1
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
2
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Harada-Kagitani S, Kouchi Y, Shinomiya Y, Kodama M, Ohira G, Matsubara H, Ikeda JI, Kishimoto T. Keratin 6A Is Expressed at the Invasive Front and Enhances the Progression of Colorectal Cancer. J Transl Med 2024; 104:102075. [PMID: 38729352 DOI: 10.1016/j.labinv.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Keratins (KRTs) are intermediate filament proteins in epithelial cells, and they are important for cytoskeletal organization. KRT6A, classified as a type II KRT, is normally expressed in stratified squamous epithelium and squamous cell carcinomas. Little is known about the expression and role of KRT6A in adenocarcinomas. We investigated the clinicopathologic and molecular biological significance of KRT6A in colorectal adenocarcinoma. Immunostaining of colorectal adenocarcinoma cases treated at our institution demonstrated that KRT6A showed significantly stronger expression at the invasive front than that at the tumor center (P < .0001). The high KRT6A-expression cases (n = 47) tended to have a high budding grade associated with significantly worse prognoses. A multivariate analysis revealed that the KRT6A expression status was an independent prognostic factor for overall survival (P = .0004), disease-specific survival (P = .0097), and progression-free survival (P = .0033). The correlation between KRT6A and patient prognoses was also validated in an external cohort from a published data set. To determine the function of KRT6A in vitro, KRT6A was overexpressed in 3 colon cancer cell lines: DLD-1, SW620, and HCT 116. KRT6A overexpression increased migration and invasion in DLD-1 but did not in SW620 and HCT116. In 3-dimensional sphere-forming culture, KRT6A expression enhanced the irregular protrusion around the spheroid in DLD-1. Our findings in this study indicated that KRT6A expression is a valuable prognostic marker of colorectal cancer and KRT6A may be involved the molecular mechanism in the progression of invasive areas of colorectal cancer.
Collapse
Affiliation(s)
- Sakurako Harada-Kagitani
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Yusuke Kouchi
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Yoshiki Shinomiya
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Makoto Kodama
- Department of Pathology, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Gaku Ohira
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jun-Ichiro Ikeda
- Department of Pathology, Chiba University Hospital, Chiba, Japan; Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
4
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Lai X, Wang M, Zhang Z, Chen S, Tan X, Liu W, Liang H, Li L, Shao L. ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via mTORC1-TFEB-BLOC1S3 axis. J Nanobiotechnology 2024; 22:312. [PMID: 38840221 PMCID: PMC11151536 DOI: 10.1186/s12951-024-02519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.
Collapse
Affiliation(s)
- Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Menglei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Suya Chen
- Hospital of Stomatology, Guanghua school of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiner Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Young N, Gui Z, Mustafa S, Papa K, Jessop E, Ruddell E, Bevington L, Quinlan RA, Benham AM, Goldberg MW, Obara B, Karakesisoglou I. Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro. Cells 2024; 13:906. [PMID: 38891038 PMCID: PMC11172124 DOI: 10.3390/cells13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
Collapse
Affiliation(s)
- Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Zizhao Gui
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Suleiman Mustafa
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Kleopatra Papa
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Elizabeth Ruddell
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Laura Bevington
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Roy A. Quinlan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Martin W. Goldberg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| |
Collapse
|
8
|
Hartmann B, Fleischhauer L, Nicolau M, Jensen THL, Taran FA, Clausen-Schaumann H, Reuten R. Profiling native pulmonary basement membrane stiffness using atomic force microscopy. Nat Protoc 2024; 19:1498-1528. [PMID: 38429517 DOI: 10.1038/s41596-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/27/2023] [Indexed: 03/03/2024]
Abstract
Mammalian cells sense and react to the mechanics of their immediate microenvironment. Therefore, the characterization of the biomechanical properties of tissues with high spatial resolution provides valuable insights into a broad variety of developmental, homeostatic and pathological processes within living organisms. The biomechanical properties of the basement membrane (BM), an extracellular matrix (ECM) substructure measuring only ∼100-400 nm across, are, among other things, pivotal to tumor progression and metastasis formation. Although the precise assignment of the Young's modulus E of such a thin ECM substructure especially in between two cell layers is still challenging, biomechanical data of the BM can provide information of eminent diagnostic potential. Here we present a detailed protocol to quantify the elastic modulus of the BM in murine and human lung tissue, which is one of the major organs prone to metastasis. This protocol describes a streamlined workflow to determine the Young's modulus E of the BM between the endothelial and epithelial cell layers shaping the alveolar wall in lung tissues using atomic force microscopy (AFM). Our step-by-step protocol provides instructions for murine and human lung tissue extraction, inflation of these tissues with cryogenic cutting medium, freezing and cryosectioning of the tissue samples, and AFM force-map recording. In addition, it guides the reader through a semi-automatic data analysis procedure to identify the pulmonary BM and extract its Young's modulus E using an in-house tailored user-friendly AFM data analysis software, the Center for Applied Tissue Engineering and Regenerative Medicine processing toolbox, which enables automatic loading of the recorded force maps, conversion of the force versus piezo-extension curves to force versus indentation curves, calculation of Young's moduli and generation of Young's modulus maps, where the pulmonary BM can be identified using a semi-automatic spatial filtering tool. The entire protocol takes 1-2 d.
Collapse
Affiliation(s)
- Bastian Hartmann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Lutz Fleischhauer
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Monica Nicolau
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Hartvig Lindkær Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Florin-Andrei Taran
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hauke Clausen-Schaumann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany.
- Center for Nanoscience, Munich, Germany.
| | - Raphael Reuten
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Peng X, Janićijević Ž, Lemm S, Hauser S, Knobel M, Pietzsch J, Bachmann M, Baraban L. Impact of Viscosity on Human Hepatoma Spheroids in Soft Core-Shell Microcapsules. Adv Healthc Mater 2024; 13:e2302609. [PMID: 38227977 PMCID: PMC11468952 DOI: 10.1002/adhm.202302609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.
Collapse
Affiliation(s)
- Xuan Peng
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden01307DresdenGermany
| | - Željko Janićijević
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| | - Sandy Lemm
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of SciencesTechnische Universität Dresden01062DresdenGermany
| | - Sandra Hauser
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| | - Michael Knobel
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Fluid Dynamics01328DresdenGermany
| | - Jens Pietzsch
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of SciencesTechnische Universität Dresden01062DresdenGermany
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden01307DresdenGermany
- National Center for Tumor Diseases (NCT)01307DresdenGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
- German Cancer Consortium (DKTK)01307DresdenGermany
| | - Larysa Baraban
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| |
Collapse
|
10
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
11
|
Nan J, Roychowdhury S, Randles A. Investigating the Influence of Heterogeneity Within Cell Types on Microvessel Network Transport. Cell Mol Bioeng 2023; 16:497-507. [PMID: 38099216 PMCID: PMC10716099 DOI: 10.1007/s12195-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Current research on the biophysics of circulating tumor cells often overlooks the heterogeneity of cell populations, focusing instead on average cellular properties. This study aims to address the gap by considering the diversity of cell biophysical characteristics and their implications on cancer spread. Methods We utilized computer simulations to assess the influence of variations in cell size and membrane elasticity on the behavior of cells within fluid environments. The study controlled cell and fluid properties to systematically investigate the transport of tumor cells through a simulated network of branching channels. Results The simulations revealed that even minor differences in cellular properties, such as slight changes in cell radius or shear elastic modulus, lead to significant changes in the fluid conditions that cells experience, including velocity and wall shear stress (p < 0.001). Conclusion The findings underscore the importance of considering cell heterogeneity in biophysical studies and suggest that small variations in cellular characteristics can profoundly impact the dynamics of tumor cell circulation. This has potential implications for understanding the mechanisms of cancer metastasis and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Junyu Nan
- Department of Biomedical Engineering, Duke University, Durham, USA
| | | | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, USA
| |
Collapse
|
12
|
Bernabé-Rubio M, Ali S, Bhosale PG, Goss G, Mobasseri SA, Tapia-Rojo R, Zhu T, Hiratsuka T, Battilocchi M, Tomás IM, Ganier C, Garcia-Manyes S, Watt FM. Myc-dependent dedifferentiation of Gata6 + epidermal cells resembles reversal of terminal differentiation. Nat Cell Biol 2023; 25:1426-1438. [PMID: 37735598 PMCID: PMC10567550 DOI: 10.1038/s41556-023-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Dedifferentiation is the process by which terminally differentiated cells acquire the properties of stem cells. During mouse skin wound healing, the differentiated Gata6-lineage positive cells of the sebaceous duct are able to dedifferentiate. Here we have integrated lineage tracing and single-cell mRNA sequencing to uncover the underlying mechanism. Gata6-lineage positive and negative epidermal stem cells in wounds are transcriptionally indistinguishable. Furthermore, in contrast to reprogramming of induced pluripotent stem cells, the same genes are expressed in the epidermal dedifferentiation and differentiation trajectories, indicating that dedifferentiation does not involve adoption of a new cell state. We demonstrate that dedifferentiation is not only induced by wounding, but also by retinoic acid treatment or mechanical expansion of the epidermis. In all three cases, dedifferentiation is dependent on the master transcription factor c-Myc. Mechanotransduction and actin-cytoskeleton remodelling are key features of dedifferentiation. Our study elucidates the molecular basis of epidermal dedifferentiation, which may be generally applicable to adult tissues.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Shahnawaz Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Toru Hiratsuka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Japan
| | - Matteo Battilocchi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Inês M Tomás
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Directors' Unit, EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
13
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
14
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
15
|
Buhe H, Ma JX, Ye FZ, Song CY, Chen XY, Liu Y, Lin H, Han X, Ma LX, Saiyin H. IDO-1 inhibitor INCB24360 elicits distant metastasis of basal extruded cancer cells in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 44:1277-1289. [DOI: 10.1038/s41401-022-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractNeoplastic cells of non-immunogenic pancreatic ductal adenocarcinoma (PDAC) express indoleamine 2,3-dioxygenase 1 (IDO-1), an immunosuppressive enzyme. The metabolites of IDO-1 in cancers provide one-carbon units that annihilate effector T cells, and recruit immunosuppressive cells. In this study we investigated how IDO-1 affected the neoplastic cell behaviors in PDACs. Using multiple markers co-labeling method in 45-µm-thick tissue sections, we showed that IDO-1 expression was uniquely increased in the neoplastic cells extruded from ducts’ apical or basal domain, but decreased in lymph metastatic cells. IDO-1+ extruding neoplastic cells displayed increased vimentin expression and decreased cytokeratin expression in PDACs, characteristics of epithelial-mesenchymal transition (EMT). However, IDO-1 expression was uncorrelated with immunosuppressive infiltrates and clinicopathological characteristics of grim outcome. We replicated basal extrusion with EMT in murine KPIC PDAC organoids by long-term IFN-γ induction; application of IDO-1 inhibitor INCB24360 or 1-MT partially reversed basal extrusion coupled EMT. Ido-1 deletion in KPIC cells deprived its tumorigenicity in immunocompetent mice, decreased cellular proliferation and macropinocytic ability, and increased immunogenicity. KPIC organoids with IFN-γ-induced basal extrusion did not accelerate distant metastasis, whereas inhibition IFN-γ-induced IDO-1 with INB24360 but not 1-MT in KPIC organoids elicited liver metastasis of subcutaneous KPIC organoid tumors, suggesting that lower IDO-1 activity accelerated distant metastasis, whereas IDO-1 was indispensable for tumorigenicity of PDAC cells and supports the survival of extruding cells.
Collapse
|
16
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
17
|
An SY, Kim HS, Kim SY, Van SY, Kim HJ, Lee JH, Han SW, Kwon IK, Lee CK, Do SH, Hwang YS. Keratin-mediated hair growth and its underlying biological mechanism. Commun Biol 2022; 5:1270. [PMID: 36402892 PMCID: PMC9675858 DOI: 10.1038/s42003-022-04232-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Here we show that intradermal injection of keratin promotes hair growth in mice, which results from extracellular interaction of keratin with hair forming cells. Extracellular application of keratin induces condensation of dermal papilla cells and the generation of a P-cadherin-expressing cell population (hair germ) from outer root sheath cells via keratin-mediated microenvironmental changes. Exogenous keratin-mediated hair growth is reflected by the finding that keratin exposure from transforming growth factor beta 2 (TGFβ2)-induced apoptotic outer root sheath cells appears to be critical for dermal papilla cell condensation and P-cadherin-expressing hair germ formation. Immunodepletion or downregulation of keratin released from or expressed in TGFβ2-induced apoptotic outer root sheath cells negatively influences dermal papilla cell condensation and hair germ formation. Our pilot study provides an evidence on initiating hair regeneration and insight into the biological function of keratin exposed from apoptotic epithelial cells in tissue regeneration and development.
Collapse
Affiliation(s)
- Seong Yeong An
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Hyo-Sung Kim
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - So Yeon Kim
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.411311.70000 0004 0532 4733Present Address: Department of Dental Hygiene, College of Health Science, Cheongju University, Cheongju, 360-764 Republic of Korea
| | - Se Young Van
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Han Jun Kim
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea ,grid.419901.4Present Address: Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Jae-Hyung Lee
- grid.289247.20000 0001 2171 7818Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Song Wook Han
- KeraMedix Inc, # 204, Open Innovation Bld, Hongryeung Bio-Cluster, 117-3 Hoegi-ro, Dongdaemun-gu, Seoul, 02455 Republic of Korea
| | - Il Keun Kwon
- grid.289247.20000 0001 2171 7818Department of Dental Materials, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Chul-Kyu Lee
- Headquarters of New Drug Development Support, Chemon Inc. 15 F, Gyeonggi Bio Center, Cheongju, Gyeonggi-do 16229 Republic of Korea
| | - Sun Hee Do
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Yu-Shik Hwang
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| |
Collapse
|
18
|
Okamoto S, Miyano K, Choshi T, Sugisawa N, Nishiyama T, Kotouge R, Yamamura M, Sakaguchi M, Kinoshita R, Tomonobu N, Katase N, Sasaki K, Nishina S, Hino K, Kurose K, Oka M, Kubota H, Ueno T, Hirai T, Fujiwara H, Kawai C, Itadani M, Morihara A, Matsushima K, Kanegasaki S, Hoffman RM, Yamauchi A, Kuribayashi F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed Pharmacother 2022; 155:113733. [DOI: 10.1016/j.biopha.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
|
19
|
Manzer HS, Nguyen DT, Park JY, Park N, Seo KS, Thornton JA, Nobbs AH, Doran KS. The Group B Streptococcal Adhesin BspC Interacts with Host Cytokeratin 19 To Promote Colonization of the Female Reproductive Tract. mBio 2022; 13:e0178122. [PMID: 36069447 PMCID: PMC9600255 DOI: 10.1128/mbio.01781-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Streptococcus agalactiae, otherwise known as Group B Streptococcus (GBS), is an opportunistic pathogen that vaginally colonizes approximately one third of healthy women. During pregnancy, this can lead to in utero infection, resulting in premature rupture of membranes, chorioamnionitis, and stillbirths. Furthermore, GBS causes serious infection in newborns, including sepsis, pneumonia, and meningitis. Previous studies have indicated that GBS antigen (Ag) I/II family proteins promote interaction with vaginal epithelial cells; thus, we hypothesized that the Ag I/II Group B streptococcal surface protein C (BspC) contributes to GBS colonization of the female reproductive tract (FRT). Here, we show that a ΔbspC mutant has decreased bacterial adherence to vaginal, ecto-, and endocervical cells, as well as decreased auto-aggregation and biofilm-like formation on cell monolayers. Using a murine model of vaginal colonization, we observed that the ΔbspC mutant strain exhibited a significant fitness defect compared to wild-type (WT) GBS and was less able to ascend to the cervix and uterus in vivo, resulting in reduced neutrophil chemokine signaling. Furthermore, we determined that BspC interacts directly with the host intermediate filament protein cytokeratin 19 (K19). Surface localization of K19 was increased during GBS infection, and interaction was mediated by the BspC variable (V) domain. Finally, mice treated with a drug that targets the BspC V-domain exhibited reduced bacterial loads in the vaginal lumen and reproductive tissues. These results demonstrate the importance of BspC in promoting GBS colonization of the FRT and that it may be targeted therapeutically to reduce GBS vaginal persistence and ascending infection. IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract (FRT) of up to one third of women, but GBS carriage can lead to adverse pregnancy outcomes, including premature rupture of membranes, preterm labor, and chorioamnionitis. GBS colonization during pregnancy is also the largest predisposing factor for neonatal GBS disease, including pneumonia, sepsis, and meningitis. The molecular interactions between bacterial surface proteins and the host cell receptors that promote GBS colonization are vastly understudied, and a better understanding would facilitate development of novel therapeutics to prevent GBS colonization and disease. Here, we characterize the role of the GBS surface protein BspC in colonization of the FRT. We show for the first time that GBS infection induces cytokeratin 19 (K19) surface localization on vaginal epithelial cells; GBS then uses the BspC V-domain to interact with K19 to promote colonization and ascending infection. Furthermore, this interaction can be targeted therapeutically to reduce GBS carriage.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dustin T. Nguyen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Joo Youn Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Nogi Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Mississippi State University, Department of Biological Sciences, Mississippi State, Mississippi, USA
| | - Angela H. Nobbs
- University of Bristol, Bristol Dental School, Bristol, United Kingdom
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| |
Collapse
|
20
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
21
|
Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Increased expression of SYCP2 predicts poor prognosis in patients suffering from breast carcinoma. Front Genet 2022; 13:922401. [PMID: 36159998 PMCID: PMC9491682 DOI: 10.3389/fgene.2022.922401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Overexpression of synaptonemal complex protein-2 (SYCP2) has been identified in various human papillomavirus (HPV)–related carcinomas, whereas its significant role in breast carcinoma remains unclear. The aim of this study was to elucidate the prognostic value and potential function of SYCP2 in breast carcinoma. Herein, data for breast carcinoma patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas database (TCGA) were analyzed. The enrichment analysis of SYCP2 including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Friends, and GSEA was performed. Kaplan–Meier analysis, Cox regression, and receiver operating characteristic (ROC) curves were employed for determining the predictive value of SYCP2 on clinical outcomes in patients suffering from breast carcinoma. A nomogram was generated to predict the effect arising from SYCP2 on prognosis. The association analysis of SYCP2 gene expression and diverse immune infiltration levels was conducted through ssGSEA and ESTIMATE analysis, which consisted of dendritic cell (DC), neutrophil, eosinophil, macrophage, mast cell, NK cell, and other 18 cell subtypes. The results showed that SYCP2 expression was significantly elevated in breast carcinoma tissues as compared with that of normal tissues (p < 0.001). SYCP2 plays a certain role in pathways related to DNA methylation, keratinocyte differentiation, steroid hormone biosynthesis, and immune infiltration. The high expression of SYCP2 had a significant relationship to age, pathological type, ER expression, and PR expression (p < 0.001). Kaplan–Meier survival analysis showed that patients suffering from breast carcinoma characterized by high-SYCP2 expression had a poorer prognosis than patients with low-SYCP2 expression (p = 0.005). Univariate and multivariate Cox regression analyses revealed that SYCP2 had an independent relationship to overall survival (p = 0.049). Moreover, ROC curves suggested the significant diagnostic ability of SYCP2 for breast carcinoma, and as time went on, SYCP2 had more accurate prognostic efficacy. Furthermore, a high level of SYCP2 expression was found to have a relationship to poor prognosis of breast carcinoma in the subgroups of T3, N0, and M0, and infiltrating ductal carcinoma (HR > 1, p < 0.05). The calibration plot of the nomogram indicated that the SYCP2 model has an effective predictive performance for breast carcinoma patients. Conclusively, SYCP2 plays a vital role in the pathogenesis and progression of human breast carcinoma, so it may serve as a promising prognostic molecular marker of poor survival.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Ge Lou,
| |
Collapse
|
22
|
Infante E, Etienne-Manneville S. Intermediate filaments: Integration of cell mechanical properties during migration. Front Cell Dev Biol 2022; 10:951816. [PMID: 35990612 PMCID: PMC9389290 DOI: 10.3389/fcell.2022.951816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cell migration is a vital and dynamic process required for the development of multicellular organisms and for immune system responses, tissue renewal and wound healing in adults. It also contributes to a variety of human diseases such as cancers, autoimmune diseases, chronic inflammation and fibrosis. The cytoskeleton, which includes actin microfilaments, microtubules, and intermediate filaments (IFs), is responsible for the maintenance of animal cell shape and structural integrity. Each cytoskeletal network contributes its unique properties to dynamic cell behaviour, such as cell polarization, membrane protrusion, cell adhesion and contraction. Hence, cell migration requires the dynamic orchestration of all cytoskeleton components. Among these, IFs have emerged as a molecular scaffold with unique mechanical features and a key player in the cell resilience to mechanical stresses during migration through complex 3D environment. Moreover, accumulating evidence illustrates the participation of IFs in signalling cascades and cytoskeletal crosstalk. Teaming up with actin and microtubules, IFs contribute to the active generation of forces required for cell adhesion and mesenchymal migration and invasion. Here we summarize and discuss how IFs integrate mechanical properties and signalling functions to control cell migration in a wide spectrum of physiological and pathological situations.
Collapse
Affiliation(s)
- Elvira Infante
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
23
|
Yoon S, Windoffer R, Kozyrina AN, Piskova T, Di Russo J, Leube RE. Combining Image Restoration and Traction Force Microscopy to Study Extracellular Matrix-Dependent Keratin Filament Network Plasticity. Front Cell Dev Biol 2022; 10:901038. [PMID: 35646906 PMCID: PMC9131083 DOI: 10.3389/fcell.2022.901038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.
Collapse
Affiliation(s)
- Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aleksandra N Kozyrina
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Rai A, Ferrão R, Marta D, Vilaça A, Lino M, Rondão T, Ji J, Paiva A, Ferreira L. Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24213-24228. [PMID: 35584375 DOI: 10.1021/acsami.2c06601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
No effective therapeutic dressings are currently available in the market that can prevent bacterial infection and simultaneously promote skin regeneration in diabetic patients. The lack of re-epithelization, prevalence of inflammation, and high risk of infection are hallmarks of non-healing wounds. Here, we have evaluated the antimicrobial and pro-regenerative effect of a relatively non-leaching LL37 peptide immobilized in polyurethane (PU)-based wound dressings (PU-adhesive-LL37 dressing). The PU-adhesive-LL37 (63 μg LL37NPs/cm2) dressing killed Gram-positive and Gram-negative bacteria in human serum without inducing bacterial resistance after 16 antimicrobial test cycles in contrast to commercially available dressings with the capacity to release antimicrobial Ag ions. Importantly, type II diabetic mice (db/db mice) treated with the PU-adhesive-LL37 dressing for different periods of time (6 or 14 days) showed enhanced wound healing and re-epithelialization (i.e., high keratin 14/5 levels) and lower macrophage infiltration in the wounds compared to animals treated with PU. The wounds treated with PU-adhesive-LL37 dressings showed also low expression of pro-inflammatory cytokines such as TNF-α and IL6 after 6 days of treatment, indicating that they act as an anti-inflammatory dressing. Additionally, PU-adhesive-LL37 dressings do not induce acute inflammatory responses in the peripheral blood mononuclear cells (PBMCs) after 3 days of exposure, in contrast to controls. Taken together, PU-adhesive-LL37NP dressings might prevent the bacterial infections and facilitate wound healing by tissue contact, inducing re-epithelialization and anti-inflammatory processes in diabetic conditions.
Collapse
Affiliation(s)
- Akhilesh Rai
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Rafaela Ferrão
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
| | - Denise Marta
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Andreia Vilaça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Miguel Lino
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Tiago Rondão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra 3001-301, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de Medicina, Universidade de Coimbra, Polo III-Health Sciences Campus, Coimbra 3000-548, Portugal
- ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Coimbra 3040-854, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| |
Collapse
|
25
|
Nahaboo W, Eski SE, Despin-Guitard E, Vermeersch M, Versaevel M, Saykali B, Monteyne D, Gabriele S, Magin TM, Schwarz N, Leube RE, Zwijsen A, Perez-Morga D, Singh SP, Migeotte I. Keratin filaments mediate the expansion of extra-embryonic membranes in the post-gastrulation mouse embryo. EMBO J 2022; 41:e108747. [PMID: 35266581 PMCID: PMC8982622 DOI: 10.15252/embj.2021108747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.
Collapse
Affiliation(s)
- Wallis Nahaboo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sema Elif Eski
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Bechara Saykali
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Thomas M Magin
- Division of Cell & Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - David Perez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium.,Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
27
|
Jong RM, Van Dis E, Berry SB, Nguyenla X, Baltodano A, Pastenkos G, Xu C, Fox D, Yosef N, McWhirter SM, Stanley SA. Mucosal Vaccination with Cyclic Dinucleotide Adjuvants Induces Effective T Cell Homing and IL-17-Dependent Protection against Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:407-419. [PMID: 34965963 PMCID: PMC8755605 DOI: 10.4049/jimmunol.2100029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023]
Abstract
Tuberculosis consistently causes more deaths worldwide annually than any other single pathogen, making new effective vaccines an urgent priority for global public health. Among potential adjuvants, STING-activating cyclic dinucleotides (CDNs) uniquely stimulate a cytosolic sensing pathway activated only by pathogens. Recently, we demonstrated that a CDN-adjuvanted protein subunit vaccine robustly protects against tuberculosis infection in mice. In this study, we delineate the mechanistic basis underlying the efficacy of CDN vaccines for tuberculosis. CDN vaccines elicit CD4 T cells that home to lung parenchyma and penetrate into macrophage lesions in the lung. Although CDNs, like other mucosal vaccines, generate B cell-containing lymphoid structures in the lungs, protection is independent of B cells. Mucosal vaccination with a CDN vaccine induces Th1, Th17, and Th1-Th17 cells, and protection is dependent upon both IL-17 and IFN-γ. Single-cell RNA sequencing experiments reveal that vaccination enhances a metabolic state in Th17 cells reflective of activated effector function and implicate expression of Tnfsf8 (CD153) in vaccine-induced protection. Finally, we demonstrate that simply eliciting Th17 cells via mucosal vaccination with any adjuvant is not sufficient for protection. A vaccine adjuvanted with deacylated monophosphoryl lipid A (MPLA) failed to protect against tuberculosis infection when delivered mucosally, despite eliciting Th17 cells, highlighting the unique promise of CDNs as adjuvants for tuberculosis vaccines.
Collapse
Affiliation(s)
- Robyn M Jong
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Samuel B Berry
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Xammy Nguyenla
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Alexander Baltodano
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Gabrielle Pastenkos
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA
| | - Chenling Xu
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
| | - Douglas Fox
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; and
| | | | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA;
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
28
|
Haimov E, Urbakh M, Kozlov MM. Negative tension controls stability and structure of intermediate filament networks. Sci Rep 2022; 12:16. [PMID: 34996899 PMCID: PMC8741771 DOI: 10.1038/s41598-021-02536-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
29
|
Villalobos Lizardi JC, Baranger J, Nguyen MB, Asnacios A, Malik A, Lumens J, Mertens L, Friedberg MK, Simmons CA, Pernot M, Villemain O. A guide for assessment of myocardial stiffness in health and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:8-22. [PMID: 39196108 DOI: 10.1038/s44161-021-00007-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 08/29/2024]
Abstract
Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.
Collapse
Affiliation(s)
- José Carlos Villalobos Lizardi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Minh B Nguyen
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Aimen Malik
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
31
|
Gouveia M, Sorčan T, Zemljič-Jokhadar Š, Travasso RDM, Liović M. A mathematical model for the dependence of keratin aggregate formation on the quantity of mutant keratin expressed in EGFP-K14 R125P keratinocytes. PLoS One 2021; 16:e0261227. [PMID: 34962936 PMCID: PMC8714116 DOI: 10.1371/journal.pone.0261227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
We examined keratin aggregate formation and the possible mechanisms involved. With this aim, we observed the effect that different ratios between mutant and wild-type keratins expressed in cultured keratinocytes may have on aggregate formation in vitro, as well as how keratin aggregate formation affects the mechanical properties of cells at the cell cortex. To this end we prepared clones with expression rates as close as possible to 25%, 50% and 100% of the EGFP-K14 proteins (either WT or R125P and V270M mutants). Our results showed that only in the case of the 25% EGFP-K14 R125P mutant significant differences could be seen. Namely, we observed in this case the largest accumulation of keratin aggregates and a significant reduction in cell stiffness. To gain insight into the possible mechanisms behind this observation, we extended our previous mathematical model of keratin dynamics by implementing a more complex reaction network that considers the coexistence of wild-type and mutant keratins in the cell. The new model, consisting of a set of coupled, non-linear, ordinary differential equations, allowed us to draw conclusions regarding the relative amounts of intermediate filaments and aggregates in cells, and suggested that aggregate formation by asymmetric binding between wild-type and mutant keratins could explain the data obtained on cells grown in culture.
Collapse
Affiliation(s)
- Marcos Gouveia
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | | | - Špela Zemljič-Jokhadar
- Faculty of Medicine, Institute for Biophysics, University of Ljubljana, Ljubljana, Slovenia
| | - Rui D. M. Travasso
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | - Mirjana Liović
- Faculty of Medicine, Medical Center for Molecular Biology, Institute for Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (MG); (RDMT); (ML)
| |
Collapse
|
32
|
Alsharif S, Sharma P, Bursch K, Milliken R, Lam V, Fallatah A, Phan T, Collins M, Dohlman P, Tiufekchiev S, Nehmetallah G, Raub CB, Chung BM. Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells. Cell Adh Migr 2021; 15:1-17. [PMID: 33393839 PMCID: PMC7801129 DOI: 10.1080/19336918.2020.1868694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
A cytoskeletal protein keratin 19 (K19) is highly expressed in breast cancer but its effects on breast cancer cell mechanics are unclear. In MCF7 cells where K19 expression is ablated,we found that K19 is required to maintain rounded epithelial-like shape and tight cell-cell adhesion. A loss of K19 also lowered cell surface E-cadherin levels. Inhibiting internalization restored cell-cell adhesion of KRT19 knockout cells, suggesting that E-cadherin internalization contributed to defective adhesion. Ultimately, while K19 inhibited cell migration and invasion, it was required for cells to form colonies in suspension. Our results suggest that K19 stabilizes E-cadherin complexes at the cell membrane to maintain cell-cell adhesion which inhibits cell invasiveness but provides growth and survival advantages for circulating tumor cells.
Collapse
Affiliation(s)
- Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Karina Bursch
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Rachel Milliken
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Van Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Thuc Phan
- Department of Electrical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Meagan Collins
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Priya Dohlman
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Georges Nehmetallah
- Department of Electrical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Christopher B. Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| |
Collapse
|
33
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
34
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
35
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
36
|
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics. Cells 2021; 10:cells10081905. [PMID: 34440673 PMCID: PMC8392029 DOI: 10.3390/cells10081905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics. In this review, we summarize our current understanding of the contribution of IFs to cell and tissue mechanics and explain these results in light of recent in vitro studies that have investigated physical properties of single IFs and IF networks. Finally, we highlight how changes in IF gene expression, network assembly dynamics, and post-translational modifications can tune IF properties to adapt cell and tissue mechanics to changing environments.
Collapse
|
37
|
Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021; 78:312-322. [PMID: 34291887 DOI: 10.1002/cm.21680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
38
|
Hymel SJ, Fujioka H, Khismatullin DB. Modeling of Deformable Cell Separation in a Microchannel with Sequenced Pillars. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Scott J. Hymel
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
| | - Hideki Fujioka
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| | - Damir B. Khismatullin
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| |
Collapse
|
39
|
Riviş M, Roi CI, Roi A, Mederle OA, Nica DF, Chioran D, Rusu LC, Iurciuc S, Văleanu A. Contribution of the cyto-histopathological diagnosis and ultrastructural parameters to the evaluation of maxillary cysts - a 10-year multidisciplinary approach. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1279-1286. [PMID: 34171075 PMCID: PMC8343477 DOI: 10.47162/rjme.61.4.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diagnostic and treatment plans in cystic jawbone tumors are often difficult to address. The etiopathogenic links involved in cell–matrix differentiation disorders are complex. Quantification of the inflammatory process in the evolution of cystic odontogenic lesions highlights a particular reactivity of the host, especially age-dependent and the endodontic–periodontal space interrelation, drawing attention to the difficulties of etiopathogenic, evolution, prognostic and treatment of these lesions. Difficulties in histopathological (HP) diagnosis are reported by the lack of morphofunctional integration of dental tissues, both topographically and evolutionarily, especially when odontogenic epithelial remains in the cystic wall, reactive bone condition, appearance and condition of the reactive epithelium are overlooked. In this study, we developed an interdisciplinary approach for the dynamics of tissue morphology found in the walls of maxillary cysts. Failure to recognize the tissues that form the cystic lesion leads to misinterpretations of pathology and to the wrong classification in the group of maxillary cysts. We analyzed by different techniques 564 biopsy fragments from maxillary cystic lesions, most of which are clinically classified as inflammatory or odontogenic ones. From our experience, we reevaluated the lesions with cystic changes and completed the diagnosis in 10–12% of cases. The most common maxillary cystic lesion encountered by us was the root cyst, an inflammatory dental cyst, which has been over diagnosed clinically, radiologically and histopathologically. Recognition and selection of embryonic remnants from odontogenesis is crucial for the HP diagnosis of maxillary cysts, allowing the clinician to monitor treatment or to develop evolutionary-prognostic perspectives of odontogenic cystic lesions.
Collapse
Affiliation(s)
- Mircea Riviş
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, Faculty of Dental Medicine, Discipline of Ambulatory Internal Medicine, Cardiovascular Prevention and Rehabilitation, Department of Cardiology, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Rapin G, Caballero N, Gaponenko I, Ziegler B, Rawleigh A, Moriggi E, Giamarchi T, Brown SA, Paruch P. Roughness and dynamics of proliferating cell fronts as a probe of cell-cell interactions. Sci Rep 2021; 11:8869. [PMID: 33893343 PMCID: PMC8065107 DOI: 10.1038/s41598-021-86684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Juxtacellular interactions play an essential but still not fully understood role in both normal tissue development and tumour invasion. Using proliferating cell fronts as a model system, we explore the effects of cell-cell interactions on the geometry and dynamics of these one-dimensional biological interfaces. We observe two distinct scaling regimes of the steady state roughness of in-vitro propagating Rat1 fibroblast cell fronts, suggesting different hierarchies of interactions at sub-cell lengthscales and at a lengthscale of 2-10 cells. Pharmacological modulation significantly affects the proliferation speed of the cell fronts, and those modulators that promote cell mobility or division also lead to the most rapid evolution of cell front roughness. By comparing our experimental observations to numerical simulations of elastic cell fronts with purely short-range interactions, we demonstrate that the interactions at few-cell lengthscales play a key role. Our methodology provides a simple framework to measure and characterise the biological effects of such interactions, and could be useful in tumour phenotyping.
Collapse
Affiliation(s)
- Guillaume Rapin
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Nirvana Caballero
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Iaroslav Gaponenko
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Benedikt Ziegler
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Audrey Rawleigh
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ermanno Moriggi
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrycja Paruch
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
42
|
Elbalasy I, Mollenkopf P, Tutmarc C, Herrmann H, Schnauß J. Keratins determine network stress responsiveness in reconstituted actin-keratin filament systems. SOFT MATTER 2021; 17:3954-3962. [PMID: 33724291 DOI: 10.1039/d0sm02261f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cytoskeleton is a major determinant of cell mechanics, and alterations in the central mechanical aspects of cells are observed during many pathological situations. Therefore, it is essential to investigate the interplay between the main filament systems of the cytoskeleton in the form of composite networks. Here, we investigate the role of keratin intermediate filaments (IFs) in network strength by studying in vitro reconstituted actin and keratin 8/18 composite filament networks via bulk shear rheology. We co-polymerized these structural proteins in varying ratios and recorded how their relative content affects the overall mechanical response of the various composites. For relatively small deformations, we found that all composites exhibited an intermediate linear viscoelastic behaviour compared to that of the pure networks. In stark contrast, when larger deformations were imposed the composites displayed increasing strain stiffening behaviour with increasing keratin content. The extent of strain stiffening is much more pronounced than in corresponding experiments performed with vimentin IF as a composite network partner for actin. Our results provide new insights into the mechanical interplay between actin and keratin filaments in which keratin provides reinforcement to actin. This interplay may contribute to the overall integrity of cells. Hence, the high keratin 8/18 content of mechanically stressed simple epithelial cell layers, as found in the lung and the intestine, provides an explanation for their exceptional stability.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
43
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
44
|
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients. Cancers (Basel) 2021; 13:cancers13051119. [PMID: 33807790 PMCID: PMC7961579 DOI: 10.3390/cancers13051119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Detection of circulating tumor cells (CTCs) in the blood of cancer patients is a challenging issue, since they adapt to the biochemical and physical landscape of the bloodstream. We approached the issue of CTC identification on a biophysical level. For the first time, we recorded the mechanical deformation profiles of potential CTCs, which were isolated from the blood of breast cancer patients, at the force regime of the deforming blood flow. Mechanical fingerprints of CTCs were significantly different from healthy white blood cells. We used machine learning to further evaluate the differences and identify discrimination criteria. Our results suggest that mechanical characterization of CTCs at low forces is a promising path towards CTC detection. Abstract Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.
Collapse
|
45
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
46
|
Laly AC, Sliogeryte K, Pundel OJ, Ross R, Keeling MC, Avisetti D, Waseem A, Gavara N, Connelly JT. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. SCIENCE ADVANCES 2021; 7:7/5/eabd6187. [PMID: 33571121 PMCID: PMC7840118 DOI: 10.1126/sciadv.abd6187] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/09/2020] [Indexed: 05/03/2023]
Abstract
The keratin network of intermediate filaments provides keratinocytes with essential mechanical strength and resilience, but the contribution to mechanosensing remains poorly understood. Here, we investigated the role of the keratin cytoskeleton in the response to altered matrix rigidity. We found that keratinocytes adapted to increasing matrix stiffness by forming a rigid, interconnected network of keratin bundles, in conjunction with F-actin stress fiber formation and increased cell stiffness. Disruption of keratin stability by overexpression of the dominant keratin 14 mutation R416P inhibited the normal mechanical response to substrate rigidity, reducing F-actin stress fibers and cell stiffness. The R416P mutation also impaired mechanotransduction to the nuclear lamina, which mediated stiffness-dependent chromatin remodeling. By contrast, depletion of the cytolinker plectin had the opposite effect and promoted increased mechanoresponsiveness and up-regulation of lamin A/C. Together, these results demonstrate that the keratin cytoskeleton plays a key role in matrix rigidity sensing and downstream signal transduction.
Collapse
Affiliation(s)
- Ana C Laly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kristina Sliogeryte
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Oscar J Pundel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael C Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Deepa Avisetti
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Serra-Hunter Program, Biophysics and Bioengineering Unit, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
47
|
Zemljič Jokhadar Š, Stojković B, Vidak M, Sorčan T, Liovic M, Gouveia M, Travasso RDM, Derganc J. Cortical stiffness of keratinocytes measured by lateral indentation with optical tweezers. PLoS One 2021; 15:e0231606. [PMID: 33382707 PMCID: PMC7774922 DOI: 10.1371/journal.pone.0231606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023] Open
Abstract
Keratin intermediate filaments are the principal structural element of epithelial cells. Their importance in providing bulk cellular stiffness is well recognized, but their role in the mechanics of cell cortex is less understood. In this study, we therefore compared the cortical stiffness of three keratinocyte lines: primary wild type cells (NHEK2), immortalized wild type cells (NEB1) and immortalized mutant cells (KEB7). The cortical stiffness was measured by lateral indentation of cells with AOD-steered optical tweezers without employing any moving mechanical elements. The method was validated on fixed cells and Cytochalasin-D treated cells to ensure that the observed variations in stiffness within a single cell line were not a consequence of low measurement precision. The measurements of the cortical stiffness showed that primary wild type cells were significantly stiffer than immortalized wild type cells, which was also detected in previous studies of bulk elasticity. In addition, a small difference between the mutant and the wild type cells was detected, showing that mutation of keratin impacts also the cell cortex. Thus, our results indicate that the role of keratins in cortical stiffness is not negligible and call for further investigation of the mechanical interactions between keratins and elements of the cell cortex.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Biljana Stojković
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Sorčan
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marcos Gouveia
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
48
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
49
|
Kozyrina AN, Piskova T, Di Russo J. Mechanobiology of Epithelia From the Perspective of Extracellular Matrix Heterogeneity. Front Bioeng Biotechnol 2020; 8:596599. [PMID: 33330427 PMCID: PMC7717998 DOI: 10.3389/fbioe.2020.596599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.
Collapse
Affiliation(s)
- Aleksandra N. Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- DWI – Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
50
|
Karsch S, Büchau F, Magin TM, Janshoff A. An intact keratin network is crucial for mechanical integrity and barrier function in keratinocyte cell sheets. Cell Mol Life Sci 2020; 77:4397-4411. [PMID: 31912195 PMCID: PMC11104923 DOI: 10.1007/s00018-019-03424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.
Collapse
Affiliation(s)
- Susanne Karsch
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Fanny Büchau
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany.
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|