1
|
Henkel M, Fillbrunn A, Marchand V, Raghunathan G, Berthold MR, Motorin Y, Marx A. A DNA Polymerase Variant Senses the Epigenetic Marker 5-Methylcytosine by Increased Misincorporation. Angew Chem Int Ed Engl 2024:e202413304. [PMID: 39449390 DOI: 10.1002/anie.202413304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 10/26/2024]
Abstract
Dysregulation of DNA methylation is associated with human disease, particularly cancer, and the assessment of aberrant methylation patterns holds great promise for clinical diagnostics. However, DNA polymerases do not effectively discriminate between processing 5-methylcytosine (5 mC) and unmethylated cytosine, resulting in the silencing of methylation information during amplification or sequencing. As a result, current detection methods require multi-step DNA conversion treatments or careful analysis of sequencing data to decipher individual 5 mC bases. To overcome these challenges, we propose a novel DNA polymerase-mediated 5 mC detection approach. Here, we describe the engineering of a thermostable DNA polymerase variant derived from Thermus aquaticus with altered fidelity towards 5 mC. Using a screening-based evolutionary approach, we have identified a DNA polymerase that exhibits increased misincorporation towards 5 mC during DNA synthesis. This DNA polymerase generates mutation signatures at methylated CpG sites, allowing direct detection of 5 mC by reading an increased error rate after sequencing without prior treatment of the sample DNA.
Collapse
Affiliation(s)
- Melanie Henkel
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Alexander Fillbrunn
- Department of Computer Science, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Virginie Marchand
- Epitranscriptomics and Sequencing (EpiRNA-Seq) Core Facility, UAR2008/US40 Ingénierie Biologie Santé en Lorraine (IBSLor), CNRS-UL-INSERM, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
| | - Govindan Raghunathan
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael R Berthold
- Department of Computer Science, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- KNIME AG, Talacker 50, 8001, Zurich, Switzerland
| | - Yuri Motorin
- Epitranscriptomics and Sequencing (EpiRNA-Seq) Core Facility, UAR2008/US40 Ingénierie Biologie Santé en Lorraine (IBSLor), CNRS-UL-INSERM, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS-Université de Lorraine, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Geyer J, Opoku K, Lin J, Ramkissoon L, Mullighan C, Bhakta N, Alexander TB, Wang JR. Real-time genomic characterization of pediatric acute leukemia using adaptive sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617690. [PMID: 39416119 PMCID: PMC11483067 DOI: 10.1101/2024.10.11.617690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Effective treatment of pediatric acute leukemia is dependent on accurate genomic classification, typically derived from a combination of multiple time-consuming and costly techniques such as flow cytometry, fluorescence in situ hybridization (FISH), karyotype analysis, targeted PCR, and microarrays (Arber et al., 2016; Iacobucci & Mullighan, 2017; Narayanan & Weinberg, 2020). We investigated the feasibility of a comprehensive single-assay classification approach using long-read sequencing, with real-time genome target enrichment, to classify chromosomal abnormalities and structural variants characteristic of acute leukemia. We performed whole genome sequencing on DNA from diagnostic peripheral blood or bone marrow for 54 pediatric acute leukemia cases with diverse genomic subtypes. We demonstrated the characterization of known, clinically relevant karyotype abnormalities and structural variants concordant with standard-of-care clinical testing. Subtype-defining genomic alterations were identified in all cases following a maximum of forty-eight hours of sequencing. In 18 cases, we performed real-time analysis - concurrent with sequencing - and identified the driving alteration in as little as fifteen minutes (for karyotype) or up to six hours (for complex structural variants). Whole genome nanopore sequencing with adaptive sampling has the potential to provide detailed genomic classification of acute leukemia specimens with reduced cost and turnaround time compared to the current standard of care.
Collapse
Affiliation(s)
- Julie Geyer
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kofi Opoku
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Hackensack Meridian Health, JFK University Medical Center, Hackensack, NJ, USA
| | - John Lin
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas B. Alexander
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy R. Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
4
|
Guanzon D, Ross JP, Ma C, Berry O, Liew YJ. Comparing methylation levels assayed in GC-rich regions with current and emerging methods. BMC Genomics 2024; 25:741. [PMID: 39080541 PMCID: PMC11289974 DOI: 10.1186/s12864-024-10605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression, and for mammals typically occurs on cytosines within CpG dinucleotides. A significant challenge for methylation detection methods is accurately measuring methylation levels within GC-rich regions such as gene promoters, as inaccuracies compromise downstream biological interpretation of the data. To address this challenge, we compared methylation levels assayed using four different Methods Enzymatic Methyl-seq (EM-seq), whole genome bisulphite sequencing (WGBS), Infinium arrays (Illumina MethylationEPIC, "EPIC"), and Oxford Nanopore Technologies nanopore sequencing (ONT) applied to human DNA. Overall, all methods produced comparable and consistent methylation readouts across the human genome. The flexibility offered by current gold standard WGBS in interrogating genome-wide cytosines is surpassed technically by both EM-seq and ONT, as their coverages and methylation readouts are less prone to GC bias. These advantages are tempered by increased laboratory time (EM-seq) and higher complexity (ONT). We further assess the strengths and weaknesses of each method, and provide recommendations in choosing the most appropriate methylation method for specific scientific questions or translational needs.
Collapse
Affiliation(s)
- Dominic Guanzon
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
- University of Queensland Centre for Clinical Research, Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, The University of Queensland, QLD, Australia
| | - Jason P Ross
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
| | - Chenkai Ma
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
| | - Oliver Berry
- Environomics Future Science Platform, CSIRO, Crawley, WA, Australia
| | - Yi Jin Liew
- CSIRO Health & Biosecurity, Westmead, NSW, Australia.
- Environomics Future Science Platform, CSIRO, Crawley, WA, Australia.
| |
Collapse
|
5
|
Smith D, Thomas C, Craig J, Brinkerhoff H, Abell S, Franzi M, Carrasco J, Hoshika S, Benner S, Gundlach J, Laszlo A. Nanopores map the acid-base properties of a single site in a single DNA molecule. Nucleic Acids Res 2024; 52:7429-7436. [PMID: 38884270 PMCID: PMC11260478 DOI: 10.1093/nar/gkae518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
Nanopores are increasingly powerful tools for single molecule sensing, in particular, for sequencing DNA, RNA and peptides. This success has spurred efforts to sequence non-canonical nucleic acid bases and amino acids. While canonical DNA and RNA bases have pKas far from neutral, certain non-canonical bases, natural RNA modifications, and amino acids are known to have pKas near neutral pHs at which nanopore sequencing is typically performed. Previous reports have suggested that the nanopore signal may be sensitive to the protonation state of an individual moiety. We sequenced ion currents with the MspA nanopore using a single stranded DNA containing a single non-canonical DNA base (Z) at various pH conditions. The Z-base has a near-neutral pKa ∼ 7.8. We find that the measured ion current is remarkably sensitive to the protonation state of the Z-base. We demonstrate how nanopores can be used to localize and determine the pKa of individual moieties along a polymer. More broadly, these experiments provide a path to mapping different protonation sites along polymers and give insight in how to optimize sequencing of polymers that contain moieties with near-neutral pKas.
Collapse
Affiliation(s)
- Drew C Smith
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Michaela C Franzi
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Meza-Menchaca T, Albores-Medina A, Heredia-Mendez AJ, Ruíz-May E, Ricaño-Rodríguez J, Gallegos-García V, Esquivel A, Vettoretti-Maldonado G, Campos-Parra AD. Revisiting Epigenetics Fundamentals and Its Biomedical Implications. Int J Mol Sci 2024; 25:7927. [PMID: 39063168 PMCID: PMC11276703 DOI: 10.3390/ijms25147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Alma Jaqueline Heredia-Mendez
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Cluster BioMimic®, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Mexico;
| | - Jorge Ricaño-Rodríguez
- Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Zona Universitaria, Xalapa 91090, Mexico;
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Adriana Esquivel
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Giancarlo Vettoretti-Maldonado
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | | |
Collapse
|
7
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
8
|
Yao B, Hsu C, Goldner G, Michaeli Y, Ebenstein Y, Listgarten J. Effective training of nanopore callers for epigenetic marks with limited labelled data. Open Biol 2024; 14:230449. [PMID: 38862018 DOI: 10.1098/rsob.230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 06/13/2024] Open
Abstract
Nanopore sequencing platforms combined with supervised machine learning (ML) have been effective at detecting base modifications in DNA such as 5-methylcytosine (5mC) and N6-methyladenine (6mA). These ML-based nanopore callers have typically been trained on data that span all modifications on all possible DNA [Formula: see text]-mer backgrounds-a complete training dataset. However, as nanopore technology is pushed to more and more epigenetic modifications, such complete training data will not be feasible to obtain. Nanopore calling has historically been performed with hidden Markov models (HMMs) that cannot make successful calls for [Formula: see text]-mer contexts not seen during training because of their independent emission distributions. However, deep neural networks (DNNs), which share parameters across contexts, are increasingly being used as callers, often outperforming their HMM cousins. It stands to reason that a DNN approach should be able to better generalize to unseen [Formula: see text]-mer contexts. Indeed, herein we demonstrate that a common DNN approach (DeepSignal) outperforms a common HMM approach (Nanopolish) in the incomplete data setting. Furthermore, we propose a novel hybrid HMM-DNN approach, amortized-HMM, that outperforms both the pure HMM and DNN approaches on 5mC calling when the training data are incomplete. This type of approach is expected to be useful for calling other base modifications such as 5-hydroxymethylcytosine and for the simultaneous calling of different modifications, settings in which complete training data are not likely to be available.
Collapse
Affiliation(s)
- Brian Yao
- Department of Electrical Engineering & Computer Sciences, University of California , Berkeley, CA 94720, USA
| | - Chloe Hsu
- Department of Electrical Engineering & Computer Sciences, University of California , Berkeley, CA 94720, USA
| | - Gal Goldner
- Department of Chemical Physics, Tel Aviv University , Tel Aviv-Yafo, Israel
| | - Yael Michaeli
- Department of Chemical Physics, Tel Aviv University , Tel Aviv-Yafo, Israel
| | - Yuval Ebenstein
- Department of Chemical Physics, Tel Aviv University , Tel Aviv-Yafo, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University , Tel Aviv-Yafo, Israel
| | - Jennifer Listgarten
- Department of Electrical Engineering & Computer Sciences, University of California , Berkeley, CA 94720, USA
- Center for Computational Biology, University of California , Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Guo Z, Ni Y, Tan L, Shao Y, Ye L, Chen S, Li R. Nanopore Current Events Magnifier (nanoCEM): a novel tool for visualizing current events at modification sites of nanopore sequencing. NAR Genom Bioinform 2024; 6:lqae052. [PMID: 38774513 PMCID: PMC11106030 DOI: 10.1093/nargab/lqae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024] Open
Abstract
Nanopore sequencing technologies have enabled the direct detection of base modifications in DNA or RNA molecules. Despite these advancements, the tools for visualizing electrical current, essential for analyzing base modifications, are often lacking in clarity and compatibility with diverse nanopore pipelines. Here, we present Nanopore Current Events Magnifier (nanoCEM, https://github.com/lrslab/nanoCEM), a Python command-line tool designed to facilitate the identification of DNA/RNA modification sites through enhanced visualization and statistical analysis. Compatible with the four preprocessing methods including 'f5c resquiggle', 'f5c eventalign', 'Tombo' and 'move table', nanoCEM is applicable to RNA and DNA analysis across multiple flow cell types. By utilizing rescaling techniques and calculating various statistical features, nanoCEM provides more accurate and comparable visualization of current events, allowing researchers to effectively observe differences between samples and showcase the modified sites.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Ni
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yanwen Shao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
11
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Li J, Sun F, He K, Zhang L, Meng J, Huang D, Zhang Y. Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data. Curr Genomics 2024; 25:212-225. [PMID: 39086998 PMCID: PMC11288159 DOI: 10.2174/0113892029288843240402042529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background Chemically modified therapeutic mRNAs have gained momentum recently. In addition to commonly used modifications (e.g., pseudouridine), 5moU is considered a promising substitution for uridine in therapeutic mRNAs. Accurate identification of 5-methoxyuridine (5moU) would be crucial for the study and quality control of relevant in vitro-transcribed (IVT) mRNAs. However, current methods exhibit deficiencies in providing quantitative methodologies for detecting such modification. Utilizing the capabilities of Oxford nanopore direct RNA sequencing, in this study, we present NanoML-5moU, a machine-learning framework designed specifically for the read-level detection and quantification of 5moU modification for IVT data. Materials and Methods Nanopore direct RNA sequencing data from both 5moU-modified and unmodified control samples were collected. Subsequently, a comprehensive analysis and modeling of signal event characteristics (mean, median current intensities, standard deviations, and dwell times) were performed. Furthermore, classical machine learning algorithms, notably the Support Vector Machine (SVM), Random Forest (RF), and XGBoost were employed to discern 5moU modifications within NNUNN (where N represents A, C, U, or G) 5-mers. Results Notably, the signal event attributes pertaining to each constituent base of the NNUNN 5-mers, in conjunction with the utilization of the XGBoost algorithm, exhibited remarkable performance levels (with a maximum AUROC of 0.9567 in the "AGTTC" reference 5-mer dataset and a minimum AUROC of 0.8113 in the "TGTGC" reference 5-mer dataset). This accomplishment markedly exceeded the efficacy of the prevailing background error comparison model (ELIGOs AUC 0.751 for site-level prediction). The model's performance was further validated through a series of curated datasets, which featured customized modification ratios designed to emulate broader data patterns, demonstrating its general applicability in quality control of IVT mRNA vaccines. The NanoML-5moU framework is publicly available on GitHub (https://github.com/JiayiLi21/NanoML-5moU). Conclusion NanoML-5moU enables accurate read-level profiling of 5moU modification with nanopore direct RNA-sequencing, which is a powerful tool specialized in unveiling signal patterns in in vitro-transcribed (IVT) mRNAs.
Collapse
Affiliation(s)
- Jiayi Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Feiyang Sun
- Department of Computer Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kunyang He
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jia Meng
- Department of Biological Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Daiyun Huang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Yuxin Zhang
- Department of Biological Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
13
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
14
|
Nova IC, Ritmejeris J, Brinkerhoff H, Koenig TJR, Gundlach JH, Dekker C. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat Biotechnol 2024; 42:710-714. [PMID: 37386295 PMCID: PMC11189593 DOI: 10.1038/s41587-023-01839-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Current methods to detect post-translational modifications of proteins, such as phosphate groups, cannot measure single molecules or differentiate between closely spaced phosphorylation sites. We detect post-translational modifications at the single-molecule level on immunopeptide sequences with cancer-associated phosphate variants by controllably drawing the peptide through the sensing region of a nanopore. We discriminate peptide sequences with one or two closely spaced phosphates with 95% accuracy for individual reads of single molecules.
Collapse
Affiliation(s)
- Ian C Nova
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Justas Ritmejeris
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Henry Brinkerhoff
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Theo J R Koenig
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
15
|
Lee SM. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep 2024; 57:135-142. [PMID: 38449301 PMCID: PMC10979348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk Univeristy, Seoul 05029, Korea
| |
Collapse
|
16
|
Pavlenok M, Nair RR, Hendrickson RC, Niederweis M. The C-terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Sci 2024; 33:e4912. [PMID: 38358254 PMCID: PMC10868439 DOI: 10.1002/pro.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Michael Niederweis
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
17
|
Simpson JT. Detecting Somatic Mutations Without Matched Normal Samples Using Long Reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582089. [PMID: 38464143 PMCID: PMC10925087 DOI: 10.1101/2024.02.26.582089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
DNA sequencing of tumours to identify somatic mutations has become a critical tool to guide the type of treatment given to cancer patients. The gold standard for mutation calling is comparing sequencing data from the tumour to a matched normal sample to avoid mis-classifying inherited SNPs as mutations. This procedure works extremely well, but in certain situations only a tumour sample is available. While approaches have been developed to find mutations without a matched normal, they have limited accuracy or require specific types of input data (e.g. ultra-deep sequencing). Here we explore the application of single molecule long read sequencing to calling somatic mutations without matched normal samples. We develop a simple theoretical framework to show how haplotype phasing is an important source of information for determining whether a variant is a somatic mutation. We then use simulations to assess the range of experimental parameters (tumour purity, sequencing depth) where this approach is effective. These ideas are developed into a prototype somatic mutation caller, smrest, and its use is demonstrated on two highly mutated cancer cell lines. Finally, we argue that this approach has potential to measure clinically important biomarkers that are based on the genome-wide distribution of mutations: tumour mutation burden and mutation signatures.
Collapse
Affiliation(s)
- Jared T. Simpson
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
N M, Kumar PS, Manna D. Chemical Methods to Identify Epigenetic Modifications in Cytosine Bases. Chem Asian J 2024; 19:e202301005. [PMID: 38206202 DOI: 10.1002/asia.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Chemical modifications to Cytosine bases are among the most studied epigenetic markers and their detection in the human genome plays a crucial role in gaining more insights about gene regulation, prognosis of genetic disorders and unraveling genetic inheritance patterns. The Cytosine methylated at the 5th position and oxidized derivatives thereof generated in the demethylation pathways, perform separate and unique epigenetic functions in an organism. As the presence of various Cytosine modifications is associated with diverse diseases, including cancer, there has been a strong focus on developing methods, both chemical and alternative approaches, capable of detecting these modifications at a single-base resolution across the entire genome. In this comprehensive review, we aim to consolidate the various chemical methods and understanding their chemistry that have been established to date for the detection of various Cytosine modifications.
Collapse
Affiliation(s)
- Madhumitha N
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Parvathy S Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
19
|
Budzinski L, von Goetze V, Chang HD. Single-cell phenotyping of bacteria combined with deep sequencing for improved contextualization of microbiome analyses. Eur J Immunol 2024; 54:e2250337. [PMID: 37863831 DOI: 10.1002/eji.202250337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
Great effort was made to characterize the bacterial communities inhabiting the human body as a factor in disease, resulting in the realization that a wide spectrum of diseases is associated with an altered composition of the microbiome. However, the identification of disease-relevant bacteria has been hindered by the high cross-sectional diversity of individual microbiomes, and in most cases, it remains unclear whether the observed alterations are cause or consequence of disease. Hence, innovative analysis approaches are required that enable inquiries of the microbiome beyond mere taxonomic cataloging. This review highlights the utility of microbiota flow cytometry, a single-cell analysis platform to directly interrogate cellular interactions, cell conditions, and crosstalk with the host's immune system within the microbiome to take into consideration the role of microbes as critical interaction partners of the host and the spectrum of microbiome alterations, beyond compositional changes. In conjunction with advanced sequencing approaches it could reveal the genetic potential of target bacteria and advance our understanding of taxonomic diversity and gene usage in the context of the microenvironment. Single-cell bacterial phenotyping has the potential to change our perspective on the human microbiome and empower microbiome research for the development of microbiome-based therapy approaches and personalized medicine.
Collapse
Affiliation(s)
- Lisa Budzinski
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| | - Victoria von Goetze
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre Berlin - A Leibniz Institute, Berlin, Germany
| |
Collapse
|
20
|
Xie NB, Wang M, Chen W, Ji TT, Guo X, Gang FY, Wang YF, Feng YQ, Liang Y, Ci W, Yuan BF. Whole-Genome Sequencing of 5-Hydroxymethylcytosine at Base Resolution by Bisulfite-Free Single-Step Deamination with Engineered Cytosine Deaminase. ACS CENTRAL SCIENCE 2023; 9:2315-2325. [PMID: 38161361 PMCID: PMC10755730 DOI: 10.1021/acscentsci.3c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
The epigenetic modification 5-hydroxymethylcytosine (5hmC) plays a crucial role in the regulation of gene expression. Although some methods have been developed to detect 5hmC, direct genome-wide mapping of 5hmC at base resolution is still highly desirable. Herein, we proposed a single-step deamination sequencing (SSD-seq) method, designed to precisely map 5hmC across the genome at single-base resolution. SSD-seq takes advantage of a screened engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein, known as eA3A-v10, to selectively deaminate cytosine (C) and 5-methylcytosine (5mC) but not 5hmC. During sequencing, the deaminated C and 5mC are converted to uracil (U) and thymine (T), read as T in the sequencing data. However, 5hmC remains unaffected by eA3A-v10 and is read as C during sequencing. Consequently, the presence of C in the sequence reads indicates the original 5hmC. We applied SSD-seq to generate a base-resolution map of 5hmC in human lung tissue. Our findings revealed that 5hmC was predominantly localized to CpG dinucleotides. Furthermore, the base-resolution map of 5hmC generated by SSD-seq demonstrated a strong correlation with prior ACE-seq results. The advantages of SSD-seq are its single-step process, absence of bisulfite treatment or DNA glycosylation, cost effectiveness, and ability to detect and quantify 5hmC directly at single-base resolution.
Collapse
Affiliation(s)
- Neng-Bin Xie
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Min Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Wei Chen
- Department
of Laboratory Medicine, Zhongnan Hospital
of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xia Guo
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Fang-Yin Gang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Ya-Feng Wang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yuan Liang
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Ci
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| |
Collapse
|
21
|
Gombert S, Jahn K, Pathak H, Burkert A, Schmidt G, Wiehlmann L, Davenport C, Brändl B, Müller FJ, Leffler A, Deest M, Frieling H. Comparison of methylation estimates obtained via MinION nanopore sequencing and sanger bisulfite sequencing in the TRPA1 promoter region. BMC Med Genomics 2023; 16:257. [PMID: 37872581 PMCID: PMC10591399 DOI: 10.1186/s12920-023-01694-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Bisulfite sequencing has long been considered the gold standard for measuring DNA methylation at single CpG resolution. However, in recent years several new approaches like nanopore sequencing have been developed due to hints for a partial error-proneness of bisulfite sequencing. Since these errors were shown to be sequence-specific, we aimed to verify the methylation data of a particular region of the TRPA1 promoter from our previous studies obtained by bisulfite sequencing. METHODS We compared methylation rates determined by direct bisulfite sequencing and nanopore sequencing following Cas9-mediated PCR-free enrichment. RESULTS We could show that CpG methylation levels above 20% corroborate well with our previous data. Within the range between 0 and 20% methylation, however, Sanger sequencing data have to be interpreted cautiously, at least in the investigated region of interest (TRPA1 promotor region). CONCLUSION Based on the investigation of the TRPA1- region as an example, the present work can help in choosing the right method out of the two current main approaches for methylation analysis for different individual settings regarding many factors like cohort size, costs and prerequisites that should be fulfilled for each method. All in all, both methods have their raison d'être. Furthermore, the present paper contains and illustrates some important basic information and explanation of how guide RNAs should be located for an optimal outcome in Cas9 mediated PCR free target enrichment.
Collapse
Affiliation(s)
- Sara Gombert
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kirsten Jahn
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Hansi Pathak
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Burkert
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Zentrum für Integrative Psychiatrie gGmbH, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Maximilian Deest
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2023:10.1038/s41418-023-01213-1. [PMID: 37658169 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
23
|
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:123. [PMID: 37626097 PMCID: PMC10457362 DOI: 10.1038/s41531-023-00568-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease, with a complex risk structure thought to be influenced by interactions between genetic variants and environmental exposures, although the full aetiology is unknown. Environmental factors, including pesticides, have been reported to increase the risk of developing the disease. Growing evidence suggests epigenetic changes are key mechanisms by which these environmental factors act upon gene regulation, in disease-relevant cell types. We present a systematic review critically appraising and summarising the current body of evidence of the relationship between epigenetic mechanisms and environmental risk factors in PD to inform future research in this area. Epigenetic studies of relevant environmental risk factors in animal and cell models have yielded promising results, however, research in humans is just emerging. While published studies in humans are currently relatively limited, the importance of the field for the elucidation of molecular mechanisms of pathogenesis opens clear and promising avenues for the future of PD research. Carefully designed epidemiological studies carried out in PD patients hold great potential to uncover disease-relevant gene regulatory mechanisms. Therefore, to advance this burgeoning field, we recommend broadening the scope of investigations to include more environmental exposures, increasing sample sizes, focusing on disease-relevant cell types, and recruiting more diverse cohorts.
Collapse
Affiliation(s)
- Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
24
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
25
|
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, Zhou X, Hou M, Huang Z, Ou X, Xu L. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol 2023; 6:746. [PMID: 37463976 PMCID: PMC10354230 DOI: 10.1038/s42003-023-05137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Conservation genomics often relies on non-invasive methods to obtain DNA fragments which limit the power of multi-omic analyses for threatened species. Here, we report multi-omic analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that was found dead in the mountainous region in Gansu, China. We generate a near-complete genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chromosomes. We characterize the DNA methylation landscape which is correlated with GC content and gene expression. Our phylogenomic analysis suggests Otidiformes and Musophagiformes are sister groups that diverged from each other 46.3 million years ago. The genetic diversity of great bustard is found the lowest among the four available Otidiformes genomes, possibly due to population declines during past glacial periods. As one of the heaviest migratory birds, great bustard possesses several expanded gene families related to cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary stratum on the sex chromosome, a rare case among birds. Together, our study provides insights into the conservation genomics, adaption and chromosome evolution of the great bustard.
Collapse
Affiliation(s)
- Haoran Luo
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinrui Jiang
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Boping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiexin Shen
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zaoxu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Minghao Hou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China.
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
26
|
Chingarande RG, Tian K, Kuang Y, Sarangee A, Hou C, Ma E, Ren J, Hawkins S, Kim J, Adelstein R, Chen S, Gillis KD, Gu LQ. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor. Proc Natl Acad Sci U S A 2023; 120:e2108118120. [PMID: 37276386 PMCID: PMC10268594 DOI: 10.1073/pnas.2108118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.
Collapse
Affiliation(s)
- Rugare G. Chingarande
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Kai Tian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Yu Kuang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Aby Sarangee
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Chengrui Hou
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Emily Ma
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Jarett Ren
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sam Hawkins
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Joshua Kim
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Ray Adelstein
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sally Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Kevin D. Gillis
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Li-Qun Gu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| |
Collapse
|
27
|
Kong Y, Mead EA, Fang G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat Rev Genet 2023; 24:363-381. [PMID: 36653550 PMCID: PMC10722219 DOI: 10.1038/s41576-022-00559-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Chemical modifications to nucleic acids occur across the kingdoms of life and carry important regulatory information. Reliable high-resolution mapping of these modifications is the foundation of functional and mechanistic studies, and recent methodological advances based on next-generation sequencing and long-read sequencing platforms are critical to achieving this aim. However, mapping technologies may have limitations that sometimes lead to inconsistent results. Some of these limitations are technical in nature and specific to certain types of technology. Here, however, we focus on common (yet not always widely recognized) pitfalls that are shared among frequently used mapping technologies and discuss strategies to help technology developers and users mitigate their effects. Although the emphasis is primarily on DNA modifications, RNA modifications are also discussed.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Rausch T, Snajder R, Leger A, Simovic M, Giurgiu M, Villacorta L, Henssen AG, Fröhling S, Stegle O, Birney E, Bonder MJ, Ernst A, Korbel JO. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. CELL GENOMICS 2023; 3:100281. [PMID: 37082141 PMCID: PMC10112291 DOI: 10.1016/j.xgen.2023.100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/14/2022] [Accepted: 02/22/2023] [Indexed: 04/22/2023]
Abstract
Cancer genomes harbor a broad spectrum of structural variants (SVs) driving tumorigenesis, a relevant subset of which escape discovery using short-read sequencing. We employed Oxford Nanopore Technologies (ONT) long-read sequencing in a paired diagnostic and post-therapy medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic landscape. We assembled complex rearrangements, including a 1.55-Mbp chromothripsis event, and we uncover a complex SV pattern termed templated insertion (TI) thread, characterized by short (mostly <1 kb) insertions showing prevalent self-concatenation into highly amplified structures of up to 50 kbp in size. TI threads occur in 3% of cancers, with a prevalence up to 74% in liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read-based methylome profiling and discover allele-specific methylation (ASM) effects, complex rearrangements exhibiting differential methylation, and differential promoter methylation in cancer-driver genes. Our study shows the advantage of long-read sequencing in the discovery and characterization of complex somatic rearrangements.
Collapse
Affiliation(s)
- Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Rene Snajder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty for Biosciences, Heidelberg University, Heidelberg, Germany
- HIDSS4Health, Helmholtz Information and Data Science School for Health, Heidelberg, Germany
| | - Adrien Leger
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Milena Simovic
- Group “Genome Instability in Tumors,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mădălina Giurgiu
- Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and Charité-Universitätsmedizin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and Charité-Universitätsmedizin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelie Ernst
- Group “Genome Instability in Tumors,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan O. Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, DKFZ, Heidelberg, Germany
| |
Collapse
|
29
|
Thomas CA, Craig JM, Hoshika S, Brinkerhoff H, Huang JR, Abell SJ, Kim HC, Franzi MC, Carrasco JD, Kim HJ, Smith DC, Gundlach JH, Benner SA, Laszlo AH. Assessing Readability of an 8-Letter Expanded Deoxyribonucleic Acid Alphabet with Nanopores. J Am Chem Soc 2023; 145:8560-8568. [PMID: 37036666 DOI: 10.1021/jacs.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Chemists have now synthesized new kinds of DNA that add nucleotides to the four standard nucleotides (guanine, adenine, cytosine, and thymine) found in standard Terran DNA. Such "artificially expanded genetic information systems" are today used in molecular diagnostics; to support directed evolution to create medically useful receptors, ligands, and catalysts; and to explore issues related to the early evolution of life. Further applications are limited by the inability to directly sequence DNA containing nonstandard nucleotides. Nanopore sequencing is well-suited for this purpose, as it does not require enzymatic synthesis, amplification, or nucleotide modification. Here, we take the first steps to realize nanopore sequencing of an 8-letter "hachimoji" expanded DNA alphabet by assessing its nanopore signal range using the MspA (Mycobacterium smegmatis porin A) nanopore. We find that hachimoji DNA exhibits a broader signal range in nanopore sequencing than standard DNA alone and that hachimoji single-base substitutions are distinguishable with high confidence. Because nanopore sequencing relies on a molecular motor to control the motion of DNA, we then assessed the compatibility of the Hel308 motor enzyme with nonstandard nucleotides by tracking the translocation of single Hel308 molecules along hachimoji DNA, monitoring the enzyme kinetics and premature enzyme dissociation from the DNA. We find that Hel308 is compatible with hachimoji DNA but dissociates more frequently when walking over C-glycoside nucleosides, compared to N-glycosides. C-glycocide nucleosides passing a particular site within Hel308 induce a higher likelihood of dissociation. This highlights the need to optimize nanopore sequencing motors to handle different glycosidic bonds. It may also inform designs of future alternative DNA systems that can be sequenced with existing motors and pores.
Collapse
Affiliation(s)
- Christopher A Thomas
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jesse R Huang
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Hwanhee C Kim
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Michaela C Franzi
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jessica D Carrasco
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Drew C Smith
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Spangenberg J, Zu Siederdissen CH, Žarković M, Triebel S, Rose R, Christophersen CM, Paltzow L, Hegab MM, Wansorra A, Srivastava A, Krumbholz A, Marz M. Magnipore: Prediction of differential single nucleotide changes in the Oxford Nanopore Technologies sequencing signal of SARS-CoV-2 samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533105. [PMID: 36993667 PMCID: PMC10055291 DOI: 10.1101/2023.03.17.533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxford Nanopore Technologies (ONT) allows direct sequencing of ribonucleic acids (RNA) and, in addition, detection of possible RNA modifications due to deviations from the expected ONT signal. The software available so far for this purpose can only detect a small number of modifications. Alternatively, two samples can be compared for different RNA modifications. We present Magnipore, a novel tool to search for significant signal shifts between samples of Oxford Nanopore data from similar or related species. Magnipore classifies them into mutations and potential modifications. We use Magnipore to compare SARS-CoV-2 samples. Included were representatives of the early 2020s Pango lineages (n=6), samples from Pango lineages B.1.1.7 (n=2, Alpha), B.1.617.2 (n=1, Delta), and B.1.529 (n=7, Omicron). Magnipore utilizes position-wise Gaussian distribution models and a comprehensible significance threshold to find differential signals. In the case of Alpha and Delta, Magnipore identifies 55 detected mutations and 15 sites that hint at differential modifications. We predicted potential virus-variant and variant-group-specific differential modifications. Magnipore contributes to advancing RNA modification analysis in the context of viruses and virus variants.
Collapse
Affiliation(s)
- Jannes Spangenberg
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | | | - Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Sandra Triebel
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
| | | | - Lea Paltzow
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Mohsen M Hegab
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Anna Wansorra
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Akash Srivastava
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
- European Virus Bioinformatics Center 2, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
31
|
VanOudenhove J, Halene S, Mendez L. Is it the time to integrate novel sequencing technologies into clinical practice? Curr Opin Hematol 2023; 30:70-77. [PMID: 36602939 DOI: 10.1097/moh.0000000000000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to provide insight into how novel next-generation sequencing (NGS) techniques are set to revolutionize clinical practice. RECENT FINDINGS Advances in sequencing technologies have focused on improved capture of mutations and reads and cellular resolution. Both short and long read DNA sequencing technology are being refined and combined in novel ways with other multiomic approaches to gain unprecedented biological insight into disease. Single-cell (sc)DNA-seq and integrated scDNA-seq with immunophenotyping provide granular information on disease composition such as clonal hierarchy, co-mutation status, zygosity, clonal diversity and genotype phenotype correlations. These and other techniques can identify rare cell populations providing the opportunity for increased sensitivity in measurable residual disease monitoring and precise characterization of residual clones permitting distinction of leukemic from pre/nonmalignant clones. SUMMARY Increasing genetics-based mechanistic insights and classification of myeloid diseases along with a decrease in the cost of high-throughput NGS mean novel sequencing technologies are closer to being a reality in standard clinical practice. These technologies are poised to improve diagnostics, our ability to monitor treatment response and minimal residual disease and allow the study of premalignant conditions such as clonal haematopoiesis.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
32
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
33
|
Wang M, Li Q, Liu L. Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules 2023; 13:biom13020304. [PMID: 36830673 PMCID: PMC9953580 DOI: 10.3390/biom13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene-expression regulation involves multiple processes and a range of regulatory factors. In this review, we describe the key factors that regulate gene expression, including transcription factors (TFs), chromatin accessibility, histone modifications, DNA methylation, and RNA modifications. In addition, we also describe methods that can be used to detect these regulatory factors.
Collapse
|
34
|
Yamada M, Okuno H, Okamoto N, Suzuki H, Miya F, Takenouchi T, Kosaki K. Diagnosis of Prader-Willi syndrome and Angelman syndrome by targeted nanopore long-read sequencing. Eur J Med Genet 2023; 66:104690. [PMID: 36587803 DOI: 10.1016/j.ejmg.2022.104690] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
The CpG island flanking the promoter region of SNRPN on chromosome 15q11.2 contains CpG sites that are completely methylated in the maternally derived allele and unmethylated in the paternally derived allele. Both unmethylated and methylated alleles are observed in normal individuals. Only the methylated allele is observed in patients with Prader-Willi syndrome, whereas only the unmethylated allele is observed in those with Angelman syndrome. Hence, detection of aberrant methylation at the differentially methylated region is fundamental to the molecular diagnosis of Prader-Willi syndrome and Angelman syndromes. Traditionally, bisulfite treatment and methylation-sensitive restriction enzyme treatment or methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) have been used. We here developed a long-read sequencing assay that can distinguish methylated and unmethylated CpG sites at 15q11.2 by the difference in current intensity generated from nanopore reads. We successfully diagnosed 4 Prader-Willi syndrome patients and 3 Angelman syndrome patients by targeting differentially methylated regions. Concurrent copy number analysis, homozygosity analysis, and structural variant analysis also allowed us to precisely delineate the underlying pathogenic mechanisms, including gross deletion, uniparental heterodisomy, uniparental isodisomy, or imprinting defect. Furthermore, we showed allele-specific methylation in imprinting-related differentially methylated regions on chromosomes 6, 7, 11, 14, and 20 in a normal individual together with 4 Prader-Willi patients and 3 Angelman syndrome patients. Hence, presently reported method is likely to be applicable to the diagnosis of imprinting disorders other than Prader-Willi syndrome and Angelman syndrome as well.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Udine E, Jain A, van Blitterswijk M. Advances in sequencing technologies for amyotrophic lateral sclerosis research. Mol Neurodegener 2023; 18:4. [PMID: 36635726 PMCID: PMC9838075 DOI: 10.1186/s13024-022-00593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by upper and lower motor neuron loss and has a fairly rapid disease progression, leading to fatality in an average of 2-5 years after symptom onset. Numerous genes have been implicated in this disease; however, many cases remain unexplained. Several technologies are being used to identify regions of interest and investigate candidate genes. Initial approaches to detect ALS genes include, among others, linkage analysis, Sanger sequencing, and genome-wide association studies. More recently, next-generation sequencing methods, such as whole-exome and whole-genome sequencing, have been introduced. While those methods have been particularly useful in discovering new ALS-linked genes, methodological advances are becoming increasingly important, especially given the complex genetics of ALS. Novel sequencing technologies, like long-read sequencing, are beginning to be used to uncover the contribution of repeat expansions and other types of structural variation, which may help explain missing heritability in ALS. In this review, we discuss how popular and/or upcoming methods are being used to discover ALS genes, highlighting emerging long-read sequencing platforms and their role in aiding our understanding of this challenging disease.
Collapse
Affiliation(s)
- Evan Udine
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Angita Jain
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Center for Clinical and Translational Sciences, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
36
|
Akbari V, Hanlon VC, O’Neill K, Lefebvre L, Schrader KA, Lansdorp PM, Jones SJ. Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq. CELL GENOMICS 2023; 3:100233. [PMID: 36777186 PMCID: PMC9903809 DOI: 10.1016/j.xgen.2022.100233] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Hundreds of loci in human genomes have alleles that are methylated differentially according to their parent of origin. These imprinted loci generally show little variation across tissues, individuals, and populations. We show that such loci can be used to distinguish the maternal and paternal homologs for all human autosomes without the need for the parental DNA. We integrate methylation-detecting nanopore sequencing with the long-range phase information in Strand-seq data to determine the parent of origin of chromosome-length haplotypes for both DNA sequence and DNA methylation in five trios with diverse genetic backgrounds. The parent of origin was correctly inferred for all autosomes with an average mismatch error rate of 0.31% for SNVs and 1.89% for insertions or deletions (indels). Because our method can determine whether an inherited disease allele originated from the mother or the father, we predict that it will improve the diagnosis and management of many genetic diseases.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kieran O’Neill
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kasmintan A. Schrader
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Peter M. Lansdorp
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Zhao XC, Dong HL, Li XL, Yang HY, Chen XF, Dai L, Wu WQ, Tan ZJ, Zhang XH. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res 2022; 50:12344-12354. [PMID: 36477372 PMCID: PMC9757033 DOI: 10.1093/nar/gkac1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
5-Methyl-cytosine (5mC) is one of the most important DNA modifications and plays versatile biological roles. It is well known that 5mC stabilizes DNA duplexes. However, it remains unclear how 5mC affects the kinetics of DNA melting and hybridization. Here, we studied the kinetics of unzipping and rezipping using a 502-bp DNA hairpin by single-molecule magnetic tweezers. Under constant loading rates, 5mC increases the unzipping force but counterintuitively decreases the rezipping force at various salt and temperature conditions. Under constant forces, the non-methylated DNA hops between metastable states during unzipping and rezipping, which implies low energy barriers. Surprisingly, the 5mC DNA can't rezip after fully unzipping unless much lower forces are applied, where it rezips stochastically in a one-step manner, which implies 5mC kinetically hinders DNA hybridization and high energy barriers in DNA hybridization. All-atom molecular dynamics simulations reveal that the 5mC kinetically hinders DNA hybridization due to steric effects rather than electrostatic effects caused by the additional methyl groups of cytosines. Considering the possible high speed of DNA unzipping and zipping during replication and transcription, our findings provide new insights into the biological roles of 5mC.
Collapse
Affiliation(s)
| | | | - Xiao-Lu Li
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hong-Yu Yang
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhi-Jie Tan
- Correspondence may also be addressed to Zhi-Jie Tan. Tel: +86 15827627809; Fax: +86 02768752569;
| | - Xing-Hua Zhang
- To whom correspondence should be addressed. Tel: +86 15827632615; Fax: +86 02768753780;
| |
Collapse
|
38
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
39
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Liu Y, Zhang S, Wang Y, Wang L, Cao Z, Sun W, Fan P, Zhang P, Chen HY, Huang S. Nanopore Identification of Alditol Epimers and Their Application in Rapid Analysis of Alditol-Containing Drinks and Healthcare Products. J Am Chem Soc 2022; 144:13717-13728. [PMID: 35867993 DOI: 10.1021/jacs.2c04595] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alditols, which have a sweet taste but produce much lower calories than natural sugars, are widely used as artificial sweeteners. Alditols are the reduced forms of monosaccharide aldoses, and different alditols are diastereomers or epimers of each other and direct and rapid identification by conventional methods is difficult. Nanopores, which are emerging single-molecule sensors with exceptional resolution when engineered appropriately, are useful for the recognition of diastereomers and epimers. In this work, direct distinguishing of alditols corresponding to all 15 monosaccharide aldoses was achieved by a boronic acid-appended hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore (MspA-PBA). Thirteen alditols including glycerol, erythritol, threitol, adonitol, arabitol, xylitol, mannitol, sorbitol, allitol, dulcitol, iditol, talitol, and gulitol (l-sorbitol) could be fully distinguished, and their sensing features constitute a complete nanopore alditol database. To automate event classification, a custom machine-learning algorithm was developed and delivered a 99.9% validation accuracy. This strategy was also used to identify alditol components in commercially available "zero-sugar" drinks and healthcare products, suggesting their use in rapid and sensitive quality control for the food and medical industry.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Zhang J, Wang Y, Wang Y, Zhang P, Chen HY, Huang S. Discrimination between Different DNA Lesions by Monitoring Single-Molecule Polymerase Stalling Kinetics during Nanopore Sequencing. NANO LETTERS 2022; 22:5561-5569. [PMID: 35713465 DOI: 10.1021/acs.nanolett.2c01833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
O6-Carboxymethylguanosine (O6-CMG), O6-methylguanosine (O6-MeG), and abasic site (AP site) are DNA lesions induced by alkylating agents. Identification of these lesions in DNA may aid in understanding their relevance to carcinogenesis and may be used for diagnosis. Nanopore sequencing (NPS) may directly report nucleotide modifications solely from the nanopore readout. However, the conventional NPS strategy still suffers from interferences from neighboring sequences. Instead, by observation of the enzymatic stalling kinetics caused by the O6-CMG, O6-MeG, or AP site, discrimination between different DNA lesions is directly achieved. This strategy is not interfered with by the sequence context around the lesion. The lesion, which retards the movement of the DNA through the pore, efficiently prohibits misreading of the DNA lesion. These results suggest a new strategy in the identification of DNA lesions or DNA modifications. It also provides a high-resolution biophysical tool to investigate enzymatic kinetics caused by DNA lesions and the corresponding enzymes.
Collapse
Affiliation(s)
- Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
42
|
Quantitative detection of CpG methylation level on G-quadruplex and i-motif-forming DNA by recombinase polymerase amplification. Anal Bioanal Chem 2022; 414:6223-6231. [PMID: 35788871 DOI: 10.1007/s00216-022-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Detection of CpG methylation levels holds immense potential for application in medical diagnosis of various diseases. In this study, we report the development of a recombinase polymerase amplification (RPA)-based CpG methylation level sensing system on G-quadruplex (G4) and intercalated motif (i-motif)-forming regions, which are stabilized by CpG methylation. This detection system is based on the principle that DNA polymerase is stalled at the methylated G4 and i-motif-forming region, which results in a decrease in the initial elongation efficiency of RPA. This reduction in turn affects the onset of amplification depending on the extent of CpG methylation; therefore, the methylation level is quantified by RPA. We demonstrate that the onset of amplification was delayed by CpG methylation when PCR products containing the vascular endothelial growth factor (VEGF) G4 and i-motif-forming region were used as the template. Furthermore, onset of amplification was delayed with the increase in CpG methylation of the VEGF region on genomic DNA. These results demonstrate that the sensing system is capable of directly detecting the methylation level at a constant temperature (39 °C) within 30 min without performing bisulfite conversion or affinity capture of methylated DNA.
Collapse
|
43
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore‐Based Saccharide Sensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Yao Liu
- Nanjing University Chemistry CHINA
| | | | | | | | | | - Shuo Huang
- Nanjing University Chemistry 163 Xianlin AveSchool of Chemistry and Chemical EngineeringXixia District 210023 Nanjing CHINA
| |
Collapse
|
44
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore-Based Saccharide Sensor. Angew Chem Int Ed Engl 2022; 61:e202203769. [PMID: 35718742 DOI: 10.1002/anie.202203769] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
45
|
Abstract
Evolution has found countless ways to transport material across cells and cellular compartments separated by membranes. Protein assemblies are the cornerstone for the formation of channels and pores that enable this regulated passage of molecules in and out of cells, contributing to maintaining most of the fundamental processes that sustain living organisms. As in several other occasions, we have borrowed from the natural properties of these biological systems to push technology forward and have been able to hijack these nano-scale proteinaceous pores to learn about the physical and chemical features of molecules passing through them. Today, a large repertoire of biological pores is exploited as molecular sensors for characterizing biomolecules that are relevant for the advancement of life sciences and application to medicine. Although the technology has quickly matured to enable nucleic acid sensing with transformative implications for genomics, biological pores stand as some of the most promising candidates to drive the next developments in single-molecule proteomics.
Collapse
Affiliation(s)
- Simon Finn Mayer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
47
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
48
|
Noble AJ, Purcell RV, Adams AT, Lam YK, Ring PM, Anderson JR, Osborne AJ. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front Genet 2022; 13:831866. [PMID: 35211161 PMCID: PMC8861380 DOI: 10.3389/fgene.2022.831866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.
Collapse
Affiliation(s)
- Alexandra J. Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Alex T. Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Ying K. Lam
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Ring
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jessica R. Anderson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy J. Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
49
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|