1
|
Zhang W, Shen J, Liang J, Ge C, Zhou Y, Yin L, Ji Y. Pulmonary RNA interference against acute lung injury mediated by mucus- and cell-penetrating nanocomplexes. Acta Biomater 2024; 177:332-346. [PMID: 38290689 DOI: 10.1016/j.actbio.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 μg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jialong Liang
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
2
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
3
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. Reply to Eisenhut. Am J Physiol Lung Cell Mol Physiol 2021; 321:L287-L289. [PMID: 34233142 PMCID: PMC8270517 DOI: 10.1152/ajplung.00246.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
5
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
6
|
Kataoka H. Effusion-Serum Chloride Gradient in Heart Failure-Associated Pleural Effusion - Pathophysiologic Implications. Circ Rep 2020; 2:357-363. [PMID: 33693253 PMCID: PMC7932818 DOI: 10.1253/circrep.cr-20-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background:
There is scant clinical data of electrolyte analyses in the pleural fluid under heart failure (HF) pathophysiology. Methods and Results:
This study retrospectively analyzed data from 17 consecutive patients who presented with pleural effusion and underwent thoracentesis. A diagnosis of worsening HF was established by clinical criteria (presentation, echocardiography, serum B-type natriuretic peptide, and response to therapy). Samples of non-heparinized pleural fluid and peripheral venous blood, obtained within 2 h of each other, were subjected to biochemical analysis. The source of pleural effusion was determined as transudate or exudate according to Light’s criteria. Fifteen patients (53% men; mean [±SD] age 85±11 years) had HF-associated pleural effusion, 10 of whom had transudative effusion and 5 who had exudative effusion (fulfilling only 1 [n=4] or both [n=1] lactate dehydrogenase criteria). The effusion-serum gradient (calculated by subtracting the serum electrolyte concentration from the effusion electrolyte concentration) was significantly higher for chloride (mean [±SD] 7.4±2.6 mEq/L; range 4–14 mEq/L) than sodium (0.9±1.4 mEq/L; ranging from −1 to 4 mEq/L) and potassium (−0.1±0.3 mEq/L; ranging from −0.8 to 0.2 mEq/L; P<0.001 for each). Conclusions:
In HF-associated pleural effusion, the chloride concentration is higher in the pleural effusion than the serum, indicating that chloride may have an important role in the formation and retention of body fluid in the pleural space.
Collapse
|
7
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
8
|
Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
In utero, fetal lung epithelial cells actively secrete Cl(-) ions into the lung air spaces while Na(+) ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na(+)-K(+)-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na(+) transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na(+) reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl(-) ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl(-) secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl(-) through apical cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels and absorb Na(+). Thus the coordinated action of Cl(-) secretion and Na(+) absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na(+) or Cl(-) transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
9
|
Londino JD, Lazrak A, Noah JW, Aggarwal S, Bali V, Woodworth BA, Bebok Z, Matalon S. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 2015; 29:2712-25. [PMID: 25795456 PMCID: PMC4478808 DOI: 10.1096/fj.14-268755] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.
Collapse
Affiliation(s)
- James David Londino
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Ahmed Lazrak
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - James W Noah
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Saurabh Aggarwal
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Vedrana Bali
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Bradford A Woodworth
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Zsuzsanna Bebok
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Sadis Matalon
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|