized MoS2 coated biodegradable paper sensors. NEW J CHEM 2020. [DOI: 10.1039/d0nj03491f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the current study, noble metal nanoparticle functionalized MoS2 coated biodegradable low-cost paper sensors were fabricated for the selective detection of low concentrations of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Radha Bhardwaj
- Dept. of Electrical & Electronics Engineering
- BITS Pilani
- Pilani Campus
- India
| | | | | | - Parikshit Sahatiya
- Dept. of Electrical & Electronics Engineering
- BITS Pilani
- Hyderabad Campus
- India
| | - Arnab Hazra
- Dept. of Electrical & Electronics Engineering
- BITS Pilani
- Pilani Campus
- India
| |
Collapse
|
13
|
Zhang QP, Wei TB, An JN, Chen YY, Gong GF, Zhou Q, Yang HL, Yao H, Zhang YM, Lin Q. A simple chemosensor for ultrasensitive fluorescent “turn-on” detection of Fe3+ and alternant detection of CN-. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1690655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qin-Peng Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Jun-Nian An
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Guan-Fei Gong
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Hai-Long Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
14
|
Lee WS, Choi J. Hybrid Integration of Carbon Nanotubes and Transition Metal Dichalcogenides on Cellulose Paper for Highly Sensitive and Extremely Deformable Chemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19363-19371. [PMID: 31062579 DOI: 10.1021/acsami.9b03296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sensitive and deformable chemical sensors manufactured by a low-cost process are promising as they are disposable, can be applied on curved, complex structures, and provide environmental information to users. Although many nanomaterial-based flexible sensors have been suggested to meet these demands, their limited chemical sensitivity and mechanical flexibility pose challenges. Here, a highly deformable chemical sensor is reported with improved sensitivity that integrates multiwalled carbon nanotubes (CNTs) and nanolayered transition metal dichalcogenides (TMDCs) on cellulose paper. Liquid dispersions of CNTs and TMDCs are absorbed and dried on porous cellulose for sensor fabrication, which is simple, scalable, rapid, and inexpensive. The cellulose substrate enables reversible three-dimensional folding and unfolding, bending down to 0.25 mm, and twisting up to 1800° (∼628.4 rad m-1) without degradation, and the CNTs maintain a percolation network and simultaneously provide gas reactivity. Functionalization of CNTs with TMDCs (WS2 or MoS2) greatly improves the sensing response upon exposure to NO2 molecules by more than 150%, and the sensor can also selectively detect NO2 over diverse reducing vapors. The measured NO2 sensitivity is 4.57% ppm-1, which is much higher than that of previous paper-based sensors. Our sensor can stably and sensitively detect the gas even under severe deformation such as heavy folding and crumpling. Hybrid integration of CNTs and TMDCs on cellulose paper may also be used to detect other harmful gases and can be applicable in low-cost portable devices that require reliable deformability.
Collapse
Affiliation(s)
- Woo Sung Lee
- School of Mechanical Engineering , Yeungnam University , 280 Daehak-ro , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Jungwook Choi
- School of Mechanical Engineering , Yeungnam University , 280 Daehak-ro , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| |
Collapse
|
15
|
Jaini AKA, Hughes LB, Kitimet MM, Ulep KJ, Leopold MC, Parish CA. Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection. ACS Sens 2019; 4:389-397. [PMID: 30672707 DOI: 10.1021/acssensors.8b01246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Improved sensing strategies are needed for facile, accurate, and rapid detection of aromatic and nonaromatic explosives. Density functional theory was used to evaluate the relative binding interaction energies between halogen-containing sensor model molecules and nitro-containing explosives. Interaction energies ranged from -18 to -14 kJ/mol and highly directional halogen bonding interactions were observed with bond distances ranging between 3.0 and 3.4 Å. In all geometry optimized structures, the sigma-hole of electropositive potential on the halogen aligned with a lone pair of electrons on the nitro-moiety of the explosive. The computational results predict that the strongest interactions will occur with iodine-based sensors as, of all the halogens studied, iodine is the largest, most polarizable halogen with the smallest electronegativity. Based on these promising proof-of-concept results, synthetically accessible sensors were designed using 1,4-dihalobenzene (X = Cl, Br, and I) with and without tetra-fluoro electron withdrawing groups attached to the benzene ring. These sensing molecules were embedded onto single walled carbon nanotubes that were mechanically abraded onto interdigitated array electrodes, and these were used to measure the responses to explosive model compounds cyclohexanone and dimethyl-dinitro-benzene in nitrogen gas. Amperometric current-time curves for selectors and control molecules, including concentration correlated signal enhancement, as well as response and recovery times, indicate selector responsiveness to these model compounds, with the largest response observed for iodo-substituted sensors.
Collapse
Affiliation(s)
- Arjun K. A. Jaini
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Lillian B. Hughes
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Michael M. Kitimet
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Kevin John Ulep
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Carol A. Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
16
|
Abstract
Carbon nanotubes (CNTs) promise to advance a number of real-world technologies. Of these applications, they are particularly attractive for uses in chemical sensors for environmental and health monitoring. However, chemical sensors based on CNTs are often lacking in selectivity, and the elucidation of their sensing mechanisms remains challenging. This review is a comprehensive description of the parameters that give rise to the sensing capabilities of CNT-based sensors and the application of CNT-based devices in chemical sensing. This review begins with the discussion of the sensing mechanisms in CNT-based devices, the chemical methods of CNT functionalization, architectures of sensors, performance parameters, and theoretical models used to describe CNT sensors. It then discusses the expansive applications of CNT-based sensors to multiple areas including environmental monitoring, food and agriculture applications, biological sensors, and national security. The discussion of each analyte focuses on the strategies used to impart selectivity and the molecular interactions between the selector and the analyte. Finally, the review concludes with a brief outlook over future developments in the field of chemical sensors and their prospects for commercialization.
Collapse
Affiliation(s)
- Vera Schroeder
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Maggie He
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Sibo Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
17
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
18
|
Zhang YZ, Wang Y, Cheng T, Yao LQ, Li X, Lai WY, Huang W. Printed supercapacitors: materials, printing and applications. Chem Soc Rev 2019; 48:3229-3264. [DOI: 10.1039/c7cs00819h] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes how printing methods can revolutionize the manufacturing of supercapacitors – promising energy storage devices for flexible electronics.
Collapse
Affiliation(s)
- Yi-Zhou Zhang
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yang Wang
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Tao Cheng
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Lan-Qian Yao
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Xiangchun Li
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|
19
|
Park CH, Schroeder V, Kim BJ, Swager TM. Ionic Liquid-Carbon Nanotube Sensor Arrays for Human Breath Related Volatile Organic Compounds. ACS Sens 2018; 3:2432-2437. [PMID: 30379539 DOI: 10.1021/acssensors.8b00987] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High sensitivity, selectivity, and stability are key requirements for carbon nanotube (CNT)-based sensors to realize their full potential in applications ranging from chemical warfare agent detection to disease diagnostics. Herein we demonstrate the sensing of volatile organic compounds (VOCs) relevant to human diseases using an array of chemiresistive carbon nanotube (CNT)-based sensors functionalized with ionic liquids (ILs). The ILs are fluid at ambient temperature and were selected to produce a discriminating sensor array capable of the gas-phase detection of human disease-related VOCs. We find that sensor arrays consisting of imidazolium-based ILs with different substituents and counterions provide selective responses for known biomarkers of infectious diseases of the lungs. Specifically, the sensors discriminate the various volatile biomarkers for tuberculosis based on their polarity, solubility, and chemical affinities. In addition to selectivity, the sensors also show a high level of reversibility and promising long-term stability, which renders them to be suitable candidates for practical applications in breath analysis.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Vera Schroeder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
|
21
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Loghin FC, Falco A, Albrecht A, Salmerón JF, Becherer M, Lugli P, Rivandeneyra A. A Handwriting Method for Low-Cost Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34683-34689. [PMID: 30148599 DOI: 10.1021/acsami.8b08050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we report on an automated method based on a handwritten technique for the fabrication of low-cost gas sensors based on carbon nanotube (CNT) networks. Taking advantage of the inherent low-cost, flexible, and uncomplicated characteristics of pen-based techniques and combining them with an automated robotic system allows for high-resolution patterns, high reproducibility, and relatively high throughput considering the limitations of parallel processing. To showcase this, gas sensors capable of sensing NH3, CO2, CO, and ethanol, as well as temperature and relative humidity, are fabricated and characterized displaying competitive performance in relation to previously reported devices. The presented process is compatible with a variety of solutions and inks and, as such, allows for an easy integration into existing printing and coating frameworks with the greatest advantage being the ease of creating prototypes because of the nonstringent material requirements.
Collapse
Affiliation(s)
- Florin C Loghin
- Institute for Nanoelectronics , Technische Universität München , 80333 Munich , Germany
| | - Aniello Falco
- Faculty of Science and Technology , Free University of Bozen-Bolzano , 39100 Bozen-Bolzano , Italy
| | - Andreas Albrecht
- Institute for Nanoelectronics , Technische Universität München , 80333 Munich , Germany
| | - José F Salmerón
- Institute for Nanoelectronics , Technische Universität München , 80333 Munich , Germany
| | - Markus Becherer
- Institute for Nanoelectronics , Technische Universität München , 80333 Munich , Germany
| | - Paolo Lugli
- Faculty of Science and Technology , Free University of Bozen-Bolzano , 39100 Bozen-Bolzano , Italy
| | - Almudena Rivandeneyra
- Institute for Nanoelectronics , Technische Universität München , 80333 Munich , Germany
| |
Collapse
|
23
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Kahng SJ, Cerwyn C, Dincau BM, Kim JH, Novosselov IV, Anantram MP, Chung JH. Nanoink bridge-induced capillary pen printing for chemical sensors. NANOTECHNOLOGY 2018; 29:335304. [PMID: 29808828 DOI: 10.1088/1361-6528/aac84a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.
Collapse
Affiliation(s)
- Seong-Joong Kahng
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States of America
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen Y, Owyeung RE, Sonkusale SR. Combined optical and electronic paper-nose for detection of volatile gases. Anal Chim Acta 2018; 1034:128-136. [PMID: 30193626 DOI: 10.1016/j.aca.2018.05.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 02/01/2023]
Abstract
In this work, a paper-based optoelectronic sensor (paper-nose) is presented for sensing volatile gases in air. The proposed optoelectronic sensor is a combination of both colorimetric (optical) and chemiresistive (electronic) sensor arrays in order to improve the selectivity of the paper-nose in the complex air background. The optical sensors are based on chemoresponsive dyes, namely Reichardt's dye (2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate), bromocresol purple, methyl red, bromothymol blue, brilliant yellow and manganese tetraphenylporphyrin (Mn-TPP). The chemiresistive sensors are based on nanomaterials, such as carbon nanotubes (CNT), PEDOT:PSS, graphite, and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI). Sensor is fabricated through direct handwriting of sensing materials using a pen on paper without the need of expensive cleanroom facilities. The optoelectronic sensor is tested in ambient air with different volatile gases such as methanol, ammonia, toluene, acetone and ethanol and their mixtures of varying concentrations. The detected electrical and optical responses together form a unique signature for each volatile gas and its mixture. Support-vector machine (SVM) is applied for target classification and detection. From the SVM result, it is found that better discriminative power is achieved by combining optical and electrical responses.
Collapse
Affiliation(s)
- Yu Chen
- Electrical and Computer Engineering Department, Tufts University, Medford, MA, 02155, USA; Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
| | - Rachel E Owyeung
- Chemical Engineering Department, Tufts University, Medford, MA, 02155, USA; Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
| | - Sameer R Sonkusale
- Electrical and Computer Engineering Department, Tufts University, Medford, MA, 02155, USA; Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
26
|
A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim Acta 2018; 185:213. [DOI: 10.1007/s00604-018-2750-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/26/2018] [Indexed: 02/08/2023]
|
27
|
|
28
|
Liu YC, Hsu CH, Lu BJ, Lin PY, Ho ML. Determination of nitrite ions in environment analysis with a paper-based microfluidic device. Dalton Trans 2018; 47:14799-14807. [DOI: 10.1039/c8dt02960a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new microfluidic paper-based analytical device, a (Ag-μPAD)-based chemiresistor composed of silver ink, has been developed for the selective, sensitive, and quantitative determination of nitrite ions in environmental analysis.
Collapse
Affiliation(s)
- Yu-Ci Liu
- Department of Chemistry
- Soochow University
- Taipei 111
- Taiwan
| | - Chia-Hui Hsu
- Department of Chemistry
- Soochow University
- Taipei 111
- Taiwan
| | - Bing-Jyun Lu
- Department of Chemistry
- Soochow University
- Taipei 111
- Taiwan
| | - Peng-Yi Lin
- Department of Chemistry
- Soochow University
- Taipei 111
- Taiwan
| | - Mei-Lin Ho
- Department of Chemistry
- Soochow University
- Taipei 111
- Taiwan
| |
Collapse
|
29
|
Fairose S, Ernest S, Daniel S. Effect of Oxygen Sputter Pressure on the Structural, Morphological and Optical Properties of ZnO Thin Films for Gas Sensing Application. SENSING AND IMAGING 2017; 19:1. [PMID: 29354023 PMCID: PMC5747580 DOI: 10.1007/s11220-017-0184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 10/28/2017] [Indexed: 06/07/2023]
Abstract
ZnO thin films were prepared on glass substrates at low (5 × 10-4 mbar) and high (3 × 10-3 mbar) sputter pressure using dc reactive magnetron sputtering. The structural, morphological, compositional and optical properties of the thin films were investigated. XRD patterns of both films confirmed the polycrystalline nature of the films with hexagonal Wurtzite structure. SEM study indicates that the surface of the film formed at high sputter pressure was more uniform, compact and porous in nature. From the EDAX analysis, no other characteristic peaks of other impurities were observed and the formation of single phase of ZnO was confirmed. From the study of photoluminescence, three peaks were observed, one strong near band-edge emission at 390 nm followed by weak and broad visible emissions around 420-480 nm. Room temperature ammonia sensing characteristics of ZnO nanothin films formed at higher sputter pressure were studied for different ammonia vapour concentration levels. The response of the Ammonia sensor at room temperature (30 °C) operation was observed to be of high sensitivity with quick response and recovery times.
Collapse
Affiliation(s)
- S. Fairose
- PG & Research Department of Physics, Urumu Dhanalakshmi College, Trichy, Tamil Nadu 620 019 India
| | - Suhashini Ernest
- PG & Research Department of Physics, Urumu Dhanalakshmi College, Trichy, Tamil Nadu 620 019 India
| | - Samson Daniel
- PG & Research Department of Physics, Bharathidasan University, Trichy, Tamil Nadu 620 024 India
| |
Collapse
|
30
|
Ko M, Aykanat A, Smith MK, Mirica KA. Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2192. [PMID: 28946624 PMCID: PMC5677178 DOI: 10.3390/s17102192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 01/05/2023]
Abstract
The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH₃, H₂S and NO at parts-per-million concentrations.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Aylin Aykanat
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Merry K Smith
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
31
|
Jiang X, Yang T, Li C, Zhang R, Zhang L, Zhao X, Zhu H. Rapid Liquid Recognition and Quality Inspection with Graphene Test Papers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700037. [PMID: 31565284 PMCID: PMC6607296 DOI: 10.1002/gch2.201700037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Indexed: 05/24/2023]
Abstract
Electronic tongue is widely applied in liquid sensing for applications in various fields, such as environmental monitoring, healthcare, and food quality test. A rapid and simple liquid-sensing method can greatly facilitate the routine quality tests of liquids. Nanomaterials can help miniaturize sensing devices. In this work, a broad-spectrum liquid-sensing system is developed for rapid liquid recognition based on disposable graphene-polymer nanocomposite test paper prepared through ion-assisted filtration. Using this liquid-sensing system, a number of complex liquids are successfully recognized, including metal salt solutions and polymer solutions. The electronic tongue system is especially suitable for checking the quality of the foodstuff, including soft drinks, alcoholic liquor, and milk. The toxicants in these liquids can be readily detected. Furthermore, the novel material-structure design and liquid-detection method can be expanded to other chemical sensors, which can greatly enrich the chemical information collected from the electrical response of single chemiresistor platform.
Collapse
Affiliation(s)
- Xin Jiang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Tingting Yang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Changli Li
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Rujing Zhang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Li Zhang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Xuanliang Zhao
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Hongwei Zhu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| |
Collapse
|
32
|
Zhao H, Zhang T, Qi R, Dai J, Liu S, Fei T. Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28002-28009. [PMID: 28767212 DOI: 10.1021/acsami.7b05181] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article describes the development of a kind of full carbon-based humidity sensor fabricated on the paper substrate by handwriting. The electrodes were written by commercial pencils, and the sensitive layer was drawn with an oxidized multiwalled carbon nanotubes (o-MWCNTs) ink marker. The resultant devices exhibit good reproducibility and stability during the dynamic measurement. The response of the optimized paper-based sensor exhibits about five times higher than sensors fabricated on the ceramic substrate, which is owing to the hydrophilic property of the paper substrate. The structure of the sensitive layer formed by dispersing sensitive materials in the porous surface of paper substrates alleviates the inner stress in the process of bending. The response of printing paper-based sensors only shows the 6.7% decay even under an extremely high bending degree.
Collapse
Affiliation(s)
- Hongran Zhao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Rongrong Qi
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Jianxun Dai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Sen Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| | - Teng Fei
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|
33
|
Sensitivity enhancement of flexible gas sensors via conversion of inkjet-printed silver electrodes into porous gold counterparts. Sci Rep 2017; 7:8988. [PMID: 28827611 PMCID: PMC5566453 DOI: 10.1038/s41598-017-09174-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 01/15/2023] Open
Abstract
This work describes a facile, mild and general wet chemical method to change the material and the geometry of inkjet-printed interdigitated electrodes (IDEs) thus drastically enhancing the sensitivity of chemiresistive sensors. A novel layer-by-layer chemical method was developed and used to uniformly deposit semiconducting single-wall carbon nanotube (SWCNT)-based sensing elements on a Kapton® substrate. Flexible chemiresistive sensors were then fabricated by inkjet-printing fine-featured silver IDEs on top of the sensing elements. A mild and facile two-step process was employed to convert the inkjet-printed dense silver IDEs into their highly porous gold counterparts under ambient conditions without losing the IDE-substrate adhesion. A proof-of-concept gas sensor equipped with the resulting porous gold IDEs featured a sensitivity to diethyl ethylphosphonate (DEEP, a simulant of the nerve agent sarin) of at least 5 times higher than a similar sensor equipped with the original dense silver IDEs, which suggested that the electrode material and/or the Schottky contacts between the electrodes and the SWCNTs might have played an important role in the gas sensing process.
Collapse
|
34
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
35
|
Kennedy ZC, Christ JF, Evans KA, Arey BW, Sweet LE, Warner MG, Erikson RL, Barrett CA. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform. NANOSCALE 2017; 9:5458-5466. [PMID: 28422253 DOI: 10.1039/c7nr00617a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the production of flexible, highly-conductive poly(vinylidene fluoride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D printing. This account further describes, for the first time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (∼3 × 10-2 S cm-1). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro-X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15% mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161% after 3 minutes) being generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.
Collapse
Affiliation(s)
- Z C Kennedy
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory (PNNL), P. O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fennell JF, Hamaguchi H, Yoon B, Swager TM. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes. SENSORS 2017; 17:s17050982. [PMID: 28452929 PMCID: PMC5469335 DOI: 10.3390/s17050982] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.
Collapse
Affiliation(s)
- John F Fennell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | - Bora Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Lee M, Cho D, Kim I, Lee J, Lee JY, Satheeshkumar C, Song C. Cooperative Binding of Metal Cations to a Spiropyran-Conjugated Calix[4]arene. ChemistrySelect 2017. [DOI: 10.1002/slct.201700222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minhe Lee
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| | - Daeheum Cho
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| | - Inwon Kim
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| | - Juhyen Lee
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| | - Chinnadurai Satheeshkumar
- Graduate School of Nanoscience and Technology; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Changsik Song
- Department of Chemistry; Sungkyunkwan University; Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
38
|
Fahad HM, Shiraki H, Amani M, Zhang C, Hebbar VS, Gao W, Ota H, Hettick M, Kiriya D, Chen YZ, Chueh YL, Javey A. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. SCIENCE ADVANCES 2017; 3:e1602557. [PMID: 28378017 PMCID: PMC5365249 DOI: 10.1126/sciadv.1602557] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/09/2017] [Indexed: 05/19/2023]
Abstract
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
Collapse
Affiliation(s)
- Hossain Mohammad Fahad
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroshi Shiraki
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Murata Manufacturing Co. Ltd., Nagaokakyo, Kyoto 617-8555, Japan
| | - Matin Amani
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chuchu Zhang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vivek Srinivas Hebbar
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Gao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Ota
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark Hettick
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daisuke Kiriya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu-Ze Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Ding M, Liu Y, Wang G, Zhao Z, Yin A, He Q, Huang Y, Duan X. Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602969. [PMID: 27862908 DOI: 10.1002/smll.201602969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 05/22/2023]
Abstract
Ultrathin platinum nanowires obtained from wet-synthesis with no strong binding ligands exhibit very high sensitivity toward hydrogen gas (two orders of magnitude increase compared with state-of-the-art devices). Their chemical sensitivity, selectivity, and other sensing characteristics can be rationally tailored through further surface engineering. A significantly reduced cross-sensitivity toward humidity is achieved, while the hydrogen sensitivity is preserved or even enhanced.
Collapse
Affiliation(s)
- Mengning Ding
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gongming Wang
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anxiang Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiyuan He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
40
|
Fang Y, Hester JGD, Su W, Chow JH, Sitaraman SK, Tentzeris MM. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices. Sci Rep 2016; 6:39909. [PMID: 28008987 PMCID: PMC5180237 DOI: 10.1038/srep39909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 11/24/2022] Open
Abstract
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
Collapse
Affiliation(s)
- Yunnan Fang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| | - Jimmy G D Hester
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA
| | - Wenjing Su
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA
| | - Justin H Chow
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
| | - Suresh K Sitaraman
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
| | - Manos M Tentzeris
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA
| |
Collapse
|
41
|
Affiliation(s)
- Hyeri Chang
- Department of Chemical Engineering; Hanyang University; Seoul 04763 Korea
- Choate Rosemary Hall; Wallingford CT 06492 USA
| | - Jong Pil Lee
- Department of Chemical Engineering; Hanyang University; Seoul 04763 Korea
| | - Jong-Man Kim
- Department of Chemical Engineering; Hanyang University; Seoul 04763 Korea
- Institute of Nano Science and Technology; Hanyang Unniversity; Seoul 04763 Korea
| |
Collapse
|
42
|
Pašti IA, Janošević Ležaić A, Ćirić-Marjanović G, Mirsky VM. Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3344-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Zhu R, Azzarelli JM, Swager TM. Wireless Hazard Badges to Detect Nerve-Agent Simulants. Angew Chem Int Ed Engl 2016; 55:9662-6. [DOI: 10.1002/anie.201604431] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Rong Zhu
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| | - Joseph M. Azzarelli
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
44
|
Zhu R, Azzarelli JM, Swager TM. Wireless Hazard Badges to Detect Nerve-Agent Simulants. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rong Zhu
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| | - Joseph M. Azzarelli
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
45
|
Kim SJ, Choi SJ, Jang JS, Kim NH, Hakim M, Tuller HL, Kim ID. Mesoporous WO3 Nanofibers with Protein-Templated Nanoscale Catalysts for Detection of Trace Biomarkers in Exhaled Breath. ACS NANO 2016; 10:5891-5899. [PMID: 27166639 DOI: 10.1021/acsnano.6b01196] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly selective detection, rapid response (<20 s), and superior sensitivity (Rair/Rgas> 50) against specific target gases, particularly at the 1 ppm level, still remain considerable challenges in gas sensor applications. We propose a rational design and facile synthesis concept for achieving exceptionally sensitive and selective detection of trace target biomarkers in exhaled human breath using a protein nanocage templating route for sensitizing electrospun nanofibers (NFs). The mesoporous WO3 NFs, functionalized with well-dispersed nanoscale Pt, Pd, and Rh catalytic nanoparticles (NPs), exhibit excellent sensing performance, even at parts per billion level concentrations of gases in a humid atmosphere. Functionalized WO3 NFs with nanoscale catalysts are demonstrated to show great promise for the reliable diagnosis of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Meggie Hakim
- Platforms Engineering Group, Intel GmbH , Munich 85622, Germany
| | - Harry L Tuller
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
46
|
Wang CC, Hennek JW, Ainla A, Kumar AA, Lan WJ, Im J, Smith B, Zhao M, Whitesides GM. A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Anal Chem 2016; 88:6326-33. [PMID: 27243791 PMCID: PMC5633928 DOI: 10.1021/acs.analchem.6b00568] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper describes the design and fabrication of a "pop-up" electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)-a biomarker for diabetic ketoacidosis-using a commercial combination BHB/glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and the design of the fluidic path, the pop-up-EPAD also detects BHB in buffer using a simple glucometer-a device that is more available than the combination BHB/glucometer. Strategies that use a "3D pop-up"-that is, large-scale changes in 3D structure and fluidic paths-by folding/unfolding add functionality to EPADs (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) and should enable the development of new classes of paper-based diagnostic devices.
Collapse
Affiliation(s)
- Chien-Chung Wang
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jonathan W. Hennek
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Alar Ainla
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ashok A. Kumar
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Wen-Jie Lan
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Judy Im
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Barbara Smith
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mengxia Zhao
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - George M. Whitesides
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
- Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Meyyappan M. Carbon Nanotube-Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2118-29. [PMID: 26959284 DOI: 10.1002/smll.201502555] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 05/07/2023]
Abstract
The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing.
Collapse
Affiliation(s)
- M Meyyappan
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| |
Collapse
|
48
|
Gabardo CM, Soleymani L. Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices. Analyst 2016; 141:3511-25. [PMID: 27001624 DOI: 10.1039/c6an00210b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rapid prototyping is a critical step in the product development cycle of miniaturized chemical and bioanalytical devices, often categorized as lab-on-a-chip devices, biosensors, and micro-total analysis systems. While high throughput manufacturing methods are often preferred for large-volume production, rapid prototyping is necessary for demonstrating and predicting the performance of a device and performing field testing and validation before translating a product from research and development to large volume production. Choosing a specific rapid prototyping method involves considering device design requirements in terms of minimum feature sizes, mechanical stability, thermal and chemical resistance, and optical and electrical properties. A rapid prototyping method is then selected by making engineering trade-off decisions between the suitability of the method in meeting the design specifications and manufacturing metrics such as speed, cost, precision, and potential for scale up. In this review article, we review four categories of rapid prototyping methods that are applicable to developing miniaturized bioanalytical devices, single step, mask and deposit, mask and etch, and mask-free assembly, and we will focus on the trade-offs that need to be made when selecting a particular rapid prototyping method. The focus of the review article will be on the development of systems having a specific arrangement of conductive or semiconductive materials.
Collapse
Affiliation(s)
- C M Gabardo
- School of Biomedical Engineering, McMaster University, 1280 Main St. West, Hamilton, Canada
| | | |
Collapse
|
49
|
Kanaparthi S, Badhulika S. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method. NANOTECHNOLOGY 2016; 27:095206. [PMID: 26854529 DOI: 10.1088/0957-4484/27/9/095206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of -3100 ppm K(-1) to -4900 ppm K(-1), which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W(-1), which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals.
Collapse
|
50
|
Dou X, Wang J, Lu X, Zhang M, Qin Y, Wang Y, Zhang P, Guo ZX. A convenient approach to producing a sensitive MWCNT-based paper sensor. RSC Adv 2016. [DOI: 10.1039/c6ra23772j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitive and recyclable paper chip sensors based on carbon nanotubes and octadecylamine are fabricated through a convenient method.
Collapse
Affiliation(s)
- Xinwei Dou
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Jian Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Xuan Lu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Mengmeng Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yujun Qin
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yapei Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Pu Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhi-Xin Guo
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|