1
|
Ye F, Wang Y, He Q, Cui C, Yu H, Lu Y, Zhu S, Xu H, Zhao X, Yin H, Li D, Li H, Zhu Q. Exosomes Transmit Viral Genetic Information and Immune Signals may cause Immunosuppression and Immune Tolerance in ALV-J Infected HD11 cells. Int J Biol Sci 2020; 16:904-920. [PMID: 32140061 PMCID: PMC7053331 DOI: 10.7150/ijbs.35839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Avian leukosis virus (ALV) is oncogenic retrovirus that not only causes immunosuppression but also enhances the host's susceptibility to secondary infection. Exosomes play vital role in the signal transduction cascades that occur in response to viral infection. We want to explore the function of exosomes in the spread of ALV and the body's subsequent immunological response. RNA-sequencing and the isobaric tags for relative and absolute quantitation (iTRAQ) method were used to detect differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in exosomes secreted by macrophage cells in response to injection with ALV subgroup J (ALV-J). RNA-sequencing identified 513 DEGs in infected cells, with specific differential regulation in mRNA involved in tight junction signaling, TNF signaling, salmonella infection response, and immune response, among other important cellular processes. Differential regulation was observed in 843 lncRNAs, with particular enrichment in those lncRNA targets involved in Rap1 signaling, HTLV-I infection, tight junction signaling, and other signaling pathways. A total of 50 DEPs were identified in the infected cells by iTRAQ. The proteins enriched are involved in immune response, antigen processing, the formation of both MHC protein and myosin complexes, and transport. Combined analysis of the transcriptome and proteome revealed that there were 337 correlations between RNA and protein enrichment, five of which were significant. Pathways that were enriched on both the RNA and protein levels were involved in pathways in cancer, PI3K-Akt signaling pathway, Endocytosis, Epstein-Barr virus infection. These data show that exosomes are transmitters of intercellular signaling in response to viral infection. Exosomes can carry both viral nucleic acids and proteins, making it possible for exosomes to be involved in the viral infection of other cells and the transmission of immune signals between cells. Our sequencing results confirme previous studies on exosomes and further find exosomes may cause immunosuppression and immune tolerance.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Qijian He
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Can Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Heling Yu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yuxiang Lu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Shiliang Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hua Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| |
Collapse
|
2
|
Biogenesis of Extracellular Vesicles during Herpes Simplex Virus 1 Infection: Role of the CD63 Tetraspanin. J Virol 2019; 93:JVI.01850-18. [PMID: 30355691 DOI: 10.1128/jvi.01850-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infections afflict more than 80% of the population worldwide. The virus primarily infects mucoepithelial cells and establishes latent reservoirs in neurons in sensory ganglia. Frequent reactivation has been linked to severe diseases, especially in immunocompromised individuals. Earlier, we reported that viral and host factors are packaged in extracellular vesicles (EVs) and delivered to uninfected cells, where they activate antiviral responses and restrict virus infection. Here, we interrogated the effect of HSV-1 infection on EV biogenesis. We found that HSV-1 infection causes a decrease in the amount of intracellular CD63 protein with a concomitant increase in extracellular CD63. This observation correlates with our previous finding that infected cells release more CD63-positive EVs than uninfected cells. The stimulation of CD63 exocytosis requires virus replication. CD63 is a member of the tetraspanin family of proteins that traffics between the plasma membrane and endosomal compartments and has a role in sorting cargo into the EVs. Previously, we reported that in cells depleted of CD63, HSV-1 virus yields increased, and here we provide data showing that in cells overexpressing CD63, HSV-1 virus yields decreased. Taken together, our data indicate that CD63 negatively impacts HSV-1 infection and that the CD63-positive EVs could control the dissemination of the virus in the host. Perhaps EV release by HSV-1-infected cells is a mechanism that controls virus dissemination.IMPORTANCE Intercellular communication, especially in neurons, largely relies on EVs, and modulation of EVs is known to impact physiological processes. Here, we present evidence that HSV-1 infection causes major alterations in the biogenesis of EVs, including an increase in their number and an increase in the CD63-positive population of EVs. These alterations result in an enrichment of the milieu of infection with EVs carrying signatures from infected cells. In addition to changes in the origin and type, EVs released by infected cells have differences in cargo, as they carry viral and host factors determined by the virus. The tetraspanin CD63 negatively impacts the infection, as demonstrated by CD63-knockdown and overexpression assays. A proposed mechanism involves the activation of antiviral responses in cells receiving CD63-positive EVs released by infected cells. Overall, HSV-1 causes major alterations in EVs that could contribute to HSV-1 persistence and pathogenesis.
Collapse
|
3
|
Liu L, Zhou Q, Xie Y, Zuo L, Zhu F, Lu J. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol Sin 2017; 32:349-356. [PMID: 29116589 PMCID: PMC6704204 DOI: 10.1007/s12250-017-4073-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses.
Collapse
Affiliation(s)
- Lingzhi Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Quan Zhou
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Xie
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Fanxiu Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China
- Department of Biological Science, Florida State University, Tallahassee, 32306, USA
| | - Jianhong Lu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410080, China.
- Cancer Research Institute, Central South University, Changsha, 410078, China.
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. Int J Mol Sci 2017; 18:ijms18010162. [PMID: 28098821 PMCID: PMC5297795 DOI: 10.3390/ijms18010162] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Collapse
|
5
|
Kaposi's sarcoma-associated herpesvirus: the role of lytic replication in targeted therapy. Curr Opin Infect Dis 2016; 28:611-24. [PMID: 26524334 DOI: 10.1097/qco.0000000000000213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW To discuss the role of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in viral-associated diseases and assess the progress on targeting KSHV lytic replication as a strategy to prevent KSHV-related malignancies. RECENT FINDINGS New inhibitors of viral lytic replication are being developed as well as novel modalities are being investigated to target cellular processes that the virus hijacks during its life cycle. Research has also focused on reactivating viral lytic replication in latently infected tumour cells (lytic induction therapy) to promote death of tumour cells. SUMMARY KSHV is linked to three malignancies: Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Despite significant progress in understanding KSHV pathobiology, no therapeutic guidelines for the management of KSHV-related diseases exist, and current treatments are suboptimal and associated with toxicity. Antiherpesvirus drugs have shown inconsistent results in KSHV-associated malignancies that harbour the virus in a latent state. However, lytic replication plays a crucial role in the process of tumorigenesis. Therefore, not only antiviral agents directed against the virus replicative cycle but also agents that target cellular processes that are activated by the virus are being investigated. Antivirals may also be used in combination with inducers of the viral lytic stage.
Collapse
|
6
|
Farina A, Farina GA. Fresh Insights into Disease Etiology and the Role of Microbial Pathogens. Curr Rheumatol Rep 2016; 18:1. [PMID: 26700911 DOI: 10.1007/s11926-015-0552-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens have been implicated in the initiation and/or promotion of systemic sclerosis (scleroderma, SSc); however, no evidence was found to substantiate the direct contribution to this disease in past years. Recently, significant advances have been made in understanding the role of the innate immune system in SSc pathogenesis, supporting the idea that pathogens might interact with host innate immune-regulatory responses in SSc. In light of these findings, we review the studies that identified the presence of pathogens in SSc, along with studies on pathogens implicated in driving the innate immune dysregulation in SSc. The goal of this review is to illustrate how these pathogens, specifically viruses, may play important role both as triggers of the innate immune system, and critical players in the development of SSc disease.
Collapse
Affiliation(s)
- Antonella Farina
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, "Sapienza", University of Rome, Rome, Italy.
| | - G Alessandra Farina
- Arthritis Center, Department of Rheumatology, Boston University, 72 East Concord Street, E501, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Fu H, Yang H, Zhang X, Xu W. The emerging roles of exosomes in tumor-stroma interaction. J Cancer Res Clin Oncol 2016; 142:1897-907. [PMID: 26987524 DOI: 10.1007/s00432-016-2145-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE The tumor-stroma interaction is critical for the development and progression of cancer. Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, can promote tumor growth and metastasis. Exosomes are secreted microvesicles that mediate cell-to-cell communication. Exosomal contents, including proteins, nucleic acids, and lipids, can be shuttled from donor cells to target cells. Recent studies suggest that exosomes play important roles in the tumor-stroma interaction. Herein, we review the multifaceted roles of exosomes in the tumor-stroma interaction and the underlying molecular mechanisms. METHODS Literature search for all relevant publications was performed on PubMed databases. The keywords of exosomes, tumor, stroma, CAFs, mesenchymal stem cells (MSCs) and other closely related terms were used for searching. RESULTS Tumor cell-derived exosomes induce the differentiation of fibroblasts and MSCs into CAFs. In turn, exosomes secreted by CAFs promote tumor growth, metastasis, and drug resistance through distinct mechanisms. Moreover, exosomes from stromal cells can be used as therapeutic vehicles for the delivery of anticancer drugs. CONCLUSIONS Tumor cells communicate with CAFs through exosomes, which establishes a bidirectional cross talk to promote tumor growth, metastasis, and drug resistance. Targeting exosomes in tumor-stroma interaction may have important implications for anticancer therapy.
Collapse
Affiliation(s)
- Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,The Affiliated Hospital, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Verweij FJ, de Heus C, Kroeze S, Cai H, Kieff E, Piersma SR, Jimenez CR, Middeldorp JM, Pegtel DM. Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. J Extracell Vesicles 2015; 4:26334. [PMID: 25865256 PMCID: PMC4394166 DOI: 10.3402/jev.v4.26334] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
The Epstein–Barr virus (EBV)-encoded oncoprotein latent membrane protein 1 (LMP1) constitutively activates nuclear factor κB (NFκB) from intracellular membranes to promote cell growth and survival. LMP1 associates with CD63 in intracellular membranes and is released via exosomes. Whether tumour necrosis factor (TNF) receptor-associated factors (TRAFs) mediate LMP1 NFκB signalling from endosomes and modulate exosomal sorting is unknown. In this article, we show that LMP1–TRAF2 signalling complexes accumulate at endosomes in a palmitoylation-dependent manner, thereby driving LMP1-dependent oncogenicity. Palmitoylation is a reversible post-translational modification and is considered to function as a membrane anchor for proteins. Mutagenesis studies showed that LMP1–TRAF2 trafficking to endosomes is dependent on one single cysteine residue (C78), a known palmitoylation site of LMP1. Notably, growth assays in soft agar revealed that oncogenic properties of the palmitoylation-deficient LMP1 mutant C78A were diminished compared to wild-type LMP1. Since LMP1 recruitment of TRAF2 and downstream NFκB signalling were not affected by a disturbance in palmitoylation, the specific localization of LMP1 at endosomal membranes appears crucial for its transforming potential. The importance of palmitoylation for trafficking to and signalling from endosomal membranes was not restricted to LMP1, as similar observations were made for the cellular oncoproteins Src and Fyn. Despite abundant LMP1–TRAF2 association at endosomal membranes TRAF2 could not be detected in exosomes by Western blotting or proteomics. Interestingly, point mutations that prevented TRAF binding strongly promoted the sorting and release of LMP1 via exosomes. These observations reveal that LMP1–TRAF2 complexes at endosomes support oncogenic NFκB activation and suggest that LMP1 dissociates from the activated signalling complexes upon sorting into intraluminal vesicles. We propose that “signalling endosomes” in EBV-infected tumour cells can fuse with the plasma membrane, explaining LMP1 release via exosomes.
Collapse
Affiliation(s)
- Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cecilia de Heus
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Houjian Cai
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott Kieff
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap M Middeldorp
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands;
| |
Collapse
|
9
|
Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:179486. [PMID: 24963475 PMCID: PMC4055162 DOI: 10.1155/2014/179486] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Cancer development is a multistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.
Collapse
|