1
|
Shrestha D, Bahasoan Y, Eggeling C. Cellular Output and Physicochemical Properties of the Membrane-Derived Vesicles Depend on Chemical Stimulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48982-48992. [PMID: 39250321 PMCID: PMC11420866 DOI: 10.1021/acsami.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Synthetic liposomes are widely used as drug delivery vehicles in biomedical treatments, such as for mRNA-based antiviral vaccines like those recently developed against SARS-CoV-2. Extracellular vesicles (EVs), which are naturally produced by cells, have emerged as a next-generation delivery system. However, key questions regarding their origin within cells remain unresolved. In this regard, plasma membrane vesicles (PMVs), which are essentially produced from the cellular plasma membrane (PM), present a promising alternative. Unfortunately, their properties relevant to biomedical applications have not be extensively studied. Therefore, we conducted a thorough investigation of the methods used in the production of PMVs. By leveraging advanced fluorescence techniques in microscopy and flow cytometry, we demonstrated a strong dependence of the physicochemical attributes of PMVs on the chemicals used during their production. Following established protocols employing chemicals such as paraformaldehyde (PFA), N-ethylmaleimide (NEM) or dl-dithiothreitol (DTT) and by developing a modified NEM-based method that involved a hypotonic shock step, we generated PMVs from THP-1 CD1d cells. We systematically compared key parameters such as vesicle output, their size distribution, vesicular content analysis, vesicular membrane lipid organization and the mobility of a transmembrane protein. Our results revealed distinct trends: PMVs isolated using NEM-based protocols closely resembled natural vesicles, whereas PFA induced significant molecular cross-linking, leading to notable changes in the biophysical properties of the vesicles. Furthermore, our novel NEM protocol enhanced the efficiency of PMV production. In conclusion, our study highlights the unique characteristics of chemically produced PMVs and offers insights into their potentially diverse yet valuable biological functions.
Collapse
Affiliation(s)
- Dilip Shrestha
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Yusuf Bahasoan
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
| | - Christian Eggeling
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Biophysical Imaging, Leibniz Institute
of Photonic Technologies e.V., member of the Leibniz Centre for Photonics
in Infection Research (LPI), Albert- Einstein Strasse 9, 07745 Jena, Germany
- Institute
of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
2
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Ververs FA, Engelen SE, Nuboer R, Vastert B, van der Ent CK, Van't Land B, Garssen J, Monaco C, Boes M, Schipper HS. Immunometabolic factors in adolescent chronic disease are associated with Th1 skewing of invariant Natural Killer T cells. Sci Rep 2021; 11:20082. [PMID: 34635725 PMCID: PMC8505552 DOI: 10.1038/s41598-021-99580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells respond to the ligation of lipid antigen-CD1d complexes via their T-cell receptor and are implicated in various immunometabolic diseases. We considered that immunometabolic factors might affect iNKT cell function. To this end, we investigated iNKT cell phenotype and function in a cohort of adolescents with chronic disease and immunometabolic abnormalities. We analyzed peripheral blood iNKT cells of adolescents with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (OB, n = 20), and corrected atrial septal defect (ASD, n = 25) as controls. To study transcriptional differences, we performed RNA sequencing on a subset of obese patients and controls. Finally, we performed standardized co-culture experiments using patient plasma, to investigate the effect of plasma factors on iNKT cell function. We found comparable iNKT cell numbers across patient groups, except for reduced iNKT cell numbers in JIA patients. Upon ex-vivo activation, we observed enhanced IFN-γ/IL-4 cytokine ratios in iNKT cells of obese adolescents versus controls. The Th1-skewed iNKT cell cytokine profile of obese adolescents was not explained by a distinct transcriptional profile of the iNKT cells. Co-culture experiments with patient plasma revealed that across all patient groups, obesity-associated plasma factors including LDL-cholesterol, leptin, and fatty-acid binding protein 4 (FABP4) coincided with higher IFN-γ production, whereas high HDL-cholesterol and insulin sensitivity (QUICKI) coincided with higher IL-4 production. LDL and HDL supplementation in co-culture studies confirmed the effects of lipoproteins on iNKT cell cytokine production. These results suggest that circulating immunometabolic factors such as lipoproteins may be involved in Th1 skewing of the iNKT cell cytokine response in immunometabolic disease.
Collapse
Affiliation(s)
- Francesca A Ververs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Roos Nuboer
- Department of Pediatrics, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - Bas Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Belinda Van't Land
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Center of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
- Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Beta Faculty, Utrecht University, Utrecht, The Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henk S Schipper
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Salio M, Awad W, Veerapen N, Gonzalez-Lopez C, Kulicke C, Waithe D, Martens AWJ, Lewinsohn DM, Hobrath JV, Cox LR, Rossjohn J, Besra GS, Cerundolo V. Ligand-dependent downregulation of MR1 cell surface expression. Proc Natl Acad Sci U S A 2020; 117:10465-10475. [PMID: 32341160 PMCID: PMC7229755 DOI: 10.1073/pnas.2003136117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The antigen-presenting molecule MR1 presents riboflavin-based metabolites to Mucosal-Associated Invariant T (MAIT) cells. While MR1 egress to the cell surface is ligand-dependent, the ability of small-molecule ligands to impact on MR1 cellular trafficking remains unknown. Arising from an in silico screen of the MR1 ligand-binding pocket, we identify one ligand, 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoic acid, DB28, as well as an analog, methyl 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoate, NV18.1, that down-regulate MR1 from the cell surface and retain MR1 molecules in the endoplasmic reticulum (ER) in an immature form. DB28 and NV18.1 compete with the known MR1 ligands, 5-OP-RU and acetyl-6-FP, for MR1 binding and inhibit MR1-dependent MAIT cell activation. Crystal structures of the MAIT T cell receptor (TCR) complexed with MR1-DB28 and MR1-NV18.1, show that these two ligands reside within the A'-pocket of MR1. Neither ligand forms a Schiff base with MR1 molecules; both are nevertheless sequestered by a network of hydrophobic and polar contacts. Accordingly, we define a class of compounds that inhibits MR1 cellular trafficking.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Wael Awad
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Corinna Kulicke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239
- Research Department, Portland Veterans Administration Healthcare System, Portland, OR 97239
| | - Dominic Waithe
- MRC Centre for Computational Biology, The Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anne W J Martens
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David M Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239
- Research Department, Portland Veterans Administration Healthcare System, Portland, OR 97239
| | - Judith V Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom;
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
6
|
Bedard M, Shrestha D, Priestman DA, Wang Y, Schneider F, Matute JD, Iyer SS, Gileadi U, Prota G, Kandasamy M, Veerapen N, Besra G, Fritzsche M, Zeissig S, Shevchenko A, Christianson JC, Platt FM, Eggeling C, Blumberg RS, Salio M, Cerundolo V. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 2019; 116:23671-23681. [PMID: 31690657 PMCID: PMC6876220 DOI: 10.1073/pnas.1910097116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Collapse
Affiliation(s)
- Melissa Bedard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David A Priestman
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Yuting Wang
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Shankar S Iyer
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Gennaro Prota
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Medicine I, University Medical Center Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, OX3 7LD Oxford, United Kingdom
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics and Biophysics, 07743 Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745 Jena, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
7
|
Shamin M, Benedyk TH, Graham SC, Deane JE. The lipid transfer protein Saposin B does not directly bind CD1d for lipid antigen loading. Wellcome Open Res 2019; 4:117. [PMID: 31667358 PMCID: PMC6807164 DOI: 10.12688/wellcomeopenres.15368.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Lipid antigens are presented on the surface of cells by the CD1 family of glycoproteins, which have structural and functional similarity to MHC class I molecules. The hydrophobic lipid antigens are embedded in membranes and inaccessible to the lumenal lipid-binding domain of CD1 molecules. Therefore, CD1 molecules require lipid transfer proteins for lipid loading and editing. CD1d is loaded with lipids in late endocytic compartments, and lipid transfer proteins of the saposin family have been shown to play a crucial role in this process. However, the mechanism by which saposins facilitate lipid binding to CD1 molecules is not known and is thought to involve transient interactions between protein components to ensure CD1-lipid complexes can be efficiently trafficked to the plasma membrane for antigen presentation. Of the four saposin proteins, the importance of Saposin B (SapB) for loading of CD1d is the most well-characterised. However, a direct interaction between CD1d and SapB has yet to be described. Methods: In order to determine how SapB might load lipids onto CD1d, we used purified, recombinant CD1d and SapB and carried out a series of highly sensitive binding assays to monitor direct interactions. We performed equilibrium binding analysis, chemical cross-linking and co-crystallisation experiments, under a range of different conditions. Results: We could not demonstrate a direct interaction between SapB and CD1d using any of these binding assays. Conclusions: This work strongly indicates that the role of SapB in lipid loading does not involve direct binding to CD1d. We discuss the implication of this for our understanding of lipid loading of CD1d and propose several factors that may influence this process.
Collapse
Affiliation(s)
- Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
8
|
Shamin M, Benedyk TH, Graham SC, Deane JE. The lipid transfer protein Saposin B does not directly bind CD1d for lipid antigen loading. Wellcome Open Res 2019; 4:117. [PMID: 31667358 PMCID: PMC6807164 DOI: 10.12688/wellcomeopenres.15368.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Lipid antigens are presented on the surface of cells by the CD1 family of glycoproteins, which have structural and functional similarity to MHC class I molecules. The hydrophobic lipid antigens are embedded in membranes and inaccessible to the lumenal lipid-binding domain of CD1 molecules. Therefore, CD1 molecules require lipid transfer proteins for lipid loading and editing. CD1d is loaded with lipids in late endocytic compartments, and lipid transfer proteins of the saposin family have been shown to play a crucial role in this process. However, the mechanism by which saposins facilitate lipid binding to CD1 molecules is not known and is thought to involve transient interactions between protein components to ensure CD1-lipid complexes can be efficiently trafficked to the plasma membrane for antigen presentation. Of the four saposin proteins, the importance of Saposin B (SapB) for loading of CD1d is the most well-characterised. However, a direct interaction between CD1d and SapB has yet to be described. Methods: In order to determine how SapB might load lipids onto CD1d, we used purified, recombinant CD1d and SapB and carried out a series of highly sensitive binding assays to monitor direct interactions. We performed equilibrium binding analysis, chemical cross-linking and co-crystallisation experiments, under a range of different conditions. Results: We could not demonstrate a direct interaction between SapB and CD1d using any of these binding assays. Conclusions: This work establishes comprehensively that the role of SapB in lipid loading does not involve direct binding to CD1d. We discuss the implication of this for our understanding of lipid loading of CD1d and propose several factors that may influence this process.
Collapse
Affiliation(s)
- Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
9
|
Pereira CS, Pérez-Cabezas B, Ribeiro H, Maia ML, Cardoso MT, Dias AF, Azevedo O, Ferreira MF, Garcia P, Rodrigues E, Castro-Chaves P, Martins E, Aguiar P, Pineda M, Amraoui Y, Fecarotta S, Leão-Teles E, Deng S, Savage PB, Macedo MF. Lipid Antigen Presentation by CD1b and CD1d in Lysosomal Storage Disease Patients. Front Immunol 2019; 10:1264. [PMID: 31214199 PMCID: PMC6558002 DOI: 10.3389/fimmu.2019.01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
The lysosome has a key role in the presentation of lipid antigens by CD1 molecules. While defects in lipid antigen presentation and in invariant Natural Killer T (iNKT) cell response were detected in several mouse models of lysosomal storage diseases (LSD), the impact of lysosomal engorgement in human lipid antigen presentation is poorly characterized. Here, we analyzed the capacity of monocyte-derived dendritic cells (Mo-DCs) from Fabry, Gaucher, Niemann Pick type C and Mucopolysaccharidosis type VI disease patients to present exogenous antigens to lipid-specific T cells. The CD1b- and CD1d-restricted presentation of lipid antigens by Mo-DCs revealed an ability of LSD patients to induce CD1-restricted T cell responses within the control range. Similarly, freshly isolated monocytes from Fabry and Gaucher disease patients had a normal ability to present α-Galactosylceramide (α-GalCer) antigen by CD1d. Gaucher disease patients' monocytes had an increased capacity to present α-Gal-(1-2)-αGalCer, an antigen that needs internalization and processing to become antigenic. In summary, our results show that Fabry, Gaucher, Niemann Pick type C, and Mucopolysaccharidosis type VI disease patients do not present a decreased capacity to present CD1d-restricted lipid antigens. These observations are in contrast to what was observed in mouse models of LSD. The percentage of total iNKT cells in the peripheral blood of these patients is also similar to control individuals. In addition, we show that the presentation of exogenous lipids that directly bind CD1b, the human CD1 isoform with an intracellular trafficking to the lysosome, is normal in these patients.
Collapse
Affiliation(s)
- Catia S Pereira
- CAGE, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- CAGE, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Helena Ribeiro
- CAGE, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - M Luz Maia
- UniLipe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - M Teresa Cardoso
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar de São João, Medicina Interna, Porto, Portugal
| | - Ana F Dias
- UniLipe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Olga Azevedo
- Centro de Referência de Doenças Lisossomais de Sobrecarga, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - M Fatima Ferreira
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Hematologia Clínica, Centro Hospitalar de São João, Porto, Portugal
| | - Paula Garcia
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário de Coimbra, Centro de Desenvolvimento da Criança, Coimbra, Portugal
| | - Esmeralda Rodrigues
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Pediatria, Centro Hospitalar de São João, Porto, Portugal
| | - Paulo Castro-Chaves
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar de São João, Medicina Interna, Porto, Portugal
| | - Esmeralda Martins
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Pediatria, Centro Hospitalar do Porto, Porto, Portugal
| | - Patricio Aguiar
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Medicina, Centro Hospitalar Lisboa Norte (CHLN), Lisbon, Portugal
| | - Mercè Pineda
- Centre de Recerca e Investigació, Fundacio Hospital Sant Joan de Déu, Barcelona, Spain
| | - Yasmina Amraoui
- Department of Pediatrics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simona Fecarotta
- Department of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Elisa Leão-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Pediatria, Centro Hospitalar de São João, Porto, Portugal
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - M Fatima Macedo
- CAGE, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Forster CS, Haffey WD, Bennett M, Greis KD, Devarajan P. Identification of Urinary CD44 and Prosaposin as Specific Biomarkers of Urinary Tract Infections in Children With Neurogenic Bladders. Biomark Insights 2019; 14:1177271919835570. [PMID: 30906192 PMCID: PMC6421595 DOI: 10.1177/1177271919835570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Distinguishing urinary tract infection (UTI) from urinary tract colonization (UTC) in children with neurogenic bladders who require clean intermittent catheterization (CIC) is challenging. Our objective was to identify urinary proteins to distinguish UTI from UTC in CIC-dependent children that have potential to serve as objective markers of UTI. EXPERIMENTAL DESIGN A total of 10 CIC-dependent children were included in the mass spectrometry analysis (UTI = 5, UTC = 5). Quantitative profiling of urine proteins with isobaric protein labeling was performed using tandem mass spectrometry. Candidate markers were normalized using a collective mixture of proteins from all samples. Relative quantitative abundance of proteins across all samples were compared. Proteins with >50% change in the average abundance were identified as proteins of interest, which were then measured using enzyme-linked immunosorbent assay (ELISA) in an additional 40 samples (no growth = 10, UTC = 15, UTI = 15). RESULTS Mass spectrometry revealed 8 differentially expressed proteins. Of these, apolipoprotein D, alpha-amylase 2B, non-secretory ribonuclease, CD44 antigen, and prosaposin were measurable by ELISA. Concentrations of both CD44 and prosaposin were significantly higher in UTI, with area under the curves (AUCs) of 0.72 and 0.78, respectively. CONCLUSION Urinary CD44 and prosaposin are candidate markers that may assist with the diagnosis of UTI in CIC-dependent children.
Collapse
Affiliation(s)
- Catherine S Forster
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
- Catherine S Forster, Children’s National Medical Center, 111 Michigan Ave, NW, Suite 4800M, Washington, DC 20010, USA.
| | - Wendy D Haffey
- Department of Cancer Biology and Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA
| | - Michael Bennett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology and Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
11
|
Cai X, Dong J, Liu J, Zheng H, Kaweeteerawat C, Wang F, Ji Z, Li R. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat Commun 2018; 9:4416. [PMID: 30356046 PMCID: PMC6200803 DOI: 10.1038/s41467-018-06869-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing concerns over the possible risks of nanotechnology necessitates breakthroughs in structure-activity relationship (SAR) analyses of engineered nanomaterials (ENMs) at nano-bio interfaces. However, current nano-SARs are often based on univariate assessments and fail to provide tiered views on ENM-induced bio-effects. Here we report a multi-hierarchical nano-SAR assessment for a representative ENM, Fe2O3, by metabolomics and proteomics analyses. The established nano-SAR profile allows the visualizing of the contributions of seven basic properties of Fe2O3 to its diverse bio-effects. For instance, although surface reactivity is responsible for Fe2O3-induced cell migration, the inflammatory effects of Fe2O3 are determined by aspect ratio (nanorods) or surface reactivity (nanoplates). These nano-SARs are examined in THP-1 cells and animal lungs, which allow us to decipher the detailed mechanisms including NLRP3 inflammasome pathway and monocyte chemoattractant protein-1-dependent signaling. This study provides more insights for nano-SARs, and may facilitate the tailored design of ENMs to render them desired bio-effects.
Collapse
Affiliation(s)
- Xiaoming Cai
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Dong
- Wuhan Academy of Agricultural Science, Wuhan, Hubei 430000 China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023 China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| | - Chitrada Kaweeteerawat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Nueng, 12120 Thailand
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023 China
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Living Proof, Inc., Cambridge, MA 02142 United States
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| |
Collapse
|
12
|
Ryu S, Park JS, Kim HY, Kim JH. Lipid-Reactive T Cells in Immunological Disorders of the Lung. Front Immunol 2018; 9:2205. [PMID: 30319649 PMCID: PMC6168663 DOI: 10.3389/fimmu.2018.02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of T cell-mediated immunity in the lungs is critical for prevention of immune-related lung disorders and for host protection from pathogens. While the prevalent view of pulmonary T cell responses is based on peptide recognition by antigen receptors, called T cell receptors (TCR), on the T cell surface in the context of classical major histocompatibility complex (MHC) molecules, novel pathways involving the presentation of lipid antigens by cluster of differentiation 1 (CD1) molecules to lipid-reactive T cells are emerging as key players in pulmonary immune system. Whereas, genetic conservation of group II CD1 (CD1d) in mouse and human genomes facilitated numerous in vivo studies of CD1d-restricted invariant natural killer T (iNKT) cells in lung diseases, the recent development of human CD1-transgenic mice has made it possible to examine the physiological roles of group I CD1 (CD1a-c) molecules in lung immunity. Here, we discuss current understanding of the biology of CD1-reactive T cells with a specific focus on their roles in several pulmonary disorders.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Joon Seok Park
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
13
|
Teyton L. Role of lipid transfer proteins in loading CD1 antigen-presenting molecules. J Lipid Res 2018; 59:1367-1373. [PMID: 29559523 PMCID: PMC6071766 DOI: 10.1194/jlr.r083212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Research to connect lipids with immunology is growing, but details about the specific roles of lipid transfer proteins (LTPs) in antigen presentation remain unclear. A single class of major histocompatibility class-like molecules, called CD1 molecules, can present lipids and glycolipids to the immune system. These molecules all have a common hydrophobic antigen-binding groove. The loading of this groove with various lipids throughout the life of a CD1 molecule defines the immune recognition of lipids by T cells. At each location of residence, CD1 molecules are exposed to particular physicochemical conditions, particular collections of lipids, and unique combinations of LTPs that will define which lipids bind to CD1 and which do not. The lipid transfer machinery that is used by CD1 molecules is entirely hijacked from the normal synthetic and catalytic pathways of lipids. The precise determinants that regulate the presentation of certain lipids over others with respect to chemistry, solubility, and abundance are still poorly defined and require investigation to allow the use of lipids as regular antigenic targets of immunotherapy and vaccine.
Collapse
Affiliation(s)
- Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
de Mingo Pulido Á, de Gregorio E, Chandra S, Colell A, Morales A, Kronenberg M, Marí M. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Front Immunol 2018. [PMID: 29541077 PMCID: PMC5836516 DOI: 10.3389/fimmu.2018.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.
Collapse
Affiliation(s)
- Álvaro de Mingo Pulido
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Shilpi Chandra
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
15
|
Krijgsman D, Hokland M, Kuppen PJK. The Role of Natural Killer T Cells in Cancer-A Phenotypical and Functional Approach. Front Immunol 2018. [PMID: 29535734 PMCID: PMC5835336 DOI: 10.3389/fimmu.2018.00367] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Peng J, Ou Q, Guo J, Pan Z, Zhang R, Wu X, Zhao Y, Deng Y, Li C, Wang F, Li L, Chen G, Lu Z, Ding P, Wan D, Fang Y. Expression of a novel CNPY2 isoform in colorectal cancer and its association with oncologic prognosis. Aging (Albany NY) 2018; 9:2334-2351. [PMID: 29135454 PMCID: PMC5723690 DOI: 10.18632/aging.101324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Recently, we identified a novel biomarker, canopy fibroblast growth factor signaling regulator 2 (CNPY2) isoform2, and subsequently investigated its expression and prognostic value in CRC patients. We initially generated CNPY2 isoform2 monoclonal antibodies and examined CNPY2 isoform2 expression in CRC cell lines and tissues using quantitative real-time polymerase chain reaction, western blot and immunohistochemistry analyses. We found that CNPY2 isoform2 expression significantly increased in tumor cell lines and tissues compared with that in normal colon epithelial cells and tumor-adjacent normal tissues. Survival analysis indicated that patients with low CNPY2 isoform2 expression had poorer 5-year overall survival (OS) in both the training cohort (41.7% vs. 77.7%, P = 0.007) and validation cohort (47.1% vs. 78.8%, P = 0.002). In multivariable analysis, CNPY2 isoform2 was identified as a predictor of 5-year OS in both the training cohort [hazard ratio (HR) = 5.001; 95% confidence interval (CI) 2.156–11.598, P < 0.001) and validation cohort (HR= 2.443; 95% CI 1.197- 4.983, P = 0.014). In conclusion, CNPY2 isoform2 represents as a novel and valuable prognostic indicator for CRC patients, while the oncologic function of CNPY2 requires further study.
Collapse
Affiliation(s)
- Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jian Guo
- Senboll Biotechnology Co., Ltd., Pingshan Bio-pharmacy Business Accelerator Unit 205, Shenzhen, Guangdong 518000, P. R. China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Xiaojun Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujie Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yuxiang Deng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Caixia Li
- School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Fulong Wang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Liren Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Gong Chen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Peirong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Desen Wan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
17
|
Ishihara S, Inman DR, Li WJ, Ponik SM, Keely PJ. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells. Cancer Res 2017; 77:6179-6189. [PMID: 28972074 DOI: 10.1158/0008-5472.can-17-0569] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023]
Abstract
In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR.
Collapse
Affiliation(s)
- Seiichiro Ishihara
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - David R Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wan-Ju Li
- Departments of Orthopedics and Rehabilitation, and Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Pereira CS, Ribeiro H, Macedo MF. From Lysosomal Storage Diseases to NKT Cell Activation and Back. Int J Mol Sci 2017; 18:ijms18030502. [PMID: 28245613 PMCID: PMC5372518 DOI: 10.3390/ijms18030502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.
Collapse
Affiliation(s)
- Cátia S Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Helena Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Fatima Macedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago Agra do crasto-edifício 30, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity. J Immunol Res 2016; 2016:2876275. [PMID: 28070524 PMCID: PMC5192300 DOI: 10.1155/2016/2876275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/13/2016] [Indexed: 11/17/2022] Open
Abstract
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
Collapse
|
20
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS. J Virol 2016; 90:7219-7230. [PMID: 27252539 DOI: 10.1128/jvi.00221-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I-MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target.
Collapse
|
22
|
Torreno-Pina JA, Manzo C, Salio M, Aichinger MC, Oddone A, Lakadamyali M, Shepherd D, Besra GS, Cerundolo V, Garcia-Parajo MF. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells. Proc Natl Acad Sci U S A 2016; 113:E772-81. [PMID: 26798067 PMCID: PMC4760795 DOI: 10.1073/pnas.1514530113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such "tonic" activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters.
Collapse
Affiliation(s)
- Juan A Torreno-Pina
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Mariolina Salio
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Michael C Aichinger
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anna Oddone
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Melike Lakadamyali
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Dawn Shepherd
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B11 2TT, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
23
|
Iyer AK, Liu J, Gallo RM, Kaplan MH, Brutkiewicz RR. STAT3 promotes CD1d-mediated lipid antigen presentation by regulating a critical gene in glycosphingolipid biosynthesis. Immunology 2015; 146:444-55. [PMID: 26260288 PMCID: PMC4610633 DOI: 10.1111/imm.12521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
Cytokines that regulate the immune response signal through the Janus kinase / signal transducer and activation of transcription (JAK/STAT) pathway, but whether this pathway can regulate CD1d-mediated lipid antigen presentation to natural killer T (NKT) cells is unknown. Here, we found that STAT3 promotes antigen presentation by CD1d. Antigen-presenting cells (APCs) in which STAT3 expression was inhibited exhibited markedly reduced endogenous lipid antigen presentation to NKT cells without an impact on exogenous lipid antigen presentation by CD1d. Consistent with this observation, in APCs where STAT3 was knocked down, dramatically decreased levels of UDP glucose ceramide glucosyltransferase (UGCG), an enzyme involved in the first step of glycosphingolipid biosynthesis, were observed. Impaired lipid antigen presentation was reversed by ectopic expression of UGCG in STAT3-silenced CD1d(+) APCs. Hence, by controlling a fundamental step in CD1d-mediated lipid antigen presentation, STAT3 signalling promotes innate immune responses driven by CD1d.
Collapse
Affiliation(s)
- Abhirami K Iyer
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
24
|
Schwarzmann G, Breiden B, Sandhoff K. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. J Lipid Res 2015; 56:1861-79. [PMID: 26269359 DOI: 10.1194/jlr.m056929] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 12/17/2022] Open
Abstract
A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.
Collapse
Affiliation(s)
- Günter Schwarzmann
- Life & Medical Sciences (LIMES) Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Germany
| | - Bernadette Breiden
- Life & Medical Sciences (LIMES) Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Germany
| | - Konrad Sandhoff
- Life & Medical Sciences (LIMES) Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Germany
| |
Collapse
|
25
|
McEwen-Smith RM, Salio M, Cerundolo V. CD1d-dependent endogenous and exogenous lipid antigen presentation. Curr Opin Immunol 2015; 34:116-25. [PMID: 25805574 DOI: 10.1016/j.coi.2015.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipids in the context of CD1d molecules, and through the activation and maturation of dendritic cells and B cells, can significantly enhance priming of antigen-specific T and B cell responses. Recent findings have provided important insights into the recognition of several novel endogenous lipids by iNKT cells, and into the mechanisms controlling their generation and loading onto CD1d molecules. In this review we discuss these latest findings and describe the role of autophagy in iNKT cell development and activation.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
26
|
Zhang W, Wang J, Zhang C, Fang Q, Shu J, Li S, Jin J, Wang D, Nie Z, Lv Z, Zhang Y. Synergetic Protein Factors That Improve rhGM-CSF Absorption via an Oral Route Exist in Silkworm Pupae. Mol Pharm 2015; 12:1347-55. [PMID: 25775407 DOI: 10.1021/mp500371g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) produced by the silkworm pupae bioreactor is absorbed into blood through oral administration and functions as an active cytokine. The aim of this study was to further examine and identify synergetic protein factors in silkworm pupae that improve rhGM-CSF absorption via an oral route. The concentrations of rhGM-CSF in serum were evaluated in mice after oral administration of rhGM-CSF using different chemical compositions of silkworm pupae as pharmaceutical excipients. The experimental data revealed that the supernatant lyophilized powder (SLP) of a homogenized slurry of silkworm pupae caused a significant increase in the rhGM-CSF level in blood when rhGM-CSF was orally administered with SLP, suggesting that synergetic protein factors that improve the oral absorption of rhGM-CSF primarily exist in SLP. As shown by scanning electron microscopy, microspheres were formed when rhGM-CSF was coated with SLP. Animal experimental data showed that the absorption of orally administered rhGM-CSF through the gastrointestinal (GI) tract primarily resulted from protein factors present in the SLP retentate obtained after 10 kDa ultrafiltration. Surface plasmon resonance spectroscopy analysis demonstrated that several protein factors present in the SLP retentate obtained after 10 kDa ultrafiltration were bound to rhGM-CSF. Proteins bound to rhGM-CSF by liquid chromatography-mass spectrometry were identified as chymotrypsin inhibitor SCI-II precursor, cationic peptide CP8 precursor, Kazal-type proteinase inhibitor, and chymotrypsin inhibitor SCI-I. These findings indicate that these proteinase inhibitors play an important role in improving rhGM-CSF absorption in the GI tract.
Collapse
Affiliation(s)
- Wenping Zhang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Wang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chen Zhang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiang Fang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhong Shu
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Si Li
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Jin
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yaozhou Zhang
- Institute of Biochemistry, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
27
|
Baena A, Gómez-Giraldo L, Carreño LJ. Mecanismos de activación de las células T asesinas naturales invariantes (iNKT). IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
AbstractsICBS 3rd Annual Conference Driving Biology with ChemistryNovember 17–19, 2014San Francisco, California. Assay Drug Dev Technol 2015. [DOI: 10.1089/adt.2014.1507.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Essential role for autophagy during invariant NKT cell development. Proc Natl Acad Sci U S A 2014; 111:E5678-87. [PMID: 25512546 DOI: 10.1073/pnas.1413935112] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7(-/-)), thymic iNKT cell development--unlike conventional T-cell development--is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell-intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8(+) T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion.
Collapse
|
30
|
Harnessing the antibacterial and immunological properties of mucosal-associated invariant T cells in the development of novel oral vaccines against enteric infections. Biochem Pharmacol 2014; 92:173-83. [PMID: 25173989 DOI: 10.1016/j.bcp.2014.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/02/2023]
Abstract
Enteric infections are a major cause of mortality and morbidity with significant social and economic implications worldwide and particularly in developing countries. An attractive approach to minimizing the impact of these diseases is via the development of oral vaccination strategies. However, oral vaccination is challenging due to the tolerogenic and hyporesponsive nature of antigen presenting cells resident in the gastrointestinal tract. The inclusion of adjuvants in oral vaccine formulations has the potential to overcome this challenge. To date no oral adjuvants have been licenced for human use and thus oral adjuvant discovery remains a key goal in improving the potential for oral vaccine development. Mucosal-associated invariant T (MAIT) cells are a recently discovered population of unconventional T cells characterized by an evolutionarily conserved αβ T cell receptor (TCR) that recognizes antigens presented by major histocompatibility complex (MHC) class I-related (MR1) molecule. MAIT cells are selected intra-thymically by MR1 expressing double positive thymocytes and enter the circulation with a naïve phenotype. In the circulation they develop a memory phenotype and are programmed to home to mucosal tissues and the liver. Once resident in these tissues, MAIT cells respond to bacterial and yeast infections through the production of chemokines and cytokines that aid in the induction of an adaptive immune response. Their abundance in the gastrointestinal tract and ability to promote adaptive immunity suggests that MAIT cell activators may represent attractive novel adjuvants for use in oral vaccination.
Collapse
|
31
|
Shin JH, Park SH. The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells. BMB Rep 2014; 47:241-8. [PMID: 24755556 PMCID: PMC4163858 DOI: 10.5483/bmbrep.2014.47.5.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 11/20/2022] Open
Abstract
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.
Collapse
Affiliation(s)
- Jung Hoon Shin
- Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Se-Ho Park
- Department of Life Sciences, Korea University, Seoul 136-701, Korea
| |
Collapse
|
32
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|