1
|
Zhao Q, Li B, Xu Y, Li X, Yu J, Wang L. IRF4: A potential prognostic biomarker for immunotherapy in NSCLC. Int Immunopharmacol 2024; 143:113411. [PMID: 39437487 DOI: 10.1016/j.intimp.2024.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Immunotherapy is revolutionizing the management of advanced non-small cell lung cancer (NSCLC). However, sustained responses are observed in only a minority of patients. Reliable biomarkers are required to identify potential beneficiaries. Interferon regulatory factor 4 (IRF4) plays a crucial role in immune regulation, suggesting its potential as a prognostic biomarker in NSCLC immunotherapy. This study aimed to investigate the predictive role of IRF4 expression in patients with NSCLC receiving immunotherapy. METHODS Data from three NSCLC cohorts treated with immune checkpoint inhibitors were collected from the Gene Expression Omnibus (GEO) database. The prognostic significance of IRF4 was assessed across these cohorts, and gene set enrichment analysis (GSEA) was performed. IRF4-based nomograms were developed to predict the outcomes of immunotherapy. Correlations among IRF4 expression, immune cell infiltration, and immunotherapy prognosis were evaluated in our cohort. RESULTS Elevated IRF4 expression was associated with improved prognosis in patients with NSCLC undergoing immunotherapy, consistent with both GEO dataset and our cohort. IRF4 emerged as an independent predictor for progression-free survival (PFS) and overall survival (OS) in multivariable Cox regression analysis. GSEA analysis highlighted links between IRF4 expression and immune activation pathways such as Chemokine_Signaling_Pathway, Natural_Killer_Cell_Mediated_Cytotoxicity, B_Cell_Receptor_Signaling_Pathway, and T_Cell_Receptor_Signaling_Pathway. In our cohort, immunohistochemistry demonstrated correlations between IRF4 expression and the infiltration of CD8+ T cells, CD20+ B cells, and PD-L1 expression in the tumor microenvironment. CONCLUSION High IRF4 expression in baseline tumor tissue could serve as a favorable predictor of NSCLC immunotherapy outcomes, aiding in personalized treatment strategies.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430064, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Butuo Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Yiyue Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuanzong Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430064, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Liu W, You D, Lin J, Zou H, Zhang L, Luo S, Yuan Y, Wang Z, Qi J, Wang W, Ye X, Yang X, Deng Y, Teng F, Zheng X, Lin Y, Huang Z, Huang Y, Yang Z, Zhou X, Zhang Y, Chen R, Xu L, Li J, Yang W, Zhang H. SGLT2 inhibitor promotes ketogenesis to improve MASH by suppressing CD8 + T cell activation. Cell Metab 2024; 36:2245-2261.e6. [PMID: 39243758 DOI: 10.1016/j.cmet.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
During the progression of metabolic dysfunction-associated steatohepatitis (MASH), the accumulation of auto-aggressive CD8+ T cells significantly contributes to liver injury and inflammation. Empagliflozin (EMPA), a highly selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), exhibits potential therapeutic benefits for liver steatosis; however, the underlying mechanism remains incompletely elucidated. Here, we found that EMPA significantly reduced the hepatic accumulation of auto-aggressive CD8+ T cells and lowered granzyme B levels in mice with MASH. Mechanistically, EMPA increased β-hydroxybutyric acid by promoting the ketogenesis of CD8+ T cells via elevating 3-hydroxybutyrate dehydrogenase 1 (Bdh1) expression. The β-hydroxybutyric acid subsequently inhibited interferon regulatory factor 4 (Irf4), which is crucial for CD8+ T cell activation. Furthermore, the ablation of Bdh1 in T cells aggravated the manifestation of MASH and hindered the therapeutic efficacy of EMPA. Moreover, a case-control study also showed that SGLT2 inhibitor treatment repressed CD8+ T cell infiltration and improved liver injury in patients with MASH. In summary, our study indicates that SGLT2 inhibitors can target CD8+ T cells and may be an effective strategy for treating MASH.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Danming You
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huren Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyi Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Qi
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhao Lin
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiwei Huang
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxin Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Xu
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jin Li
- Division of Endocrinology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Wei Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Cell Metabolic Homeostasis and Major Chronic Diseases, Guangzhou, China.
| |
Collapse
|
4
|
Maurice D, Costello P, Diring J, Gualdrini F, Frederico B, Treisman R. IL-2 delivery to CD8 + T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics. Nat Commun 2024; 15:7956. [PMID: 39261466 PMCID: PMC11391060 DOI: 10.1038/s41467-024-52230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Autoimmunity Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrick Costello
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jessica Diring
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesco Gualdrini
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, 20139, Italy
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Richard Treisman
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
6
|
Schmidt C, Harberts A, Reimers D, Bertram T, Voß LC, Schmid J, Lory NC, Spohn M, Koch-Nolte F, Huber S, Raczkowski F, Breloer M, Mittrücker HW. IRF4 is required for migration of CD4 + T cells to the intestine but not for Th2 and Th17 cell maintenance. Front Immunol 2023; 14:1182502. [PMID: 37469513 PMCID: PMC10352983 DOI: 10.3389/fimmu.2023.1182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
The transcription factor Interferon Regulatory Factor 4 (IRF4) is central in control of T cell activation and differentiation. Deficiency of IRF4 results in severe immune deficiency and affects maturation and function of most if not all T cell subsets. Here we use mouse infection models for Citrobacter rodentium and Strongyloides ratti to analyze the function of IRF4 in T helper (Th) 17 and Th2 cell responses, respectively. IRF4 deficient mice were impaired in the control of both pathogens, failed to mount Th17 and Th2 cell responses and showed impaired recruitment of T helper cells to the intestine, the infection site of both pathogens. Compromised intestinal migration was associated with reduced expression of the intestinal homing receptors α4β7 integrin, CCR9 and GPR15. Identification of IRF4 binding sites in the gene loci of these receptors suggests a direct control of their expression by IRF4. Competitive T cell transfer assays further demonstrated that loss of one functional Irf4 allele already affected intestinal accumulation and Th2 and Th17 cell generation, indicating that lower IRF4 levels are of disadvantage for Th2 and Th17 cell differentiation as well as their migration to the intestine. Conversion of peripheral CD4+ T cells from an Irf4 wildtype to an Irf4 heterozygous or from an Irf4 heterozygous to a homozygous mutant genotype after C. rodentium or S. ratti infection did not reduce their capacity to produce Th17 or Th2 cytokines and only partially affected their persistence in the intestine, revealing that IRF4 is not essential for maintenance of the Th2 and Th17 phenotype and for survival of these T helper cells in the intestine. In conclusion, we demonstrate that the expression levels of IRF4 determine Th2 and Th17 cell differentiation and their intestinal accumulation but that IRF4 expression is not crucial for Th2 and Th17 cell survival.
Collapse
Affiliation(s)
- Constantin Schmidt
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aenne Harberts
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Reimers
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Bertram
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Caroline Voß
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Schmid
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Christian Lory
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Raczkowski
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minka Breloer
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department for Biology, University Hamburg, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Pyrimidine de novo synthesis inhibition selectively blocks effector but not memory T cell development. Nat Immunol 2023; 24:501-515. [PMID: 36797499 DOI: 10.1038/s41590-023-01436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.
Collapse
|
8
|
A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. Sci Immunol 2023; 8:eade7953. [PMID: 36662884 PMCID: PMC10825898 DOI: 10.1126/sciimmunol.ade7953] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.
Collapse
|
9
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Oladipo OO, Adedeji BO, Adedokun SP, Gbadamosi JA, Salaudeen M. Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunol Res 2022; 71:314-327. [PMID: 36571657 DOI: 10.1007/s12026-022-09353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.
Collapse
Affiliation(s)
- Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Bernard O Adedeji
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Samson P Adedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Jibriil A Gbadamosi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Marzuq Salaudeen
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Tan TCJ, Kelly V, Zou X, Wright D, Ly T, Zamoyska R. Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8 + T lymphocytes. Nat Commun 2022; 13:7796. [PMID: 36528626 PMCID: PMC9759561 DOI: 10.1038/s41467-022-35252-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Control of mRNA translation adjusts protein production rapidly and facilitates local cellular responses to environmental conditions. Traditionally initiation of translation is considered to be a major translational control point, however, control of peptide elongation is also important. Here we show that the function of the elongation factor, eIF5a, is regulated dynamically in naïve CD8+ T cells upon activation by post-translational modification, whereupon it facilitates translation of specific subsets of proteins. eIF5a is essential for long-term survival of effector CD8+ T cells and sequencing of nascent polypeptides indicates that the production of proteins which regulate proliferation and key effector functions, particularly the production of IFNγ and less acutely TNF production and cytotoxicity, is dependent on the presence of functional eIF5a. Control of translation in multiple immune cell lineages is required to co-ordinate immune responses and these data illustrate that translational elongation contributes to post-transcriptional regulons important for the control of inflammation.
Collapse
Affiliation(s)
- Thomas C J Tan
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Van Kelly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Xiaoyan Zou
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - David Wright
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Tony Ly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
- Centre for Gene Regulation and Expression, Life Sciences Research Complex, University of Dundee, Dundee, DD1 5EH, UK
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
12
|
Wang L, Kumar A, Das JK, Ren Y, Peng HY, Ballard DJ, Xiong X, Davis JR, Ren X, Yang JM, Song J. Expression of NAC1 Restrains the Memory Formation of CD8 + T Cells during Viral Infection. Viruses 2022; 14:1713. [PMID: 36016335 PMCID: PMC9414488 DOI: 10.3390/v14081713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 01/02/2023] Open
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a transcription co-factor that has been shown to possess multiple roles in stem cell and cancer biology. However, little is known about its roles in regulation of the immune system. In the current study, we observed that expression of NAC1 impacted the survival of CD8+ T cells in vitro. NAC1-/- CD8+ T cells displayed lower metabolism, including reduced glycolysis and oxidative phosphorylation. In vivo, compared with wild-type (WT) mice, NAC1-/- mice produced a lower response to vaccinia virus (VACV) infection, and viral antigen (Ag)-specific CD8+ T cells decreased more slowly. Additionally, we observed that the NAC1-/- mice demonstrated a stronger memory formation of viral Ag-specific CD8+ T cells post-viral infection. Mechanically, we identified that compared with WT CD8+ T cells, the Interferon Regulatory Factor 4 (IRF4), a key transcription factor in T cell development, was highly expressed in NAC1-/- CD8+ T cells, insinuating that IRF4 could be a critical regulatory target of NAC1 in the memory formation of CD8+ T cells. Our results indicate that NAC1 restrains the memory formation of CD8+ T cells by modulating IRF4, and targeting NAC1 may be exploited as a new approach to boosting CD8+ T cell memory.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Darby Jane Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jacob Rance Davis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
13
|
Amanda S, Tan TK, Iida S, Sanda T. Lineage- and Stage-specific Oncogenicity of IRF4. Exp Hematol 2022; 114:9-17. [PMID: 35908629 DOI: 10.1016/j.exphem.2022.07.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Dysregulation of transcription factor genes represents a unique molecular etiology of hematological malignancies. A number of transcription factors that play a role in hematopoietic cell development, lymphocyte activation or their maintenance have been identified as oncogenes or tumor suppressors. Many of them exert oncogenic abilities in a context-dependent manner by governing the key transcriptional program unique to each cell type. IRF4, a member of the interferon regulatory factor (IRF) family, acts as an essential regulator of the immune system and is a prime example of a stage-specific oncogene. The expression and oncogenicity of IRF4 are restricted to mature lymphoid neoplasms, while IRF4 potentially serves as a tumor suppressor in other cellular contexts. This is in marked contrast to its immediate downstream target, MYC, which can cause cancers in a variety of tissues. In this review article, we provide an overview of the roles of IRF4 in the development of the normal immune system and lymphoid neoplasms and discuss the potential mechanisms of lineage- and stage-specific oncogenicity of IRF4.
Collapse
Affiliation(s)
- Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601 Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore..
| |
Collapse
|
14
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Zhang Y, Zeng X, Zha X, Lai J, Tan G, Chen S, Yu X, Li Y, Xu L. Correlation of the transcription factors IRF4 and BACH2 with the abnormal NFATC1 expression in T cells from chronic myeloid leukemia patients. Hematology 2022; 27:523-529. [PMID: 35544467 DOI: 10.1080/16078454.2022.2066245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE T cell dysfunction is a common characteristic of patients with myeloid leukemia and is closely related to clinical efficacy and prognosis. In order to clarify the mechanisms leading to the T cell dysfunction, we characterized the gene expression profile of T cells from chronic myelogenous leukemia (CML) patients by microarray analysis and investigated the related regulating pathway. METHODS We employed gene expression profiling, bioinformatics and real-time quantitative reverse transcription PCR (RT-qPCR) to detect genes differentially expressed in CML patients versus healthy donors. RESULTS There were 1704 genes differentially expressed between CD3+ T cells from CML patients and healthy donors, including 868 up-regulated genes and 836 down-regulated genes, which mostly related to T cell functional pathways. In particular, lower expression of NFATC1, a member of the TCR signaling pathway, was detected in CD3+ T cells from CML patients. We further found that the expression of IRF4 and BACH2, transcription factors that potentially regulate NFATC1, in CD3+ T cells from CML patients was significantly lower than that in healthy donors. CONCLUSION We for the first time observed the altered gene expression profiles of CD3+ T cells from CML patients, and the results suggested that IRF4, BACH2 and NFATC1 may be involved in regulating T cell dysfunction in CML patients in the form of a transcriptional regulatory network. These findings may provide potential targets for tyrosine kinase inhibitors in combination with other targeted immunotherapies .
Collapse
Affiliation(s)
- Yikai Zhang
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China.,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, People's Republic of China
| | - Xiangbo Zeng
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Guangxiao Tan
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Shaohua Chen
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Xibao Yu
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Ling Xu
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Li S, Zou D, Chen W, Cheng Y, Britz GW, Weng YL, Liu Z. Ablation of BATF Alleviates Transplant Rejection via Abrogating the Effector Differentiation and Memory Responses of CD8 + T Cells. Front Immunol 2022; 13:882721. [PMID: 35514970 PMCID: PMC9062028 DOI: 10.3389/fimmu.2022.882721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Allogeneic CD8+ T cells are prominently involved in allograft rejection, but how their effector differentiation and function are regulated at a transcriptional level is not fully understood. Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key transcription factor that drives the effector program of allogeneic CD8+ T cells. We found that BATF is highly expressed in graft-infiltrating CD8+ T cells, and its ablation in CD8+ T cells significantly prolonged skin allograft survival in a fully MHC-mismatched transplantation model. To investigate how BATF dictates allogeneic CD8+ T cell response, BATF-/- and wild-type (WT) CD8+ T cells were mixed in a 1:1 ratio and adoptively transferred into B6.Rag1-/- mice 1 day prior to skin transplantation. Compared with WT CD8+ T cells at the peak of rejection response, BATF-/- CD8+ T cells displayed a dysfunctional phenotype, evident by their failure to differentiate into CD127-KLRG1+ terminal effectors, impaired proliferative capacity and production of pro-inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts. In association with the failure of effector differentiation, BATF-/- CD8+ T cells largely retained TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the memory phase, BATF-deficient CD8+ T cells displayed impaired effector differentiation upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional determinant that governs the terminal differentiation and memory responses of allogeneic CD8+ T cells in the transplantation setting. Targeting BATF in CD8+ T cells may be an attractive therapeutic approach to promote transplant acceptance.
Collapse
Affiliation(s)
- Shuang Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| |
Collapse
|
18
|
Interferon regulatory factor 4 controls effector functions of CD8 + memory T cells. Proc Natl Acad Sci U S A 2021; 118:2014553118. [PMID: 33859042 DOI: 10.1073/pnas.2014553118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor IRF4 is required for CD8+ T cell activation, proliferation, and differentiation to effector cells and thus is essential for robust CD8+ T cell responses. The function of IRF4 in memory CD8+ T cells yet needs to be explored. To investigate the role of IRF4 for maintaining differentiation state and survival of CD8+ memory T cells, we used a mouse model with tamoxifen-inducible Irf4 knockout to preclude effects due to inefficient memory cell differentiation in absence of IRF4. We infected mice with ovalbumin-recombinant listeria and induced Irf4 knockout after clearance of the pathogen. Loss of IRF4 resulted in phenotypical changes of CD8+ memory T cells but did not cause a reduction of the total memory T cell population. However, upon reencounter of the pathogen, CD8+ memory T cells showed impaired expansion and acquisition of effector functions. When compared to CD8+ effector memory T cells, CD8+ tissue-resident memory T cells (TRM cells) expressed higher IRF4 levels. Mice with constitutive Irf4 knockout had diminished CD8+ TRM-cell populations, and tamoxifen-induced Irf4 deletion caused a reduction of this cell population. In conclusion, our results demonstrate that IRF4 is required for effective reactivation but not for general survival of CD8+ memory T cells. Formation and maintenance of CD8+ TRM cells, in contrast, appear to depend on IRF4.
Collapse
|
19
|
Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev 2021; 300:100-124. [PMID: 33682165 DOI: 10.1111/imr.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (TEFF ) and memory (TMEM ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating TMEM cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA
| |
Collapse
|
20
|
Vaughn N, Haviland DL. Acly promotes metabolic reprogramming and induction of IRF4 during early CD8 + T cell activation. Cytometry A 2020; 99:825-831. [PMID: 33325591 DOI: 10.1002/cyto.a.24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022]
Abstract
CD8+ T cells, a fundamental part of the adaptive immune system, employ cytotoxic responses important for targeting pathogenic bacteria, viruses, and tumor cells. During early activation, CD8+ T cells undergo many changes in metabolism and gene expression. The bridge between epigenetic and metabolic influences on gene expression and cell fate has yet to be fully understood. Here, we investigated the importance of ATP citrate lyase (Acly), an enzyme involved in both metabolism and histone acetylation, for early stages of CD8+ T cell activation. We performed polyclonal activation of murine CD8+ T cells in vitro in the presence or absence of the Acly inhibitor BMS303141. We found that inhibiting Acly during early activation results in decreased expression of early activation markers. Consistent with impaired early activation, we found that inhibition also resulted in increased uptake of fatty acids and decreased glucose uptake without changing mitochondrial ATP levels. On an epigenetic and transcriptional level, early stage Acly inhibition specifically downregulated promoter histone H3 acetylation (H3ac) and expression of the key transcription factor IRF4; however, global levels of H3ac remained similar. Most importantly, the study was able to highlight the importance of Acly in early stages of CD8+ T cell activation and histone regulation.
Collapse
Affiliation(s)
- Nicole Vaughn
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, Texas, USA
| | - David L Haviland
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
21
|
Yongjun C, Nan Q, Yumeng S, Xiaowen J, Weibo W. Dioscin alleviates hashimoto's thyroiditis by regulating the SUMOylation of IRF4 to promote CD4 +CD25 +Foxp3 + treg cell differentiation. Autoimmunity 2020; 54:51-59. [PMID: 33274645 DOI: 10.1080/08916934.2020.1855428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dioscin has been used as a treatment for Hashimoto's thyroiditis (HT) in China. However, the molecular mechanisms governing the modes of action of dioscin have not been elucidated. In this study, flow cytometry and Western blotting were used to identify the proportions of CD4+CD25+ regulatory T (Treg) cells and the expression of forkhead box P3 (Foxp3) and SUMO-specific protease 1 (SENP1) in HT patients' peripheral blood mononuclear cells (PBMCs). A pTg-induced rat model of HT was established by injection of 100 μg pTg. Then, the model rats were randomly divided into three groups (n = 5): control (NC), model (HT) and dioscin treatment. After oral administration of dioscin each day for two weeks, CD4+CD25+Foxp3+ Treg cells were analysed by flow cytometry, and the protein expression levels of SENP1, Foxp3, SUMO-1 and SUMO-2/3 were measured by Western blotting. Co-immunoprecipitation (Co-IP) was used to identify the SUMOylation of interferon regulatory factor 4 (IRF4). The results showed that the proportions of CD4+CD25+ Treg cells and the expression of Foxp3 were significantly decreased in HT patients, but the expression of SENP1 was enhanced compared to healthy controls (HCs). However, compared to the pTg-induced HT rat group, the expression of Foxp3, SUMO-1, and SUMO-2/3 and the proportions of CD4+CD25+Foxp3+ Treg cells were increased, whereas the expression of SENP1 was decreased, in the dioscin-treated group. Furthermore, the SUMOylation of IRF4 was increased after SENP1 was knocked down. The results of our study indicate that dioscin can promote the differentiation of the CD4+CD25+Foxp3+ Treg cells and subsequently upregulate the SUMOylation of IRF4 by downregulating SENP1 expression.
Collapse
Affiliation(s)
- Cao Yongjun
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Qiao Nan
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Sun Yumeng
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Jin Xiaowen
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Wen Weibo
- The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
22
|
Early programming of CD8 + T cell response by the orphan nuclear receptor NR4A3. Proc Natl Acad Sci U S A 2020; 117:24392-24402. [PMID: 32913051 DOI: 10.1073/pnas.2007224117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enhancing long-term persistence while simultaneously potentiating the effector response of CD8+ T cells has been a long-standing goal in immunology to produce better vaccines and adoptive cell therapy products. NR4A3 is a transcription factor of the orphan nuclear receptor family. While it is rapidly and transiently expressed following T cell activation, its role in the early stages of T cell response is unknown. We show that NR4A3-deficient murine CD8+ T cells differentiate preferentially into memory precursor and central memory cells, but also produce more cytokines. This is explained by an early influence of NR4A3 deficiency on the memory transcriptional program and on accessibility of chromatin regions with motifs for bZIP transcription factors, which impacts the transcription of Fos/Jun target genes. Our results reveal a unique and early role for NR4A3 in programming CD8+ T cell differentiation and function. Manipulating NR4A3 activity may represent a promising strategy to improve vaccination and T cell therapy.
Collapse
|
23
|
Zou D, Fu J, Guo Z, Chen W. Interferon regulatory factor 4 deficiency in CD8 + T cells abrogates terminal effector differentiation and promotes transplant acceptance. Immunology 2020; 161:364-379. [PMID: 32892353 DOI: 10.1111/imm.13258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Allogeneic CD8+ cytotoxic T cells play an essential role in rejecting transplanted allografts, but how their effector function is regulated on a transcriptional level remains unclear. Herein, we investigate the role of interferon regulatory factor 4 (IRF4) in controlling CD8+ T-cell function in response to transplant. B6.Rag1-/- mice were adoptively transferred with CD8+ T cells isolated from either Irf4fl/fl Cd4-Cre (T-cell-specific Irf4-deficient) or Irf4fl/fl control mice, followed by BALB/c skin transplantation. Recipients that received Irf4-deficient CD8+ T cells permanently accepted the skin allografts, whereas recipients that received control CD8+ T cells acutely rejected the transplanted skins. Mechanistically, compared with the transferred control CD8+ T cells in B6.Rag1-/- recipients, the transferred Irf4-deficient CD8+ T cells lost the capacity to differentiate into CD127- KLRG1+ terminal effector cells, barely produced effector cytokines and cytotoxic molecules (e.g. IL-2, IFN-γ, TNF-α, granzyme A and granzyme B), and displayed defect in proliferative capacity, evident by their decreased Ki67 expression and lower frequencies. Moreover, the transferred Irf4-deficient CD8+ T cells displayed low expression of transcription factors ID2 and T-bet that govern the terminal effector T-cell programmes, and high expression of transcription factor TCF1 that maintains the naïve-memory T-cell programmes. Hence, IRF4 deficiency in CD8+ T cells abrogates their terminal effector differentiation and promotes transplant acceptance. These findings suggest that targeting IRF4 expression represents an attractive and promising therapeutic approach for inducing transplant acceptance.
Collapse
Affiliation(s)
- Dawei Zou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jinfei Fu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, USA.,Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
24
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
25
|
Li KP, Ladle BH, Kurtulus S, Sholl A, Shanmuganad S, Hildeman DA. T-cell receptor signal strength and epigenetic control of Bim predict memory CD8 + T-cell fate. Cell Death Differ 2020; 27:1214-1224. [PMID: 31558776 PMCID: PMC7206134 DOI: 10.1038/s41418-019-0410-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Most effector CD8+ T cells die, while some persist and become either "effector" (TEM) or "central" (TCM) memory T cells. Paradoxically, effector CD8+ T cells with greater memory potential have higher levels of the pro-apoptotic molecule Bim. Here, we report, using a novel Bim-mCherry knock-in mouse, that cells with high levels of Bim preferentially develop into TCM cells. Bim levels remained stable and were regulated by DNA methylation at the Bim promoter. Notably, high levels of Bcl-2 were required for Bimhi cells to survive. Using Nur77-GFP mice as an indicator of TCR signal strength, Nur77 levels correlated with Bim expression and Nur77hi cells also selectively developed into TCM cells. Altogether, these data show that Bim levels and TCR signal strength are predictive of TEM- vs. TCM-cell fate. Further, given the many other biologic functions of Bim, these mice will have broad utility beyond CD8+ T-cell fate.
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Brian H Ladle
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Johns Hopkins Hospital, 1800 Orleans Street, The Charlotte R. Bloomberg Children's Center Building, 11th Floor, Baltimore, MD, 21287, USA
| | - Sema Kurtulus
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Allyson Sholl
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
27
|
B-cell-specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood 2020; 134:1717-1729. [PMID: 31537531 DOI: 10.1182/blood.2019000973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.
Collapse
|
28
|
Odagiu L, May J, Boulet S, Baldwin TA, Labrecque N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front Endocrinol (Lausanne) 2020; 11:624122. [PMID: 33597928 PMCID: PMC7883379 DOI: 10.3389/fendo.2020.624122] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear orphan receptors NR4A1, NR4A2, and NR4A3 are immediate early genes that are induced by various signals. They act as transcription factors and their activity is not regulated by ligand binding and are thus regulated via their expression levels. Their expression is transiently induced in T cells by triggering of the T cell receptor following antigen recognition during both thymic differentiation and peripheral T cell responses. In this review, we will discuss how NR4A family members impact different aspects of the life of a T cell from thymic differentiation to peripheral response against infections and cancer.
Collapse
Affiliation(s)
- Livia Odagiu
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Julia May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Salix Boulet
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| | - Nathalie Labrecque
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| |
Collapse
|
29
|
Tintelnot J, Ufer F, Engler JB, Winkler H, Lücke K, Mittrücker HW, Friese MA. Arc/Arg3.1 defines dendritic cells and Langerhans cells with superior migratory ability independent of phenotype and ontogeny in mice. Eur J Immunol 2019; 49:724-736. [PMID: 30786014 DOI: 10.1002/eji.201847797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
Abstract
The key function of migratory dendritic cells (migDCs) is to take up antigens in peripheral tissues and migrate to draining lymph nodes (dLN) to initiate immune responses. Recently, we discovered that in the mouse immune system activity-regulated cytoskeleton associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) is exclusively expressed by migDCs and is a central driver of fast inflammatory migration. However, the frequency of Arc/Arg3.1-expressing cells in different migDC subsets and Langerhans cells (LCs), their phylogenetic origin, transcription factor dependency, and functional role remain unclear. Here, we found that Arc/Arg3.1+ migDCs derived from common DC precursors and radio-resistant LCs. We detected Arc/Arg3.1+ migDCs in varying frequencies within each migDC subset and LCs. Consistently, they showed superiority in inflammatory migration. Arc/Arg3.1 expression was independent of the transcription factors Irf4 or Batf3 in vivo. In intradermal Staphylococcus aureus infection that relies on inflammatory antigen transport, Arc/Arg3.1 deletion reduced T-cell responses. By contrast, Arc/Arg3.1 deficiency did not hamper the immune response to systemic Listeria monocytogenes infection, which does not require antigen transport. Thus, Arc/Arg3.1 expression is independent of ontogeny and phenotype and although it is restricted to a small fraction within each migDC subset and LCs, Arc/Arg3.1+ migDCs are important to facilitate infectious migration.
Collapse
Affiliation(s)
- Joseph Tintelnot
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hana Winkler
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Lücke
- Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, Pipkin ME. The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity 2019; 48:659-674.e6. [PMID: 29669249 PMCID: PMC6750808 DOI: 10.1016/j.immuni.2018.03.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
T cell receptor (TCR) stimulation of naive CD8+ T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naive cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 promoted accessibility to memory CTL-specific cis-regulatory regions before the first cell division and was essential for memory CTL differentiation. Runx3 was specifically required for accessibility to regions highly enriched with IRF, bZIP and Prdm1-like TF motifs, upregulation of TFs Irf4 and Blimp1, and activation of fundamental CTL attributes in early effector and memory precursor cells. Runx3 ensured that nascent CTLs differentiated into memory CTLs by preventing high expression of the TF T-bet, slowing effector cell proliferation, and repressing terminal CTL differentiation. Runx3 overexpression enhanced memory CTL differentiation during iterative infections. Thus, Runx3 governs chromatin accessibility during TCR stimulation and enforces the memory CTL developmental program.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Walter Rogal
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Megan A Frederick
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, The La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
31
|
Kumar BV, Kratchmarov R, Miron M, Carpenter DJ, Senda T, Lerner H, Friedman A, Reiner SL, Farber DL. Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight 2018; 3:123568. [PMID: 30429372 DOI: 10.1172/jci.insight.123568] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRMs) accelerate pathogen clearance through rapid and enhanced functional responses in situ. TRMs are prevalent in diverse anatomic sites throughout the human lifespan, yet their phenotypic and functional diversity has not been fully described. Here, we identify subpopulations of human TRMs based on the ability to efflux fluorescent dyes [efflux(+) TRMs] located within mucosal and lymphoid sites with distinct transcriptional profiles, turnover, and functional capacities. Compared with efflux(-) TRMs, efflux(+) TRMs showed transcriptional and phenotypic features of quiescence including reduced turnover, decreased expression of exhaustion markers, and increased proliferative capacity and signaling in response to homeostatic cytokines. Moreover, upon activation, efflux(+) TRMs secreted lower levels of inflammatory cytokines such as IFN-γ and IL-2 and underwent reduced degranulation. Interestingly, analysis of TRM subsets following activation revealed that both efflux(+) and efflux(-) TRMs undergo extensive transcriptional changes following TCR ligation but retain core TRM transcriptional properties including retention markers, suggesting that TRMs carry out effector function in situ. Overall, our results suggest a model for tissue-resident immunity wherein heterogeneous subsets have differential capacities for longevity and effector function.
Collapse
Affiliation(s)
| | | | - Michelle Miron
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | | | | | | | - Steven L Reiner
- Department of Microbiology and Immunology, and.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and.,Department of Surgery, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
32
|
Kolawole EM, Andargachew R, Liu B, Jacobs JR, Evavold BD. 2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Front Immunol 2018; 9:2348. [PMID: 30374353 PMCID: PMC6197077 DOI: 10.3389/fimmu.2018.02348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
The LCMV GP33 CD8 epitope has long been one of the most widely used antigens in viral immunology. Of note, almost all of the in vitro analyses of CD8 T cell responses to this epitope make use of an altered peptide ligand (APL) in which the cysteine from the original 9-mer peptide (KAVYNFATC) is substituted by a methionine at position 41 (KAVYNFATM). In addition, it is possible that the antigen processed during natural LCMV infection is an 11-mer peptide (KAVYNFATCGI) rather than the widely used 9-mer. Although previous affinity measurements using purified proteins for these antigen variants revealed minimal differences, we applied highly sensitive two dimensional (2D) biophysical based techniques to further dissect TCR interaction with these closely related GP33 variants. The kinetic analyses of affinity provided by the 2D micropipette adhesion frequency assay (2D-MP) and bond lifetime under force analyzed using a biomembrane force probe (BFP) revealed significant differences between 41M, 41C and the 11-mer 41CGI antigen. We found a hierarchy in 2D affinity as 41M peptide displayed augmented TCR 2D affinity compared to 41C and 41CGI. These differences were also maintained in the presence of CD8 coreceptor and when analysis of total TCR:pMHC and CD8:pMHC bonds were considered. Moreover, the three ligands displayed dramatic differences in the bond lifetimes generated under force, in particular the 41CGI variant with the lowest 2D affinity demonstrated a 15-fold synergistic contribution of the CD8 coreceptor to overall bond lifetime. Our analyses emphasize the sensitivity of single cell and single bond 2D kinetic measurements in distinguishing between related agonist peptides.
Collapse
Affiliation(s)
- Elizabeth M Kolawole
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Baoyu Liu
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jesica R Jacobs
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Brian D Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Tosello Boari J, Araujo Furlan CL, Fiocca Vernengo F, Rodriguez C, Ramello MC, Amezcua Vesely MC, Gorosito Serrán M, Nuñez NG, Richer W, Piaggio E, Montes CL, Gruppi A, Acosta Rodríguez EV. IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection. Front Immunol 2018; 9:2347. [PMID: 30364284 PMCID: PMC6193063 DOI: 10.3389/fimmu.2018.02347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.
Collapse
Affiliation(s)
- Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Wilfrid Richer
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Eliane Piaggio
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
34
|
Olesin E, Nayar R, Saikumar-Lakshmi P, Berg LJ. The Transcription Factor Runx2 Is Required for Long-Term Persistence of Antiviral CD8 + Memory T Cells. Immunohorizons 2018; 2:251-261. [PMID: 30264035 PMCID: PMC6156005 DOI: 10.4049/immunohorizons.1800046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During acute lymphocytic choriomeningitis virus infection, pathogen-specific CD8+ cytotoxic T lymphocytes undergo clonal expansion leading to viral clearance. Following this, the majority of pathogen-specific CD8+ T cells undergo apoptosis, leaving a small number of memory CD8+ T cells that persist long-term and provide rapid protection upon secondary infection. Whereas much is known about the cytokines and transcription factors that regulate the early effector phase of the antiviral CD8+ T cell response, the factors regulating memory T cell homeostasis and survival are not well understood. In this article, we show that the Runt-related transcription factor Runx2 is important for long-term memory CD8+ T cell persistence following acute lymphocytic choriomeningitis virus-Armstrong infection in mice. Loss of Runx2 in T cells led to a reduction in KLRG1lo CD127hi memory precursor cell numbers with no effect on KLRG1hi CD127lo terminal effector cell populations. Runx2 expression levels were transcriptionally regulated by TCR signal strength via IRF4, TLR4/7, and selected cytokines. These data demonstrate a CD8+ T cell–intrinsic role for Runx2 in the long-term maintenance of antiviral memory CD8+ T cell populations.
Collapse
Affiliation(s)
- Elizabeth Olesin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Priya Saikumar-Lakshmi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
35
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
36
|
Lugli E, Brummelman J, Pilipow K, Roychoudhuri R. Paths to expansion: Differential requirements of IRF4 in CD8 + T-cell expansion driven by antigen and homeostatic cytokines. Eur J Immunol 2018; 48:1281-1284. [PMID: 30133745 DOI: 10.1002/eji.201847727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 11/11/2022]
Abstract
Interferon regulatory factor 4 (IRF4) regulates the clonal expansion and metabolic activity of activated T cells, but the precise context and mechanisms of its function in these processes are unclear. In this issue of the European Journal of Immunology, Miyakoda et al. [Eur. J. Immunol. 2018. 48: 1319-1328] show that IRF4 is required for activation and expansion of naïve and memory CD8+ T cells driven by T-cell receptor (TCR) signaling, but dispensable for memory CD8+ T-cell maintenance and homeostatic proliferation driven by homeostatic cytokines. The authors show that the function of IRF4 in CD8+ T-cell expansion is partially dependent upon activation of the PI3K/AKT pathway through direct or indirect attenuation of PTEN expression. These data shed light upon the differential intracellular pathways required for naïve and memory T cells to respond to self-antigens and/or homeostatic cytokines, and highlight the potential translational relevance of these findings in the context of immune reconstitution such as following allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
37
|
Miyakoda M, Honma K, Kimura D, Akbari M, Kimura K, Matsuyama T, Yui K. Differential requirements for IRF4 in the clonal expansion and homeostatic proliferation of naive and memory murine CD8 + T cells. Eur J Immunol 2018; 48:1319-1328. [PMID: 29745988 DOI: 10.1002/eji.201747120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
Interferon regulatory factor 4 (IRF4) has critical roles in immune cell differentiation and function and is indispensable for clonal expansion and effector function in T cells. Here, we demonstrate that the AKT pathway is impaired in murine CD8+ T cells lacking IRF4. The expression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT pathway, was elevated in Irf4-/- CD8+ T cells. Inhibition of PTEN partially rescued downstream events, suggesting that PTEN constitutes a checkpoint in the IRF4-mediated regulation of cell signaling. Despite the clonal expansion defect, in the absence of IRF4, memory-like CD8+ T cells could be generated and maintained, although unable to expand in recall responses. The homeostatic proliferation of naïve Irf4-/- CD8+ T cells was impaired, whereas their number eventually reached a level similar to that of wild-type CD8+ T cells. Conversely, memory-like Irf4-/- CD8+ T cells underwent homeostatic proliferation in a manner similar to that of wild-type memory CD8+ T cells. These results suggest that IRF4 regulates the clonal expansion of CD8+ T cells at least in part via the AKT signaling pathway. Moreover, IRF4 regulates the homeostatic proliferation of naïve CD8+ T cells, whereas the maintenance of memory CD8+ T cells is IRF4-independent.
Collapse
Affiliation(s)
- Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Kiri Honma
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masoud Akbari
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
38
|
Sun IH, Oh MH, Zhao L, Patel CH, Arwood ML, Xu W, Tam AJ, Blosser RL, Wen J, Powell JD. mTOR Complex 1 Signaling Regulates the Generation and Function of Central and Effector Foxp3 + Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:481-492. [PMID: 29884702 DOI: 10.4049/jimmunol.1701477] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.
Collapse
Affiliation(s)
- Im-Hong Sun
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Min-Hee Oh
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Liang Zhao
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Chirag H Patel
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Matthew L Arwood
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Wei Xu
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ada J Tam
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Richard L Blosser
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jiayu Wen
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jonathan D Powell
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
39
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, Wells AD, Wherry EJ, Koretzky GA, Jordan MS. The Loss of TET2 Promotes CD8 + T Cell Memory Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 200:82-91. [PMID: 29150566 DOI: 10.4049/jimmunol.1700559] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
T cell differentiation requires appropriate regulation of DNA methylation. In this article, we demonstrate that the methylcytosine dioxygenase ten-eleven translocation (TET)2 regulates CD8+ T cell differentiation. In a murine model of acute viral infection, TET2 loss promotes early acquisition of a memory CD8+ T cell fate in a cell-intrinsic manner without disrupting Ag-driven cell expansion or effector function. Upon secondary recall, TET2-deficient memory CD8+ T cells demonstrate superior pathogen control. Genome-wide methylation analysis identified a number of differentially methylated regions in TET2-deficient versus wild-type CD8+ T cells. These differentially methylated regions did not occur at the loci of differentially expressed memory markers; rather, several hypermethylated regions were identified in known transcriptional regulators of CD8+ T cell memory fate. Together, these data demonstrate that TET2 is an important regulator of CD8+ T cell fate decisions.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mercy Gohil
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren B Banks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Renee M Cotton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Erietta Stelekati
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
41
|
IRF9 Prevents CD8 + T Cell Exhaustion in an Extrinsic Manner during Acute Lymphocytic Choriomeningitis Virus Infection. J Virol 2017; 91:JVI.01219-17. [PMID: 28878077 DOI: 10.1128/jvi.01219-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Effective CD8+ T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8+ T cell responses, leading to chronic infection. This altered CD8+ T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8+ T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8+ T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8+ T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8+ T cell exhaustion and, ultimately, chronic infection.IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8+ T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8+ T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and Irf7, encoding a transcription factor crucial for type I interferon (IFN-I) production, as well as by controlling the levels of IFN-I. Infection of IRF9-deficient mice led to a chronic infection that was accompanied by CD8+ T cell exhaustion due to defects extrinsic to T cells. Our findings illustrate an essential role for IRF9, as a mediator downstream of IFNAR, in preventing overwhelming antigen exposure causing CD8+ T cell exhaustion and leading to chronic viral infection.
Collapse
|
42
|
The role of ADAM17 in the T-cell response against bacterial pathogens. PLoS One 2017; 12:e0184320. [PMID: 28877252 PMCID: PMC5587322 DOI: 10.1371/journal.pone.0184320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM17 is a member of the A Disintegrin And Metalloproteinase family of proteases. It is ubiquitously expressed and causes the shedding of a broad spectrum of surface proteins such as adhesion molecules, cytokines and cytokine receptors. By controlled shedding of these proteins from leukocytes, ADAM17 is able to regulate immune responses. Several ADAM17 targets on T cells have been implicated in T-cell migration, differentiation and effector functions. However, the role of ADAM17 in T-cell responses is still unclear. To characterize the function of ADAM17 in T cells, we used Adam17fl/fl×CD4cre+ mice with a T-cell restricted inactivation of the Adam17 gene. Upon stimulation, ADAM17-deficient CD4+ and CD8+ T cells were impaired in shedding of CD62L, IL-6Rα, TNF-α, TNFRI and TNFRII. Surprisingly, we could not detect profound changes in the composition of major T-cell subsets in Adam17fl/fl×CD4cre+ mice. Following infection with Listeria monocytogenes, Adam17fl/fl×CD4cre+ mice mounted regular listeria-specific CD4+ TH1 and CD8+ T-cell responses and were able to control primary and secondary infections. In conclusion, our study indicates that ADAM17 is either not required in T cells under homoeostatic conditions and for control of listeria infection or can be effectively compensated by other mechanisms.
Collapse
|
43
|
Kratchmarov R, Nish SA, Lin WHW, Adams WC, Chen YH, Yen B, Rothman NJ, Klein U, Reiner SL. IRF4 Couples Anabolic Metabolism to Th1 Cell Fate Determination. Immunohorizons 2017; 1:156-161. [PMID: 28944344 PMCID: PMC5608100 DOI: 10.4049/immunohorizons.1700012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anabolic metabolism in lymphocytes promotes plasmablast and cytotoxic T cell differentiation at the expense of self-renewal. Heightened expression and function of the transcription factor IFN regulatory factor 4 (IRF4) accompany enhanced anabolic induction and full commitment to functional differentiation in B cells and CD8+ T cells. In this study, we used a genetic approach to determine whether IRF4 plays an analogous role in Th1 cell induction. Our findings indicate that IRF4 promotes determined Th1 cell differentiation in tandem with anabolic metabolism of CD4+ T cells. IRF4-deficient CD4+ T cells stimulated in vitro exhibit impaired induction of Th1 gene expression and defective silencing of T cell factor 1 expression. IRF4-deficient CD4+ T cells also undergo a shift toward catabolic metabolism, with reduced mammalian target of rapamycin activation, cell size, and nutrient uptake, as well as increased mitochondrial clearance. These findings suggest that the ability to remodel metabolic states can be an essential gateway for altering cell fate.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Simone A. Nish
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wen-Hsuan W. Lin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - William C. Adams
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Yen-Hua Chen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Bonnie Yen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Nyanza J. Rothman
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ulf Klein
- Department of Pathology, Columbia University Medical Center, New York, NY 10032
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Steven L. Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
44
|
Huang S, Shen Y, Pham D, Jiang L, Wang Z, Kaplan MH, Zhang G, Sun J. IRF4 Modulates CD8 + T Cell Sensitivity to IL-2 Family Cytokines. Immunohorizons 2017; 1:92-100. [PMID: 29564420 PMCID: PMC5858712 DOI: 10.4049/immunohorizons.1700020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IFN regulatory factor 4 (IRF4) is a key transcription factor that promotes effector CD8+ T cell differentiation and expansion. The roles of IRF4 in regulating the CD8+ T cell response to cytokines have not been explored. In this article, we show that IL-2 and IL-15 signaling and STAT5 activation regulate IRF4 expression in CD8+ T cells. Gene-expression profile analysis has also revealed that IRF4 is required for expression of the receptors of IL-2 family cytokines CD122 and CD127. We found that IRF4 binds directly to CD122 and CD127 gene loci, indicating that it may directly promote CD122 and CD127 gene transcription. As a consequence, IRF4-deficient CD8+ T cells show diminished sensitivity to IL-2, IL-15, and IL-7 treatment in vitro. Furthermore, we found that IRF4-deficient CD8+ T cells had lower expression of CD122 and CD127 in vivo during influenza virus infection. These data suggest that IRF4 regulates the sensitivity of CD8+ T cells to IL-2 family cytokines, which correlates with the diminished effector and memory CD8+ T cell responses in IRF4-deficient CD8+ T cells.
Collapse
Affiliation(s)
- Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Duy Pham
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Li Jiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Zheng Wang
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Guangjun Zhang
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
45
|
Fu SH, Yeh LT, Chu CC, Yen BLJ, Sytwu HK. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J Biomed Sci 2017; 24:49. [PMID: 28732506 PMCID: PMC5520377 DOI: 10.1186/s12929-017-0354-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3+ regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8+ T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8+ T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Collapse
Affiliation(s)
- Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Chin-Chen Chu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, 71104, Taiwan. .,Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan, 71104, Taiwan.
| | - B Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan.
| |
Collapse
|
46
|
Jofra T, Galvani G, Kuka M, Di Fonte R, Mfarrej BG, Iannacone M, Salek-Ardakani S, Battaglia M, Fousteri G. Extrinsic Protein Tyrosine Phosphatase Non-Receptor 22 Signals Contribute to CD8 T Cell Exhaustion and Promote Persistence of Chronic Lymphocytic Choriomeningitis Virus Infection. Front Immunol 2017; 8:811. [PMID: 28747914 PMCID: PMC5506075 DOI: 10.3389/fimmu.2017.00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
A genetic variant of the protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with a wide range of autoimmune diseases; however, the reasons behind its prevalence in the general population remain not completely understood. Recent evidence highlights an important role of autoimmune susceptibility genetic variants in conferring resistance against certain pathogens. In this study, we examined the role of PTPN22 in persistent infection in mice lacking PTPN22 infected with lymphocytic choriomeningitis virus clone 13. We found that lack of PTPN22 in mice resulted in viral clearance 30 days after infection, which was reflected in their reduced weight loss and overall improved health. PTPN22-/- mice exhibited enhanced virus-specific CD8 and CD4 T cell numbers and functionality and reduced exhausted phenotype. Moreover, mixed bone marrow chimera studies demonstrated no differences in virus-specific CD8 T cell accumulation and function between the PTPN22+/+ and PTPN22-/- compartments, showing that the effects of PTPN22 on CD8 T cells are T cell-extrinsic. Together, these findings identify a CD8 T cell-extrinsic role for PTPN22 in weakening early CD8 T cell responses to collectively promote persistence of a chronic viral infection.
Collapse
Affiliation(s)
- Tatiana Jofra
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Galvani
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Di Fonte
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bechara G Mfarrej
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Manuela Battaglia
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Tian Y, Sette A, Weiskopf D. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Front Immunol 2016; 7:531. [PMID: 28003809 PMCID: PMC5141332 DOI: 10.3389/fimmu.2016.00531] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
48
|
Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39:1548-1555. [DOI: 10.1007/s12272-016-0854-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
|
49
|
Mahnke J, Schumacher V, Ahrens S, Käding N, Feldhoff LM, Huber M, Rupp J, Raczkowski F, Mittrücker HW. Interferon Regulatory Factor 4 controls T H1 cell effector function and metabolism. Sci Rep 2016; 6:35521. [PMID: 27762344 PMCID: PMC5071867 DOI: 10.1038/srep35521] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
The transcription factor Interferon Regulatory Factor 4 (IRF4) is essential for TH2 and TH17 cell formation and controls peripheral CD8+ T cell differentiation. We used Listeria monocytogenes infection to characterize the function of IRF4 in TH1 responses. IRF4−/− mice generated only marginal numbers of listeria-specific TH1 cells. After transfer into infected mice, IRF4−/− CD4+ T cells failed to differentiate into TH1 cells as indicated by reduced T-bet and IFN-γ expression, and showed limited proliferation. Activated IRF4−/− CD4+ T cells exhibited diminished uptake of the glucose analog 2-NBDG, limited oxidative phosphorylation and strongly reduced aerobic glycolysis. Insufficient metabolic adaptation contributed to the limited proliferation and TH1 differentiation of IRF4−/− CD4+ T cells. Our study identifies IRF4 as central regulator of TH1 responses and cellular metabolism. We propose that this function of IRF4 is fundamental for the initiation and maintenance of all TH cell responses.
Collapse
Affiliation(s)
- Justus Mahnke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Ahrens
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Lea Marie Feldhoff
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Friederike Raczkowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Shorter SK, Schnell FJ, McMaster SR, Pinelli DF, Andargachew R, Evavold BD. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses. PLoS One 2016; 11:e0149582. [PMID: 26915099 PMCID: PMC4767940 DOI: 10.1371/journal.pone.0149582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 12/03/2022] Open
Abstract
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.
Collapse
Affiliation(s)
- Shayla K. Shorter
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Frederick J. Schnell
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Sean R. McMaster
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - David F. Pinelli
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|