1
|
LeCroy G, Ghosh R, Sommerville P, Burke C, Makki H, Rozylowicz K, Cheng C, Weber M, Khelifi W, Stingelin N, Troisi A, Luscombe C, Spano FC, Salleo A. Using Molecular Structure to Tune Intrachain and Interchain Charge Transport in Indacenodithiophene-Based Copolymers. J Am Chem Soc 2024; 146:21778-21790. [PMID: 39058936 DOI: 10.1021/jacs.4c06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Raja Ghosh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parker Sommerville
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Colm Burke
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hesam Makki
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina Cheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark Weber
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wissem Khelifi
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Stäter S, Woering EF, Lombeck F, Sommer M, Hildner R. Hexylation Stabilises Twisted Backbone Configurations in the Prototypical Low-Bandgap Copolymer PCDTBT. Chemphyschem 2024; 25:e202300971. [PMID: 38372667 DOI: 10.1002/cphc.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Conjugated donor-acceptor copolymers hold great potential as materials for high-performance organic photovoltaics, organic transistors and organic thermoelectric devices. Their low optical bandgap is achieved by alternation of donor and acceptor moieties along the polymer chain, leading to a pronounced charge-transfer character of electronic excitations. However, the influence of appended side chains and of chemical defects of the backbone on their photophysical and conformational properties remains largely unexplored on the level of individual chains. Here, we employ room temperature single-molecule photoluminescence spectroscopy on four compounds based on the prototypical copolymer PCDTBT with systematically changed chemical structure. Our results show that an increasing density of statistically added hexyl chains to the TBT comonomer distorts the molecular conformation, likely through the increase of average dihedral angles along the backbone. We find that, although the conformation becomes more twisted with high hexyl density, the side chains appear to stabilize the backbone in this twisted conformation. In addition, we demonstrate that homocoupling defects along the backbone barely influence the PL spectra of single chains, and thus intra-chain electronic properties.
Collapse
Affiliation(s)
- Sebastian Stäter
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Erik F Woering
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Florian Lombeck
- Makromolekulare Chemie, Stefan-Meier-Str. 31, Universität Freiburg, 79104, Freiburg, Germany
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Michael Sommer
- TU Chemnitz, Institute for Chemistry, Str. der Nationen 62, 09111, Chemnitz, Germany
| | - Richard Hildner
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| |
Collapse
|
3
|
LeCroy G, Ghosh R, Untilova V, Guio L, Stone KH, Brinkmann M, Luscombe C, Spano FC, Salleo A. Polaron absorption in aligned conjugated polymer films: breakdown of adiabatic treatments and going beyond the conventional mid-gap state model. MATERIALS HORIZONS 2024; 11:545-553. [PMID: 37982315 DOI: 10.1039/d3mh01278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the ℏω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Raja Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Lorenzo Guio
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martin Brinkmann
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Palacino-González E, Jansen TLC. Modeling the Effect of Disorder in the Two-Dimensional Electronic Spectroscopy of Poly-3-hexyltiophene in an Organic Photovoltaic Blend: A Combined Quantum/Classical Approach. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6793-6801. [PMID: 37081993 PMCID: PMC10108354 DOI: 10.1021/acs.jpcc.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Indexed: 05/03/2023]
Abstract
We introduce a first-principles model of the 12-mer poly-3-hexyltiophene (P3HT) polymer system in the realistic description of an organic photovoltaic blend environment. We combine Molecular Dynamics (MD) simulations of a thin-film blend of P3HT and phenyl-C61-butyric acid methyl ester (PCBM) to model the interactions with a fluctuating environment with Time-Dependent Density Functional Theory (TDDFT) calculations to parametrize the effect of the torsional flexibility in the polymer and construct an exciton-type Hamiltonian that describes the photoexcitation of the polymer. This allows us to reveal the presence of different flexibility patterns governed by the torsional angles along the polymer chain which, in the interacting fluctuating environment, control the broadening of the spectral observables. We identify the origin of the homogeneous and inhomogeneous line shape of the simulated optical signals. This is paramount to decipher the spectroscopic nature of the ultrafast electron-transfer process occurring in organic photovoltaic (OPV) materials.
Collapse
|
5
|
Liirò-Peluso L, Wrigley J, Amabilino DB, Beton PH. Submolecular Resolution Imaging of P3HT:PCBM Nanostructured Films by Atomic Force Microscopy: Implications for Organic Solar Cells. ACS APPLIED NANO MATERIALS 2022; 5:13794-13804. [PMID: 36338328 PMCID: PMC9623582 DOI: 10.1021/acsanm.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The efficiency of organic bulk-heterojunction (BHJ) solar cells depends greatly on both the bulk and surface structure of the nanostructured bicontinuous interpenetrating network of materials, known as the active layer. The morphology of the top layer of a coated film is often resolved at the scale of a few nanometers, but fine details of the domains and the order within them are more difficult to identify. Here, we report a high-resolution atomic force microscopy (AFM) investigation of various stoichiometries of the well-studied poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) active layer mixture. Images of the surface were obtained using AC-mode AFM exciting higher-order resonance frequencies of a standard silicon probe, a promising technique for acquiring real-space images of organic-based thin films with nanoscale and even submolecular resolution. We provide firm evidence of the nanoscale organization of the P3HT polymer and of the P3HT:PCBM stoichiometric mixtures at the surface-air interface of the BHJ architecture. Our study shows the characteristic periodicity of the regioregular P3HT identified in the nanoscale domain areas with submolecular resolution. Such areas are then distorted in place when adding different quantities of PCBM forming stoichiometric mixtures. When the samples were exposed to ambient light, the morphologies were very different, and submolecular resolution was not achieved. This approach is shown to provide a precise view of the active layer's nanostructure and will be useful for studies of other materials as a function of various parameters, with particular attention to the role of the acceptor in tuning morphology for understanding optimum performance in organic photovoltaic devices.
Collapse
Affiliation(s)
- Letizia Liirò-Peluso
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - James Wrigley
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - David B. Amabilino
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- Institut
de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones
Científicas, Carrer dels Til.lers, Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Peter H. Beton
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
6
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
7
|
Brey D, Binder R, Martinazzo R, Burghardt I. Signatures of coherent vibronic exciton dynamics and conformational control in two-dimensional electronic spectroscopy of conjugated polymers. Faraday Discuss 2022; 237:148-167. [DOI: 10.1039/d2fd00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional electronic spectroscopy (2DES) signals for homo-oligomer J-aggregates are computed, with a focus on the role of structural change induced by low-frequency torsional modes along with quasi-stationary trapping effects induced...
Collapse
|
8
|
Beer P, Reichstein PM, Schötz K, Raithel D, Thelakkat M, Köhler J, Panzer F, Hildner R. Disorder in P3HT Nanoparticles Probed by Optical Spectroscopy on P3HT- b-PEG Micelles. J Phys Chem A 2021; 125:10165-10173. [PMID: 34797986 PMCID: PMC8647091 DOI: 10.1021/acs.jpca.1c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employ photoluminescence (PL) spectroscopy on individual nanoscale aggregates of the conjugated polymer poly(3-hexylthiophene), P3HT, at room temperature (RT) and at low temperature (LT) (1.5 K), to unravel different levels of structural and electronic disorder within P3HT nanoparticles. The aggregates are prepared by self-assembly of the block copolymer P3HT-block-poly(ethylene glycol) (P3HT-b-PEG) into micelles, with the P3HT aggregates constituting the micelles' core. Irrespective of temperature, we find from the intensity ratio between the 0-1 and 0-0 peaks in the PL spectra that the P3HT aggregates are of H-type nature, as expected from π-stacked conjugated thiophene backbones. Moreover, the distributions of the PL peak ratios demonstrate a large variation of disorder between micelles (inter-aggregate disorder) and within individual aggregates (intra-aggregate disorder). Upon cooling from RT to LT, the PL spectra red-shift by 550 cm-1, and the energy of the (effective) carbon-bond stretch mode is reduced by 100 cm-1. These spectral changes indicate that the P3HT backbone in the P3HT-b-PEG copolymer does not fully planarize before aggregation at RT and that upon cooling, partial planarization occurs. This intra-chain torsional disorder is ultimately responsible for the intra- and inter-aggregate disorder. These findings are supported by temperature-dependent absorption spectra on thin P3HT films. The interplay between intra-chain, intra-aggregate, and inter-aggregate disorder is key for the bulk photophysical properties of nanoparticles based on conjugated polymers, for example, in hierarchical (super-) structures. Ultimately, these properties determine the usefulness of such structures in hybrid organic-inorganic materials, for example, in (bio-)sensing and optoelectronics applications.
Collapse
Affiliation(s)
- Patrick Beer
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Paul M Reichstein
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Konstantin Schötz
- Soft Matter Optoelectronics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Dominic Raithel
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany.,Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany.,Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Fabian Panzer
- Soft Matter Optoelectronics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Richard Hildner
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany.,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Lin X, Liu R, Ding C, Deng J, Guo Y, Long S, Li L, Li M. Modulation of Microstructure and Charge Transport in Polymer Monolayer Transistors by Solution Aging. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuemei Lin
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruochen Liu
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
| | - Chenming Ding
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
| | - Junyang Deng
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
| | - Yifu Guo
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
| | - Shibing Long
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ling Li
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
| | - Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode‐Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aramaki-aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaji Okazaki 444-8585 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Koto Kamigori Ako 678-1297 Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston IL 60208-3113 USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
| |
Collapse
|
11
|
Kramer SN, Brown J, Rice M, Peteanu LA. Unraveling the Contribution of Residual Monomer to the Emission Spectra of Poly(3-hexylthiophene) Aggregates: Implications for Identifying H- and J-type Coupling. J Phys Chem Lett 2021; 12:5919-5924. [PMID: 34156859 DOI: 10.1021/acs.jpclett.1c01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) is a well-studied benchmark system for semiconducting polymers used in optoelectronic devices. In these materials, aggregation can improve charge transport efficiency or enhance emission yields depending on the interchain packing. This may be inferred from the absorption and emission spectra when analyzed using exciton coupling models such as the well-known H- and J-coupling model of Kasha. The more recently developed weakly coupled H-aggregate (WCH) model quantifies the degree of disorder via the ratio of the electronic origin intensity to that of the first vibronic band. Here, the underlying assumptions of this approach are tested experimentally for P3HT aggregates formed by solvent poisoning using bulk and single-molecule-based spectroscopic techniques. Specifically, we show that the contribution of residual monomeric chains to the aggregate spectrum must be accounted for to properly assign the spectra as H- or J-type. A modification of the WCH model is introduced to account for multiple emissive species.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jasper Brown
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Megan Rice
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode-Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021; 60:16999-17008. [PMID: 33730430 DOI: 10.1002/anie.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 11/09/2022]
Abstract
Exciton delocalization in organic semiconducting polymers, affected by structures at a molecular level, plays a crucial role in modulating relaxation pathways, such as charge generation and singlet fission, which can boost device efficiency. However, the structural diversity of polymers and broad signals from typical electronic spectroscopy have their limits when it comes to revealing the interplay between local structures and exciton delocalization. To tackle these problems, we apply femtosecond stimulated Raman spectroscopy in archetypical conjugated oligothiophenes with different chain lengths. We observed Raman frequency dispersions of symmetric bond stretching modes and mode-specific kinetics in the S1 Raman spectra, which underpins the subtle and complex interplay between exciton delocalization and bond length alternation along the conjugation coordinate. Our results provide a more general picture of exciton delocalization in the context of molecular structures for conjugated materials.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.,Current address: Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaji, Okazaki, 444-8585, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako, 678-1297, Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
13
|
Kei P, Howell MT, Chavez CA, Mai JC, Do C, Hong K, Nesterov EE. Kinetically Controlled Formation of Semi-crystalline Conjugated Polymer Nanostructures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Kei
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mitchell T. Howell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Carlos A. Chavez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph C. Mai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Evgueni E. Nesterov
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
14
|
Hedley GJ, Schröder T, Steiner F, Eder T, Hofmann FJ, Bange S, Laux D, Höger S, Tinnefeld P, Lupton JM, Vogelsang J. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat Commun 2021; 12:1327. [PMID: 33637741 PMCID: PMC7910429 DOI: 10.1038/s41467-021-21474-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022] Open
Abstract
The particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.
Collapse
Affiliation(s)
| | - Tim Schröder
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - Theresa Eder
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Dirk Laux
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Di Maiolo F, Brey D, Binder R, Burghardt I. Quantum dynamical simulations of intra-chain exciton diffusion in an oligo (para-phenylene vinylene) chain at finite temperature. J Chem Phys 2020; 153:184107. [PMID: 33187420 DOI: 10.1063/5.0027588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Accurate quantum dynamical simulations are performed using the multi-layer multi-configuration time-dependent Hartree method as applied to a site-based Hamiltonian comprising 20 electronic states of Frenkel type and 460 vibrational modes, including site-local quinoid-distortion modes along with site-correlated bond-length alternation (BLA) modes, ring torsional modes, and an explicit harmonic-oscillator bath. A first-principles parameterized Frenkel-Holstein type Hamiltonian is employed, which accounts for correlations between the ring torsional modes and the anharmonically coupled BLA coordinates located at the same junction. Thermally induced fluctuations of the torsional modes are described by a stochastic mean-field approach, and their impact on the excitonic motion is characterized in terms of the exciton mean-squared displacement. A normal diffusion regime is observed under periodic boundary conditions, apart from transient localization features. Even though the polaronic exciton species are comparatively weakly bound, exciton diffusion is found to be a coherent-rather than hopping type-process, driven by the fluctuations of the soft torsional modes. Similar to the previous observations for oligothiophenes, the evolution for the most part exhibits a near-adiabatic dynamics of local exciton ground states (LEGSs) that adjust to the local conformational dynamics. However, a second mechanism, involving resonant transitions between neighboring LEGSs, gains importance at higher temperatures.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Dominik Brey
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
16
|
Kerfoot J, Svatek SA, Korolkov VV, Taniguchi T, Watanabe K, Antolin E, Beton PH. Fluorescence and Electroluminescence of J-Aggregated Polythiophene Monolayers on Hexagonal Boron Nitride. ACS NANO 2020; 14:13886-13893. [PMID: 32897689 DOI: 10.1021/acsnano.0c06280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photophysics of a semiconducting polymer is manipulated through molecular self-assembly on an insulating surface. Adsorption of polythiophene (PT) monolayers on hexagonal boron nitride (hBN) leads to a structurally induced planarization and a rebalancing of inter- and intrachain excitonic coupling. This conformational control results in a dominant 0-0 photoluminescence peak and a reduced Huang-Rhys factor, characteristic of J-type aggregates, and optical properties which are significantly different to both PT thin films and single polymer strands. Adsorption on hBN also provides a route to explore electroluminescence from PT monolayers though incorporation into hybrid van der Waals heterostructures whereby the polymer monolayer is embedded within a hBN tunnel diode. In these structures we observe up-converted singlet electroluminescence from the PT monolayer, with an excitation mechanism based upon inelastic electron scattering. We argue that surface adsorption provides a methodology for the study of fundamental optoelectronic properties of technologically relevant polymers.
Collapse
Affiliation(s)
- James Kerfoot
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Simon A Svatek
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
- Instituto de Energía Solar, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain
| | - Vladimir V Korolkov
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Elisa Antolin
- Instituto de Energía Solar, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain
| | - Peter H Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
17
|
Hegger R, Binder R, Burghardt I. First-Principles Quantum and Quantum-Classical Simulations of Exciton Diffusion in Semiconducting Polymer Chains at Finite Temperature. J Chem Theory Comput 2020; 16:5441-5455. [PMID: 32786907 DOI: 10.1021/acs.jctc.0c00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on first-principles quantum-dynamical and quantum-classical simulations of photoinduced exciton dynamics in oligothiophene chain segments, representative of intrachain exciton migration in the poly(3-hexylthiophene) (P3HT) polymer. Following up on our recent study (Binder R.; Burghardt, I. Faraday Discuss. 2020, 221, 406), multilayer multiconfiguration time-dependent Hartree calculations for a short oligothiophene segment comprising 20 monomer units (OT-20) are carried out to obtain full quantum-dynamical simulations at finite temperature. These are employed to benchmark mean-field Ehrenfest calculations, which are shown to give qualitatively correct results for the present system. Periodic boundary conditions turn out to significantly improve earlier estimates of diffusion coefficients. Using the Ehrenfest approach, a series of calculations are subsequently carried out for larger lattices (OT-40 to OT-80), leading to estimates for temperature-dependent mean-squared displacements, which are found to exhibit a near-linear dependence as a function of time. The resulting diffusion coefficient estimates are an increasing function of temperature, whose detailed functional form depends on the degree of static disorder. With a realistic static disorder parameter (σs ≃ 0.06 eV), the diffusion coefficients decrease from D ∼ 1 × 10-2 cm2 s-1 to D ∼ 1 × 10-3 cm2 s-1, in qualitative agreement with experimental data for P3HT. The dynamical scenario obtained from our simulations shows that exciton migration in P3HT-type chains is a largely adiabatic process throughout the temperature regime we investigated (i.e., T = 50-300 K). The resulting picture of exciton migration is a coherent, but not bandlike, motion of an exciton-polaron driven by fluctuations induced by low-frequency modes. This process acquires partial hopping character if static disorder becomes prominent and Anderson localization sets in.
Collapse
Affiliation(s)
- Rainer Hegger
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
18
|
Roch LM, Saikin SK, Häse F, Friederich P, Goldsmith RH, León S, Aspuru-Guzik A. From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning. ACS NANO 2020; 14:6589-6598. [PMID: 32338888 DOI: 10.1021/acsnano.0c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fast and inexpensive characterization of materials properties is a key element to discover novel functional materials. In this work, we suggest an approach employing three classes of Bayesian machine learning (ML) models to correlate electronic absorption spectra of nanoaggregates with the strength of intermolecular electronic couplings in organic conducting and semiconducting materials. As a specific model system, we consider poly(3,4-ethylenedioxythiophene) (PEDOT) polystyrene sulfonate, a cornerstone material for organic electronic applications, and so analyze the couplings between charged dimers of closely packed PEDOT oligomers that are at the heart of the material's unrivaled conductivity. We demonstrate that ML algorithms can identify correlations between the coupling strengths and the electronic absorption spectra. We also show that ML models can be trained to be transferable across a broad range of spectral resolutions and that the electronic couplings can be predicted from the simulated spectra with an 88% accuracy when ML models are used as classifiers. Although the ML models employed in this study were trained on data generated by a multiscale computational workflow, they were able to leverage experimental data.
Collapse
Affiliation(s)
- Loïc M Roch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- ChemOS Sàrl, Lausanne, VD 1006, Switzerland
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Kebotix, Inc., Cambridge, Massachusetts 02139, United States
| | - Florian Häse
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Pascal Friederich
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Salvador León
- Department of Industrial Chemical Engineering and Environment, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Alán Aspuru-Guzik
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
19
|
Binder R, Burghardt I. First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature. Faraday Discuss 2020; 221:406-427. [PMID: 31596291 DOI: 10.1039/c9fd00066f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High-dimensional multiconfigurational quantum dynamics simulations are carried out at finite temperature to simulate exciton diffusion on an oligothiophene chain, representative of a segment of the poly(3-hexylthiophene) (P3HT) polymer. The ab initio parametrized site-based Hamiltonian of Binder et al. [Phys. Rev. Lett., 2018, 120, 227401] is employed to model a 20-site system, including intra-ring and inter-ring high-frequency modes as well as torsional modes which undergo thermal fluctuations induced by an explicit harmonic oscillator bath. The system-bath dynamics is treated within the setting of a stochastic mean-field Schrödinger equation. For the 20-site excitonic system, a total of 20 Frenkel states and 248 modes are propagated using the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. The resulting dynamics can be interpreted in terms of the coherent motion of an exciton-polaron quasi-particle stochastically driven by torsional fluctuations. This dynamics yields a near-linear mean squared displacement (MSD) as a function of time, from which a diffusion coefficient can be deduced which increases with temperature, up to 5.7 × 10-3 cm2 s-1 at T = 300 K.
Collapse
Affiliation(s)
- Robert Binder
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
20
|
Iimori T, Awasthi K, Chiou CS, Diau EWG, Ohta N. Fluorescence enhancement induced by quadratic electric-field effects on singlet exciton dynamics in poly(3-hexylthiophene) dispersed in poly(methyl methacrylate). Phys Chem Chem Phys 2019; 21:5695-5704. [PMID: 30801107 DOI: 10.1039/c8cp07801g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the exciton generated by photoexcitation of a regioregular poly(3-hexylthiophene) (P3HT) polymer dispersed in a poly(methyl methacrylate) (PMMA) matrix was examined using electro-photoluminescence (E-PL) spectroscopy, where electric field effects on the photoluminescence (PL) spectra were measured. The quadratic electric-field effect was investigated using the modulation technique, with field-induced changes in the PL intensity monitored at the second harmonic of the modulation frequency of the applied electric field. Absorption and PL spectra indicated the formation of both ordered crystalline aggregates and amorphous regions of P3HT polymer chains. Although previous studies of electric field effects on π-conjugated polymers have generally shown that the PL intensity is decreased by electric fields, we report that the PL intensity of P3HT and PL lifetime increased with the quadratic electric-field effect. The magnitude of the change in PL intensity was quantitatively explained in terms of the field-induced decrease in the nonradiative decay rate constants of the exciton. We proposed that a delayed PL, originating from charge carrier recombination, was enhanced in the presence of electric fields. The rate constant of the downhill relaxation process of the exciton, which originated from the relaxation in distributed energy levels due to an inherent energetic disorder in P3HT aggregates, was implied to decrease in the presence of electric fields. The radiative decay rate constant and PL quantum yield of P3HT dissolved in solution, which were evaluated from the molar extinction coefficient and the PL lifetime, were compared with those of P3HT dispersed in a PMMA matrix.
Collapse
Affiliation(s)
- Toshifumi Iimori
- Department of Applied Chemistry, Muroran Institute of Technology, Mizumoto-cho, Muroran 050-8585, Japan
| | | | | | | | | |
Collapse
|
21
|
Hedley GJ, Steiner F, Vogelsang J, Lupton JM. Fluctuations in the Emission Polarization and Spectrum in Single Chains of a Common Conjugated Polymer for Organic Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1804312. [PMID: 30444577 DOI: 10.1002/smll.201804312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Measuring the nanoscale organization of conjugated polymer chains used in organic photovoltaic (OPV) blends is vital if one wants to understand the materials. This is made very difficult with high efficiency OPV polymers such as PTB7 that form aggregates, as a lack of periodicity and a high degree of disorder make understanding of the nanoscale organization challenging. Here, single molecule spectroscopy is used to observe single chains and aggregates of PTB7. Using four detectors the photoluminescence intensity, wavelength, polarization, and lifetime are simultaneously monitored. Fast (milliseconds) and slow (seconds) fluctuations are observed over a time window of 30 s in all of these observables from single aggregates and chains as individual chromophores activate and deactivate, leading to dynamical changes in the emission spectrum and dipole orientation. This information can be used to help reconstruct the spatial and spectral organization of disordered aggregates of PTB7, thereby adding valuable new information on how the chains are arranged in space.
Collapse
Affiliation(s)
- Gordon J Hedley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - Jan Vogelsang
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| |
Collapse
|
22
|
Ye S, Janasz L, Zajaczkowski W, Manion JG, Mondal A, Marszalek T, Andrienko D, Müllen K, Pisula W, Seferos DS. Self-Organization and Charge Transport Properties of Selenium and Tellurium Analogues of Polythiophene. Macromol Rapid Commun 2018; 40:e1800596. [PMID: 30417480 DOI: 10.1002/marc.201800596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/03/2018] [Indexed: 11/10/2022]
Abstract
A series of conjugated polymers comprising polythiophene, polyselenophene, and polytellurophene with branched 3,7-dimethyloctyl side chains, well-matched molecular weight, dispersity, and regioregularity is synthesized. The ionization potential is found to vary from 5.14 to 5.32 eV, with polytellurophene having the lowest potential. Field-effect transistors based on these materials exhibit distinct hole transport mobility that varies by nearly three orders of magnitude, with polytellurophene having the highest mobility (2.5 × 10-2 cm² V-1 s-1 ). The large difference in mobility demonstrates the significant impact of heteroatom substitution. Although the series of polymers are very similar in structure, their solid-state properties are different. While the thin film microstructure of polythiophene and polyselenophene is identical, polytellurophene reveals globular features in the film topography. Polytellurophenes also appear to be the least crystalline, even though their charge transport properties are superior to other samples. The torsional barrier and degree of planarity between repeat units increase as one moves down group-16 elements. These studies show how a single atom in a polymer chain can have a substantial influence on the bulk properties of a material, and that heavy group-16 atoms have a positive influence on charge transport properties when all other variables are kept unchanged.
Collapse
Affiliation(s)
- Shuyang Ye
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Lukasz Janasz
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland
| | | | - Joseph G Manion
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Anirban Mondal
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland.,Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Wojciech Pisula
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland.,Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Dwight S Seferos
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
23
|
Doria S, Sinclair TS, Klein ND, Bennett DIG, Chuang C, Freyria FS, Steiner CP, Foggi P, Nelson KA, Cao J, Aspuru-Guzik A, Lloyd S, Caram JR, Bawendi MG. Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes. ACS NANO 2018; 12:4556-4564. [PMID: 29701947 DOI: 10.1021/acsnano.8b00911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photosynthetic antennae and organic electronic materials use topological, structural, and molecular control of delocalized excitons to enhance and direct energy transfer. Interactions between the transition dipoles of individual chromophore units allow for coherent delocalization across multiple molecular sites. This delocalization, for specific geometries, greatly enhances the transition dipole moment of the lowest energy excitonic state relative to the chromophore and increases its radiative rate, a phenomenon known as superradiance. In this study, we show that ordered, self-assembled light-harvesting nanotubes (LHNs) display excitation-induced photobrightening and photodarkening. These changes in quantum yield arise due to changes in energetic disorder, which in turn increases/decreases excitonic superradiance. Through a combination of experiment and modeling, we show that intense illumination induces different types of chemical change in LHNs that reproducibly alter absorption and fluorescence properties, indicating control over excitonic delocalization. We also show that changes in spectral width and shift can be sensitive measures of system dimensionality, illustrating the mixed 1-2D nature of LHN excitons. Our results demonstrate a path forward for mastery of energetic disorder in an excitonic antenna, with implications for fundamental studies of coherent energy transport.
Collapse
Affiliation(s)
- Sandra Doria
- European Laboratory for Non Linear Spectroscopy (LENS) , Università degli Studi di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia, 3-13 , 50019 Sesto Fiorentino, Florence , Italy
| | | | | | - Doran I G Bennett
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | | | | | | | - Paolo Foggi
- European Laboratory for Non Linear Spectroscopy (LENS) , Università degli Studi di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
- INO-CNR , Istituto Nazionale di Ottica-Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 , Florence , Italy
- Dipartimento di Chimica, Biologia e Biotecnologie , Università di Perugia , Via Elce di Sotto 8 , 06123 , Perugia , Italy
| | | | | | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | | | - Justin R Caram
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | | |
Collapse
|
24
|
Lee SH, Ham S, Nam S, Aratani N, Osuka A, Sim E, Kim D. Investigation and Control of Single Molecular Structures of Meso- Meso Linked Long Porphyrin Arrays. J Phys Chem B 2018; 122:5121-5125. [PMID: 29697978 DOI: 10.1021/acs.jpcb.8b00213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have investigated conformational structures of meso- meso linked porphyrin arrays (Z n) by single molecule fluorescence spectroscopy. Modulation depths ( M values) were measured by excitation polarization fluorescence spectroscopy. The M value decreases from 0.85 to 0.46 as the number of porphyrin units increases from 3 to 128, indicating that longer arrays exhibit coiled structures. Such conformational changes depending on the length have been confirmed by coarse-grained simulation. The histograms of M values and traces of centroid position of emitting sites by localization microscopy showed that the structures of longer arrays changed to more stretched after solvent vapor annealing with tetrahydrofuran.
Collapse
Affiliation(s)
| | | | | | - Naoki Aratani
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | | | | |
Collapse
|
25
|
Causa' M, Ramirez I, Martinez Hardigree JF, Riede M, Banerji N. Femtosecond Dynamics of Photoexcited C 60 Films. J Phys Chem Lett 2018; 9:1885-1892. [PMID: 29569924 DOI: 10.1021/acs.jpclett.8b00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The well known organic semiconductor C60 is attracting renewed attention due to its centimeter-long electron diffusion length and high performance of solar cells containing 95% fullerene, yet its photophysical properties remain poorly understood. We elucidate the dynamics of Frenkel and intermolecular (inter-C60) charge-transfer (CT) excitons in neat and diluted C60 films from high-quality femtosecond transient absorption (TA) measurements performed at low fluences and free from oxygen or pump-induced photodimerization. We find from preferential excitation of either species that the CT excitons give rise to a strong electro-absorption (EA) signal but are extremely short-lived. The Frenkel exciton relaxation and triplet yield strongly depend on the C60 aggregation. Finally, TA measurements on full devices with applied electric field allow us to optically monitor the dissociation of CT excitons into free charges for the first time and to demonstrate the influence of cluster size on the spectral signature of the C60 anion.
Collapse
Affiliation(s)
- Martina Causa'
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| | - Ivan Ramirez
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , OX1 3PU , Oxford , United Kingdom
| | - Josue F Martinez Hardigree
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , OX1 3PU , Oxford , United Kingdom
| | - Moritz Riede
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , OX1 3PU , Oxford , United Kingdom
| | - Natalie Banerji
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| |
Collapse
|
26
|
Raithel D, Simine L, Pickel S, Schötz K, Panzer F, Baderschneider S, Schiefer D, Lohwasser R, Köhler J, Thelakkat M, Sommer M, Köhler A, Rossky PJ, Hildner R. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes. Proc Natl Acad Sci U S A 2018; 115:2699-2704. [PMID: 29483262 PMCID: PMC5856543 DOI: 10.1073/pnas.1719303115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (∼2,000 cm-1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron-hole polarization.
Collapse
Affiliation(s)
- Dominic Raithel
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lena Simine
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Sebastian Pickel
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Konstantin Schötz
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Fabian Panzer
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Daniel Schiefer
- Institute of Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ruth Lohwasser
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
- Bayreuth Institute of Macromolecular Research, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Michael Sommer
- Institute of Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Köhler
- Experimental Physics II, University of Bayreuth, 95440 Bayreuth, Germany
- Bayreuth Institute of Macromolecular Research, University of Bayreuth, 95440 Bayreuth, Germany
| | - Peter J Rossky
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Richard Hildner
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany;
| |
Collapse
|
27
|
Tenopala-Carmona F, Fronk S, Bazan GC, Samuel IDW, Penedo JC. Real-time observation of conformational switching in single conjugated polymer chains. SCIENCE ADVANCES 2018; 4:eaao5786. [PMID: 29487904 PMCID: PMC5817931 DOI: 10.1126/sciadv.aao5786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/22/2018] [Indexed: 05/30/2023]
Abstract
Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.
Collapse
Affiliation(s)
- Francisco Tenopala-Carmona
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| | - Stephanie Fronk
- Department of Materials and Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Guillermo C. Bazan
- Department of Materials and Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| | - J. Carlos Penedo
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| |
Collapse
|
28
|
Hu Z, Shao B, Geberth GT, Vanden Bout DA. Effects of molecular architecture on morphology and photophysics in conjugated polymers: from single molecules to bulk. Chem Sci 2018; 9:1101-1111. [PMID: 29675155 PMCID: PMC5887865 DOI: 10.1039/c7sc03465b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/30/2017] [Indexed: 01/16/2023] Open
Abstract
A definitive comprehension of morphology and photophysics in conjugated polymers at multiple length scales demands both single molecule spectroscopy and well-controlled molecular architectures.
Conjugated polymers (CPs) possess a wide range of desirable properties, including accessible energetic bandgaps, synthetic versatility, and mechanical flexibility, which make them attractive for flexible and wearable optoelectronic devices. An accurate and comprehensive understanding about the morphology–photophysics relations in CPs lays the groundwork for their development in these applications. However, due to the complex roles of chemical structure, side-chains, backbone, and intramolecular interactions, CPs can exhibit heterogeneity in both their morphology and optoelectronic properties even at the single chain level. This molecular level heterogeneity together with complicated intermolecular interactions found in bulk CP materials severely obscures the deterministic information about the morphology and photophysics at different hierarchy levels. To counter this complexity and offer a clearer picture for the properties of CP materials, we highlight the approach of probing material systems with specific structural features via single molecule/aggregate spectroscopy (SMS). This review article covers recent advances achieved through such an approach regarding the important morphological and photophysical properties of CPs. After a brief review of the typical characteristics of CPs, we present detailed discussions of structurally well-defined model systems of CPs, from manipulated backbones and side-chains, up to nano-aggregates, studied with SMS to offer deterministic relations between morphology and photophysics from single chains building up to bulk states.
Collapse
Affiliation(s)
- Zhongjian Hu
- Department of Chemistry , University of Texas at Austin , USA .
| | - Beiyue Shao
- Department of Chemistry , University of Texas at Austin , USA .
| | | | | |
Collapse
|
29
|
Eder T, Stangl T, Gmelch M, Remmerssen K, Laux D, Höger S, Lupton JM, Vogelsang J. Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nat Commun 2017; 8:1641. [PMID: 29158508 PMCID: PMC5696370 DOI: 10.1038/s41467-017-01773-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022] Open
Abstract
The aggregation of conjugated polymers and electronic coupling of chromophores play a central role in the fundamental understanding of light and charge generation processes. Here we report that the predominant coupling in isolated aggregates of conjugated polymers can be switched reversibly between H-type and J-type coupling by partially swelling and drying the aggregates. Aggregation is identified by shifts in photoluminescence energy, changes in vibronic peak ratio, and photoluminescence lifetime. This experiment unravels the internal electronic structure of the aggregate and highlights the importance of the drying process in the final spectroscopic properties. The electronic coupling after drying is tuned between H-type and J-type by changing the side chains of the conjugated polymer, but can also be entirely suppressed. The types of electronic coupling correlate with chain morphology, which is quantified by excitation polarization spectroscopy and the efficiency of interchromophoric energy transfer that is revealed by the degree of single-photon emission.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Thomas Stangl
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Max Gmelch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Klaas Remmerssen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Dirk Laux
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
30
|
Black JW, Kamenetska M, Ganim Z. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. NANO LETTERS 2017; 17:6598-6605. [PMID: 28972764 DOI: 10.1021/acs.nanolett.7b02413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.
Collapse
Affiliation(s)
- Jacob W Black
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Maria Kamenetska
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Ziad Ganim
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Hedley GJ, Steiner F, Vogelsang J, Lupton JM. Determining the True Optical Gap in a High-Performance Organic Photovoltaic Polymer Using Single-Molecule Spectroscopy. J Phys Chem Lett 2017; 8:3494-3499. [PMID: 28696123 DOI: 10.1021/acs.jpclett.7b01363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Low-gap conjugated polymers have enabled an impressive increase in the efficiencies of organic solar cells, primarily due to their red absorption that allows harvesting of that part of the solar spectrum. Here we report that the true optical gap of one prototypical material, PTB7, is in fact at significantly higher energy than has previously been reported, indicating that the red absorption utilized in these materials in solar cells is entirely due to chain aggregation. Using single-molecule spectroscopy we find that PL from isolated nanoscale aggregates consists of multiple independently emitting chromophores. At the single-molecule level, however, straight single chains with a high degree of emission polarization are observed. The PL is found to be ∼0.4 eV higher in energy, with a longer lifetime than the red aggregates, and is attributed to single chromophores. Our findings indicate that the impressive light-harvesting abilities of PTB7 in the red spectral region arise solely from chain aggregation.
Collapse
Affiliation(s)
- Gordon J Hedley
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040, Regensburg, Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040, Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040, Regensburg, Germany
| |
Collapse
|
32
|
Steiner F, Lupton JM, Vogelsang J. Role of Triplet-State Shelving in Organic Photovoltaics: Single-Chain Aggregates of Poly(3-hexylthiophene) versus Mesoscopic Multichain Aggregates. J Am Chem Soc 2017; 139:9787-9790. [PMID: 28708387 DOI: 10.1021/jacs.7b04619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triplet excitons have been the focus of considerable attention with regards to the functioning of polymer solar cells because these species are long-lived and quench subsequently generated singlet excitons in their vicinity. The role of triplets in poly(3-hexylthiophene) (P3HT) has been investigated extensively with contrary conclusions regarding their importance. We probe the various roles triplets can play in P3HT by analyzing the photoluminescence (PL) from isolated single-chain aggregates and multichain mesoscopic aggregates. Solvent vapor annealing allows deterministic growth of P3HT aggregates consisting of ∼20 chains, which exhibit red-shifted and broadened PL compared to single-chain aggregates. The multichain aggregates exhibit a decrease of photon antibunching contrast compared to single-chain aggregates, implying rather weak interchain excitonic coupling and energy transfer. Nevertheless, the influence of triplet-quenching oxygen on PL and a photon correlation analysis of aggregate PL reveal that triplets are quenched by intermolecular interactions in the bulk state.
Collapse
Affiliation(s)
- Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Lukose B, Bobbili SV, Clancy P. Factors affecting tacticity and aggregation of P3HT polymers in P3HT:PCBM blends. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1303688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Binit Lukose
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sai Vineeth Bobbili
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Paulette Clancy
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Würsch D, May R, Wiederer G, Jester SS, Höger S, Vogelsang J, Lupton JM. Interactions between π-conjugated chromophores in a giant molecular spoked wheel. Chem Commun (Camb) 2017; 53:352-355. [PMID: 27929148 DOI: 10.1039/c6cc08396j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We discuss the intriguing photophysics of a giant molecular spoked wheel of π-conjugated arylene-alkynylene chromophores on the single-molecule level. This "molecular mesoscopic" structure, C1878H2682, shows fast switching between the 12 identical chromophores since the fluorescence is unpolarised but only one chromophore emits at a time.
Collapse
Affiliation(s)
- D Würsch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - R May
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - G Wiederer
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - S-S Jester
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - S Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - J Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - J M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
35
|
Impact of backbone fluorination on nanoscale morphology and excitonic coupling in polythiophenes. Proc Natl Acad Sci U S A 2017; 114:5113-5118. [PMID: 28465439 DOI: 10.1073/pnas.1620722114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorination represents an important strategy in developing high-performance conjugated polymers for photovoltaic applications. Here, we use regioregular poly(3-ethylhexylthiophene) (P3EHT) and poly(3-ethylhexyl-4-fluorothiophene) (F-P3EHT) as simplified model materials, using single-molecule/aggregate spectroscopy and molecular dynamic simulations, to elucidate the impacts of backbone fluorination on morphology and excitonic coupling on the molecular scale. Despite its high regioregularity, regioregular P3EHT exhibits a rather broad distribution in polymer chain conformation due to the strong steric hindrance of bulky ethylhexyl side chains. This conformational variability results in disordered interchain morphology even between a few chains, prohibiting long-range effective interchain coupling. In stark contrast, the experimental and molecular dynamic calculations reveal that backbone fluorination of F-P3EHT leads to an extended rod-like single-chain conformation and hence highly ordered interchain packing in aggregates. Surprisingly, the ordered and close interchain packing in F-P3EHT does not lead to strong excitonic coupling between the chains but rather to dominant intrachain excitonic coupling that greatly reduces the molecular energetic heterogeneity.
Collapse
|
36
|
Simine L, Rossky PJ. Relating Chromophoric and Structural Disorder in Conjugated Polymers. J Phys Chem Lett 2017; 8:1752-1756. [PMID: 28350467 DOI: 10.1021/acs.jpclett.7b00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The optoelectronic properties of amorphous conjugated polymers are sensitive to the details of the conformational disorder, and spectroscopy provides the means for structural characterization of the fragments of the chain that interact with light-"chromophores". A faithful interpretation of spectroscopic conformational signatures, however, presents a theoretical challenge. Here we investigate the relationship between the ground-state optical gaps, the properties of the excited states, and the structural features of chromophores of a single molecule poly(3-hexyl)-thiophene (P3HT) using quantum-classical atomistic simulations. Our results demonstrate that chromophoric disorder arises through the interplay between excited-state delocalization and electron-hole polarization, controlled by the torsional disorder introduced by side chains. Within this conceptual framework, we predict and explain the counterintuitive spectral behavior of P3HT, a red-shifted absorption, despite shortening of chromophores, with increasing temperature. This discussion introduces the concept of disorder-induced separation of charges in amorphous conjugated polymers.
Collapse
Affiliation(s)
- Lena Simine
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
37
|
Shao B, Zhu X, Plunkett KN, Vanden Bout DA. Controlling the folding of conjugated polymers at the single molecule level via hydrogen bonding. Polym Chem 2017. [DOI: 10.1039/c6py01871h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this manuscript, we report a design strategy to control polychromophore polymer folding at the single molecule level through hydrogen-bonding (H-bonding) interactions.
Collapse
Affiliation(s)
- Beiyue Shao
- Center for Nano- and Molecular Science and Technology
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Xinju Zhu
- Department of Chemistry and Biochemistry and the Materials Technology Center
- Southern Illinois University
- Carbondale
- USA
| | - Kyle N. Plunkett
- Department of Chemistry and Biochemistry and the Materials Technology Center
- Southern Illinois University
- Carbondale
- USA
| | - David A. Vanden Bout
- Center for Nano- and Molecular Science and Technology
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
38
|
Raithel D, Baderschneider S, de Queiroz TB, Lohwasser R, Köhler J, Thelakkat M, Kümmel S, Hildner R. Emitting Species of Poly(3-hexylthiophene): From Single, Isolated Chains to Bulk. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02077] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Thiago B. de Queiroz
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, 09510-580, Santo André-SP, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
40
|
Noriega R, Barnard ES, Ursprung B, Cotts BL, Penwell SB, Schuck PJ, Ginsberg NS. Uncovering Single-Molecule Photophysical Heterogeneity of Bright, Thermally Activated Delayed Fluorescence Emitters Dispersed in Glassy Hosts. J Am Chem Soc 2016; 138:13551-13560. [DOI: 10.1021/jacs.6b05488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Naomi S. Ginsberg
- Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Weber’s Red-Edge Effect that Changed the Paradigm in Photophysics and Photochemistry. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/4243_2016_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
42
|
Ham S, Lee SH, Chung H, Kim D. Structure-property relationships in two-dimensionally extended benzoporphyrin molecules probed using single-molecule fluorescence spectroscopy. Phys Chem Chem Phys 2016; 18:7521-6. [PMID: 26903155 DOI: 10.1039/c5cp07527k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The photophysical properties of a series of highly π-conjugated benzoporphyrin molecules (s) with different shapes were investigated in the condensed phase using single-molecule fluorescence spectroscopy. The fluorescence properties of single s were found to be affected by the number of porphyrin units and their molecular shapes. Notably, the single-molecule fluorescence dynamics of the s revealed an increase in the fluorescence lifetimes and blue shifts of the fluorescence spectra indicative of decreasing π-conjugation pathways in the molecules. The distributions of the spectroscopic parameters and the photostability for the molecules also suggest conformational complexities and heterogeneities. Specifically, as the number of constituent porphyrin units increased, the one-step photobleaching behavior ratio and photostability decreased, and the spectroscopic parameter distributions broadened. The structural properties of the s were also directly determined using defocused wide-field imaging and linear dichroism analyses. In particular, molecules with the same number of constituent porphyrins but different molecular shapes exhibited distinct photophysical properties. In summary, these observations provide guidance for the design of molecular systems that can enhance the performance of molecular electronic devices.
Collapse
Affiliation(s)
- Sujin Ham
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Sang Hyeon Lee
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Heejae Chung
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
43
|
Kim TW, Kim W, Park KH, Kim P, Cho JW, Shimizu H, Iyoda M, Kim D. Chain-Length-Dependent Exciton Dynamics in Linear Oligothiophenes Probed Using Ensemble and Single-Molecule Spectroscopy. J Phys Chem Lett 2016; 7:452-458. [PMID: 26766018 DOI: 10.1021/acs.jpclett.5b02864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.
Collapse
Affiliation(s)
- Tae-Woo Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Woojae Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Kyu Hyung Park
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Pyosang Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Jae-Won Cho
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Hideyuki Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University , Hachioji, Tokyo 192-0397, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University , Hachioji, Tokyo 192-0397, Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
44
|
Grußmayer KS, Steiner F, Lupton JM, Herten DP, Vogelsang J. Differentiation between Shallow and Deep Charge Trap States on Single Poly(3-hexylthiophene) Chains through Fluorescence Photon Statistics. Chemphyschem 2015; 16:3578-83. [DOI: 10.1002/cphc.201500719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Kristin S. Grußmayer
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 267 69210 Heidelberg Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - John M. Lupton
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Dirk-Peter Herten
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 267 69210 Heidelberg Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
45
|
Thiessen A, Würsch D, Jester SS, Aggarwal AV, Idelson A, Bange S, Vogelsang J, Höger S, Lupton JM. Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures. J Phys Chem B 2015; 119:9949-58. [DOI: 10.1021/acs.jpcb.5b02091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Thiessen
- Department
of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dominik Würsch
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Stefan-S. Jester
- Kekulé-Institut
für Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - A. Vikas Aggarwal
- Kekulé-Institut
für Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Alissa Idelson
- Kekulé-Institut
für Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - Sebastian Bange
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Jan Vogelsang
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Sigurd Höger
- Kekulé-Institut
für Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany
| | - John M. Lupton
- Department
of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
46
|
Single-molecule imaging of organic semiconductors: Toward nanoscale insights into photophysics and molecular packing. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Stangl T, Wilhelm P, Schmitz D, Remmerssen K, Henzel S, Jester SS, Höger S, Vogelsang J, Lupton JM. Temporal Fluctuations in Excimer-Like Interactions between π-Conjugated Chromophores. J Phys Chem Lett 2015; 6:1321-1326. [PMID: 26263130 DOI: 10.1021/acs.jpclett.5b00328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bichromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state--spectral red shifting and broadening and a slowing of photoluminescence decay--correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Ångström molecular dynamics could prove complementary to conventional FRET-based molecular rulers.
Collapse
Affiliation(s)
- Thomas Stangl
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Philipp Wilhelm
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Daniela Schmitz
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Klaas Remmerssen
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Sebastian Henzel
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Stefan-S Jester
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Sigurd Höger
- ‡Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jan Vogelsang
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- †Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
48
|
Yang J, Ham S, Kim TW, Park KH, Nakao K, Shimizu H, Iyoda M, Kim D. Inhomogeneity in the excited-state torsional disorder of a conjugated macrocycle. J Phys Chem B 2015; 119:4116-26. [PMID: 25700008 DOI: 10.1021/jp5123689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The photophysics of conjugated polymers has generally been explained based on the interactions between the component conjugated chromophores in a tangled chain. However, conjugated chromophores are entities with static and dynamic structural disorder, which directly affects the conjugated polymer photophysics. Here we demonstrate the impact of chain structure torsional disorder on the spectral characteristics for a macrocyclic oligothiophene 1, which is obscured in conventional linear conjugated chromophores by diverse structural disorders such as those in chromophore size and shape. We used simultaneous multiple fluorescence parameter measurement for a single molecule and quantum-mechanical calculations to show that within the fixed conjugation length across the entire ring an inhomogeneity from torsional disorder in the structure of 1 plays a crucial role in causing its energetic disorder, which affords the spectral broadening of ∼220 meV. The torsional disorder in 1 fluctuated on the time scale of hundreds of milliseconds, typically accompanied by spectral drifts on the order of ∼10 meV. The fluctuations could generate torsional defects and change the electronic structure of 1 associated with the ring symmetry. These findings disclose the fundamental nature of conjugated chromophore that is the most elementary spectroscopic unit in conjugated polymers and suggest the importance of engineering structural disorder to optimize polymer-based device photophysics. Additionally, we combined defocused wide-field fluorescence microscopy and linear dichroism obtained from the simultaneous measurements to show that 1 emits polarized light with a changing polarization direction based on the torsional disorder fluctuations.
Collapse
Affiliation(s)
- Jaesung Yang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers. Nat Commun 2015; 6:6460. [DOI: 10.1038/ncomms7460] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/30/2015] [Indexed: 12/25/2022] Open
|
50
|
Haedler AT, Beyer SR, Hammer N, Hildner R, Kivala M, Köhler J, Schmidt HW. Synthesis and photophysical properties of multichromophoric carbonyl-bridged triarylamines. Chemistry 2014; 20:11708-18. [PMID: 25147099 DOI: 10.1002/chem.201403667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 01/16/2023]
Abstract
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl-bridged triarylamine core and either naphthalimides or 4-(5-hexyl-2,2'-bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl-bridged triarylamines. Steady-state and time-resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4-(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub-millimolar regime whilst retaining its energy transfer properties.
Collapse
Affiliation(s)
- Andreas T Haedler
- Macromolecular Chemistry I, Bayreuther Institut für Makromolekülforschung (BIMF) and Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), University of Bayreuth, 95440 Bayreuth (Germany), Fax: (+49) 921-55-3206
| | | | | | | | | | | | | |
Collapse
|