1
|
Guo S, Chang Y, Brun YV, Howell PL, Burrows LL, Liu J. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nat Commun 2024; 15:9382. [PMID: 39477930 PMCID: PMC11525922 DOI: 10.1038/s41467-024-53638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Type IV pili (T4P) produced by the pathogen Pseudomonas aeruginosa play a pivotal role in adhesion, surface motility, biofilm formation, and infection in humans. Despite the significance of T4P as a potential therapeutic target, key details of their dynamic assembly and underlying molecular mechanisms of pilus extension and retraction remain elusive, primarily due to challenges in isolating intact T4P machines from the bacterial cell envelope. Here, we combine cryo-electron tomography with subtomogram averaging and integrative modelling to resolve in-situ architectural details of the dynamic T4P machine in P. aeruginosa cells. The T4P machine forms 7-fold symmetric cage-like structures anchored in the cell envelope, providing a molecular framework for the rapid exchange of major pilin subunits during pilus extension and retraction. Our data suggest that the T4P adhesin PilY1 forms a champagne-cork-shaped structure, effectively blocking the secretin channel in the outer membrane whereas the minor-pilin complex in the periplasm appears to contact PilY1 via the central pore of the secretin gate. These findings point to a hypothetical model where the interplay between the secretin protein PilQ and the PilY1-minor-pilin priming complex is important for optimizing conformations of the T4P machine in P. aeruginosa, suggesting a gate-keeping mechanism that regulates pilus dynamics.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
- Department of Cell Biology and Department of Infectious Disease of Sir Run Run Shaw Hospital, Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lori L Burrows
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
2
|
Yaman D, Averhoff B. Identification of subcomplexes and protein-protein interactions in the DNA transporter of Thermus thermophilus HB27. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184363. [PMID: 38909880 DOI: 10.1016/j.bbamem.2024.184363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus comprises at least 16 competence proteins. Recently we found that the outer membrane (OM) competence protein PilW interacts with the secretin channel, which guides type IV pili (T4P) and potential DNA transporter pseudopili through the OM. Here we have used biochemical techniques to study the interactions of cytoplasmic, inner membrane (IM) and OM components of the DNA transporter in T. thermophilus. We report that PilW is part of a heteropolymeric complex comprising of the cytoplasmic PilM protein, IM proteins PilN, PilO, PilC and the secretin PilQ. Co-purification studies revealed that PilO directly interacts with PilW. In vitro affinity co-purification studies using His-tagged PilC led to the detection of PilC-, PilW-, PilN- and PilO-containing complexes. PilO was identified as direct interaction partner of the polytopic IM protein PilC. PilC was also found to directly interact with the cytoplasmic T4P disassembly ATPase PilT1 thereby triggering PilT1 ATPase activity. This, together with the detection of heteropolymeric PilC complexes which contain PilT1 and the pilins PilA2, PilA4 and PilA5 is in line with the hypothesis that PilC connects the depolymerization ATPase to the base of the pili possibly allowing energy transduction for disassembly of the pilins.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
3
|
Li Y, Santos-Moreno J, Francetic O. The periplasmic coiled coil formed by the assembly platform proteins PulL and PulM is critical for function of the Klebsiella type II secretion system. Res Microbiol 2023; 174:104075. [PMID: 37141929 DOI: 10.1016/j.resmic.2023.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Bacteria use type II secretion systems (T2SS) to secrete to their surface folded proteins that confer diverse functions, from nutrient acquisition to virulence. In the Klebsiella species, T2SS-mediated secretion of pullulanase (PulA) requires assembly of a dynamic filament called the endopilus. The inner membrane assembly platform (AP) subcomplex is essential for endopilus assembly and PulA secretion. AP components PulL and PulM interact with each other through their C-terminal globular domains and transmembrane segments. Here, we investigated the roles of their periplasmic helices, predicted to form a coiled coil, in assembly and function of the PulL-PulM complex. PulL and PulM variants lacking these periplasmic helices were defective for interaction in the bacterial two-hybrid (BACTH) assay. Their functions in PulA secretion and assembly of PulG subunits into endopilus filaments were strongly reduced. Interestingly, deleting the cytoplasmic peptide of PulM nearly abolished the function of variant PulMΔN and its interaction with PulG, but not with PulL, in the BACTH assay. Nevertheless, PulL was specifically proteolyzed in the presence of the PulMΔN variant, suggesting that PulM N-terminal peptide stabilizes PulL in the cytoplasm. We discuss the implications of these results for the T2S endopilus and type IV pilus assembly mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| | - Javier Santos-Moreno
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| |
Collapse
|
4
|
Abstract
Type 4 pili (T4P) are retractable surface appendages found on numerous bacteria and archaea that play essential roles in various microbial functions, including host colonization by pathogens. An ATPase is required for T4P extension, but the mechanism by which chemical energy is transduced to mechanical energy for pilus extension has not been elucidated. Here, we report the cryo-electron microscopy (cryo-EM) structure of the BfpD ATPase from enteropathogenic Escherichia coli (EPEC) in the presence of either ADP or a mixture of ADP and AMP-PNP. Both structures, solved at 3 Å resolution, reveal the typical toroid shape of AAA+ ATPases and unambiguous 6-fold symmetry. This 6-fold symmetry contrasts with the 2-fold symmetry previously reported for other T4P extension ATPase structures, all of which were from thermophiles and solved by crystallography. In the presence of the nucleotide mixture, BfpD bound exclusively AMP-PNP, and this binding resulted in a modest outward expansion in comparison to the structure in the presence of ADP, suggesting a concerted model for hydrolysis. De novo molecular models reveal a partially open configuration of all subunits where the nucleotide binding site may not be optimally positioned for catalysis. ATPase functional studies reveal modest activity similar to that of other extension ATPases, while calculations indicate that this activity is insufficient to power pilus extension. Our results reveal that, despite similarities in primary sequence and tertiary structure, T4P extension ATPases exhibit divergent quaternary configurations. Our data raise new possibilities regarding the mechanism by which T4P extension ATPases power pilus formation. IMPORTANCE Type 4 pili are hairlike surface appendages on many bacteria and archaea that can be extended and retracted with tremendous force. They play a critical role in disease caused by several deadly human pathogens. Pilus extension is made possible by an enzyme that converts chemical energy to mechanical energy. Here, we describe the three-dimensional structure of such an enzyme from a human pathogen in unprecedented detail, which reveals a mechanism of action that has not been seen previously among enzymes that power type 4 pilus extension.
Collapse
|
5
|
An in silico reverse vaccinology study of Brachyspira pilosicoli, the causative organism of intestinal spirochaetosis, to identify putative vaccine candidates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Liu YL, Ding R, Jia XM, Huang JJ, Yu S, Chan HT, Li W, Mao LL, Zhang L, Zhang XY, Wu W, Ni AP, Xu YC. Correlation of Moraxella catarrhalis macrolide susceptibility with the ability to adhere and invade human respiratory epithelial cells. Emerg Microbes Infect 2022; 11:2055-2068. [PMID: 35904140 PMCID: PMC9448378 DOI: 10.1080/22221751.2022.2108341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, the prevalence of macrolide-resistant Moraxella catarrhalis has been reported, especially among Chinese children. The fitness cost of resistance is reported to render the resistant bacteria less virulent. To investigate the correlation between macrolide susceptibility of M. catarrhalis and pathogenicity, the whole genome of 70 M. catarrhalis isolates belonging to four clonal complexes with different macrolide susceptibilities was sequenced. The gene products were annotated with the Gene Ontology terms. Based on 46 extracted essential virulence genes, 19 representative isolates were selected to infect type II alveolar cells (A549 cells). The ability of these isolates to adhere and invade human epithelial cells and to produce cytokines was comparatively analysed. Furthermore, mice were infected with a pair of M. catarrhalis isolates with different pathogenic behaviours and macrolide susceptibilities to examine pulmonary clearance, histological findings, and the production of cytokines. The percentages of annotations for binding, metabolic process, cellular process, and cell were non-significantly different between the macrolide-resistant and macrolide-susceptible groups. The presence of uspA2, uspA2H, pilO, lbpB, lex1, modM, mboIA, and mboIB significantly differed among the four clonal complexes and macrolide susceptibility groups. Furthermore, compared with those in macrolide-susceptible isolates, the adhesion ability was stronger (P = 0.0019) and the invasion ability was weaker (P < 0.0001) in the macrolide-resistant isolates. Mouse experiments revealed that pulmonary macrophages elicit immune responses against M. catarrhalis infection by significantly upregulating the Csf2, Il4, Il13, Il1b, Il6, Tnf, and Il18. Therefore, M. catarrhalis populations exhibited diverse pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Ya-Li Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Rui Ding
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Xin-Miao Jia
- Medical Research Center, State Key laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Jing-Jing Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Shuying Yu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Wei Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Lei-Li Mao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Xin-Yao Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Wei Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - An-Ping Ni
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| |
Collapse
|
7
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
8
|
Kirchner L, Averhoff B. DNA binding by pilins and their interaction with the inner membrane platform of the DNA transporter in Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183818. [PMID: 34774498 DOI: 10.1016/j.bbamem.2021.183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1-PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.
Collapse
Affiliation(s)
- Lennart Kirchner
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
9
|
Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophiles 2021; 25:425-436. [PMID: 34542714 PMCID: PMC8578077 DOI: 10.1007/s00792-021-01242-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.
Collapse
|
10
|
Llontop EE, Cenens W, Favaro DC, Sgro GG, Salinas RK, Guzzo CR, Farah CS. The PilB-PilZ-FimX regulatory complex of the Type IV pilus from Xanthomonas citri. PLoS Pathog 2021; 17:e1009808. [PMID: 34398935 PMCID: PMC8389850 DOI: 10.1371/journal.ppat.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/26/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.
Collapse
Affiliation(s)
- Edgar E. Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Denize C. Favaro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Orgânica, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane R. Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Yaman D, Averhoff B. Functional dissection of structural regions of the Thermus thermophilus competence protein PilW: Implication in secretin complex stability, natural transformation and pilus functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183666. [PMID: 34143999 DOI: 10.1016/j.bbamem.2021.183666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023]
Abstract
Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2/ΔpilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW∆2-40, pilW∆50-150, pilW∆163-216 and pilW∆216-292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
12
|
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol 2020; 115:412-424. [PMID: 33283907 DOI: 10.1111/mmi.14664] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Indexed: 12/17/2022]
Abstract
The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
13
|
Clark MM, Reguera G. Biology and biotechnology of microbial pilus nanowires. J Ind Microbiol Biotechnol 2020; 47:897-907. [PMID: 33009965 DOI: 10.1007/s10295-020-02312-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Type IV pili (T4P) are bacterial appendages used for cell adhesion and surface motility. In metal-reducing bacteria in the genus Geobacter, they have the unique property of being conductive and essential to wire cells to extracellular electron acceptors and other cells within biofilms. These electroactive bacteria use a conserved pathway for biological assembly and disassembly of a short and aromatic dense peptide subunit (pilin). The polymerization of the pilins clusters aromatic residues optimally for charge transport and exposes ligands for metal immobilization and reduction. The simple design yet unique functionalities of conductive T4P afford opportunities for the scaled-up production of recombinant pilins and their in vitro assembly into electronic biomaterials of biotechnological interest. This review summarizes current knowledge of conductive T4P biogenesis and functions critical to actualize applications in bioelectronics, bioremediation, and nanotechnology.
Collapse
Affiliation(s)
- Morgen M Clark
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd, Rm 6190, Biomedical and Physical Science Building, East Lansing, MI, 48823, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd, Rm 6190, Biomedical and Physical Science Building, East Lansing, MI, 48823, USA.
| |
Collapse
|
14
|
Liu S, Wang J, Zhang J, Wang T, Zhou Y, Lv Q, Hu N, Shen X, Deng X. Tectorigenin reduces type IV pilus-dependent cell adherence in Clostridium perfringens. FEMS Microbiol Lett 2020; 366:5498297. [PMID: 31125043 DOI: 10.1093/femsle/fnz112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals around the globe. The type IV pilus (TFP) system plays a key role in the colonization and invasion of host cells, biofilm formation and gliding motility, which is vital for C. perfringens infection. Therefore, targeting TFP function may be a promising strategy for the treatment of C. perfringens infection. Here, we investigated the potential inhibitory effects of tectorigenin (TE), an isoflavone extracted from the rhizome of the Chinese herb Belamcanda chinensis (L.) DC, on gliding motility, biofilm formation, adherence to cells and antibacterial activity of C. perfringens. Tectorigenin significantly inhibited gliding motility, biofilm formation and adherence to Caco-2 cells without observable antibacterial activity against C. perfringens. In addition, we also demonstrated that the inhibitory effect of TE on TFP function appears to be partially achieved by the suppression of TFP-associated genes. These findings demonstrate that TE may have the potential to be developed as a new anti-virulence drug for C. perfringens infection, particularly for the targeting of TFP.
Collapse
Affiliation(s)
- Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qianghua Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Naiyu Hu
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xue Shen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
15
|
Auffret MD, Stewart RD, Dewhurst RJ, Duthie CA, Watson M, Roehe R. Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency. Front Microbiol 2020; 11:1229. [PMID: 32582125 PMCID: PMC7292206 DOI: 10.3389/fmicb.2020.01229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, Bos Taurus cattle offered one high concentrate diet (92% concentrate-8% straw) during two independent trials allowed us to classify 72 animals comprising of two cattle breeds as "Low" or "High" feed efficiency groups. Digesta samples were taken from individual beef cattle at the abattoir. After metagenomic sequencing, the rumen microbiome composition and genes were determined. Applying a targeted approach based on current biological evidence, 27 genes associated with host-microbiome interaction activities were selected. Partial least square analysis enabled the identification of the most significant genes and genera of feed efficiency (VIP > 0.8) across years of the trial and breeds when comparing all potential genes or genera together. As a result, limited number of genes explained about 40% of the variability in both feed efficiency indicators. Combining information from rumen metagenome-assembled genomes and partial least square analysis results, microbial genera carrying these genes were determined and indicated that a limited number of important genera impacting on feed efficiency. In addition, potential mechanisms explaining significant difference between Low and High feed efficiency animals were analyzed considering, based on the literature, their gastrointestinal location of action. High feed efficiency animals were associated with microbial species including several Eubacterium having the genetic capacity to form biofilm or releasing metabolites like butyrate or propionate known to provide a greater contribution to cattle energy requirements compared to acetate. Populations associated with fucose sensing or hemolysin production, both mechanisms specifically described in the lower gut by activating the immune system to compete with pathogenic colonizers, were also identified to affect feed efficiency using rumen microbiome information. Microbial mechanisms associated with low feed efficiency animals involved potential pathogens within Proteobacteria and Spirochaetales, releasing less energetic substrates (e.g., acetate) or producing sialic acid to avoid the host immune system. Therefore, this study focusing on genes known to be involved in host-microbiome interaction improved the identification of rumen microbial genetic capacities and potential mechanisms significantly impacting on feed efficiency in beef cattle fed high concentrate diet.
Collapse
Affiliation(s)
| | - Robert D. Stewart
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Mick Watson
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
16
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
17
|
Mou L, Peng X, Chen Y, Xiao Q, Liao H, Liu M, Guo L, Liu Y, Zhang X, Deng D. Crystal structure of monomeric Amuc_1100 from Akkermansia muciniphila. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:168-174. [PMID: 32254050 DOI: 10.1107/s2053230x20004124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Many human diseases, such as obesity and diabetes, show annual increases in prevalence and often involve intestinal microbes. One such probiotic bacterium, Akkermansia muciniphila, which was discovered a decade ago, has been reported to influence glucose homeostasis and to contribute to gut health. Amuc_1100, a functionally uncharacterized protein of A. muciniphila, was found to be a key active component in reducing the body weight of mice. Here, the crystal structure of Amuc_1100 (residues 31-317), referred to as Amuc_1100*, is reported at 2.1 Å resolution. Amuc_1100* has a similar fold to three proteins related to pilus formation, PilO, PilN and EpsL, indicating a similar function. Biochemical investigations further confirmed a monomeric state for the soluble region of Amuc_1100, which differs from the dimeric states of PilO, PilN and EpsL. This study provides a structural basis for the elucidation of the molecular mechanism of Amuc_1100.
Collapse
Affiliation(s)
- Luqiu Mou
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xi Peng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Chen
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Qingjie Xiao
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Huijuan Liao
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Mingfeng Liu
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Guo
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
18
|
Structure and Properties of a Natural Competence-Associated Pilin Suggest a Unique Pilus Tip-Associated DNA Receptor. mBio 2019; 10:mBio.00614-19. [PMID: 31186316 PMCID: PMC6561018 DOI: 10.1128/mbio.00614-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large β-solenoid domain inserted into the β-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and β-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCE Thermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large β-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.
Collapse
|
19
|
Abstract
The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.
Collapse
|
20
|
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
|
21
|
Oikonomou CM, Jensen GJ. Electron Cryotomography of Bacterial Secretion Systems. Microbiol Spectr 2019; 7:10.1128/microbiolspec.PSIB-0019-2018. [PMID: 30953431 PMCID: PMC6452891 DOI: 10.1128/microbiolspec.psib-0019-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
In biology, function arises from form. For bacterial secretion systems, which often span two membranes, avidly bind to the cell wall, and contain hundreds of individual proteins, studying form is a daunting task, made possible by electron cryotomography (ECT). ECT is the highest-resolution imaging technique currently available to visualize unique objects inside cells, providing a three-dimensional view of the shapes and locations of large macromolecular complexes in their native environment. Over the past 15 years, ECT has contributed to the study of bacterial secretion systems in two main ways: by revealing intact forms for the first time and by mapping components into these forms. Here we highlight some of these contributions, revealing structural convergence in type II secretion systems, structural divergence in type III secretion systems, unexpected structures in type IV secretion systems, and unexpected mechanisms in types V and VI secretion systems. Together, they offer a glimpse into a world of fantastic forms-nanoscale rotors, needles, pumps, and dart guns-much of which remains to be explored.
Collapse
Affiliation(s)
- Catherine M. Oikonomou
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J. Jensen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, Pasadena, CA, USA
| |
Collapse
|
22
|
Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol 2019; 111:732-749. [PMID: 30561149 DOI: 10.1111/mmi.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Type 4a pili (T4aP) are long, thin and dynamic fibres displayed on the surface of diverse bacteria promoting adherence, motility and transport functions. Genomes of many Enterobacteriaceae contain conserved gene clusters encoding putative T4aP assembly systems. However, their expression has been observed only in few strains including Enterohaemorrhagic Escherichia coli (EHEC) and their inducers remain unknown. Here we used EHEC genomic DNA as a template to amplify and assemble an artificial operon composed of four gene clusters encoding 13 pilus assembly proteins. Controlled expressions of this operon in nonpathogenic E. coli strains led to efficient assembly of T4aP composed of the major pilin PpdD, as shown by shearing assays and immunofluorescence microscopy. When compared with PpdD pili assembled in a heterologous Klebsiella T2SS type 2 secretion system (T2SS) by using cryo-electron microscopy (cryoEM), these pili showed indistinguishable helical parameters, emphasizing that major pilins are the principal determinants of the fibre structure. Bacterial two-hybrid analysis identified several interactions of PpdD with T4aP assembly proteins, and with components of the T2SS that allow for heterologous fibre assembly. These studies lay ground for further characterization of the T4aP structure, function and biogenesis in enterobacteria.
Collapse
Affiliation(s)
- Areli Luna Rico
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France.,Structural Bioinformatics Unit and NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathalie Petiot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| |
Collapse
|
23
|
Kruse K, Salzer R, Averhoff B. The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from Thermus thermophilus. FEBS Open Bio 2018; 9:4-17. [PMID: 30652069 PMCID: PMC6325625 DOI: 10.1002/2211-5463.12548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
A major driving force for the adaptation of bacteria to changing environments is the uptake of naked DNA from the environment by natural transformation, which allows the acquisition of new capabilities. Uptake of the high molecular weight DNA is mediated by a complex transport machinery that spans the entire cell periphery. This DNA translocator catalyzes the binding and splitting of double‐stranded DNA and translocation of single‐stranded DNA into the cytoplasm, where it is recombined with the chromosome. The thermophilic bacterium Thermus thermophilus exhibits the highest transformation frequencies reported and is a model system to analyze the structure and function of this macromolecular transport machinery. Transport activity is powered by the traffic ATPase PilF, a soluble protein that forms hexameric complexes. Here, we demonstrate that PilF physically binds to an inner membrane assembly platform of the DNA translocator, comprising PilMNO, via the ATP‐binding protein PilM. Binding to PilMNO or PilMN stimulates the ATPase activity of PilF ~ 2‐fold, whereas there is no stimulation when binding to PilM or PilN alone. A PilMK26A variant defective in ATP binding still binds PilF and, together with PilN, stimulates PilF‐mediated ATPase activity. PilF is unique in having three conserved GSPII (general secretory pathway II) domains (A–C) at its N terminus. Deletion analyses revealed that none of the GSPII domains is essential for binding PilMN, but GSPIIC is essential for PilMN‐mediated stimulation of ATP hydrolysis by PilF. Our data suggest that PilM is a coupling protein that physically and functionally connects the soluble motor ATPase PilF to the DNA translocator via the PilMNO assembly platform.
Collapse
Affiliation(s)
- Kerstin Kruse
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| | - Ralf Salzer
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany.,Present address: Structural Studies Division Medical Research Council - Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave Cambridge CB2 OQH UK
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| |
Collapse
|
24
|
Fulara A, Vandenberghe I, Read RJ, Devreese B, Savvides SN. Structure and oligomerization of the periplasmic domain of GspL from the type II secretion system of Pseudomonas aeruginosa. Sci Rep 2018; 8:16760. [PMID: 30425318 PMCID: PMC6233222 DOI: 10.1038/s41598-018-34956-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/27/2018] [Indexed: 01/12/2023] Open
Abstract
The ability of bacteria to infect a host relies in part on the secretion of molecular virulence factors across the cell envelope. Pseudomonas aeruginosa, a ubiquitous environmental bacterium causing opportunistic infections in humans, employs the type II secretion system (T2SS) to transport effector proteins across its cellular envelope as part of a diverse array of virulence strategies. General secretory pathway protein L (GspL) is an essential inner-membrane component of the T2SS apparatus, and is thought to facilitate transduction of the energy from ATP hydrolysis in the cytoplasm to the periplasmic components of the system. However, our incomplete understanding of the assembly principles of the T2SS machinery prevents the mechanistic deconvolution of T2SS-mediated protein secretion. Here we show via two crystal structures that the periplasmic ferredoxin-like domain of GspL (GspLfld) is a dimer stabilized by hydrophobic interactions, and that this interface may allow significant interdomain plasticity. The general dimerization mode of GspLfld is shared with GspL from Vibrio parahaemolyticus suggesting a conserved oligomerization mode across the GspL family. Furthermore, we identified a tetrameric form of the complete periplasmic segment of GspL (GspLperi) which indicates that GspL may be able to adopt multiple oligomeric states as part of its dynamic role in the T2SS apparatus.
Collapse
Affiliation(s)
- Aleksandra Fulara
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent (Zwijnaarde), Belgium
- VIB-UGent Center for Inflammation Research, 9052, Ghent (Zwijnaarde), Belgium
| | - Isabel Vandenberghe
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent (Zwijnaarde), Belgium.
- VIB-UGent Center for Inflammation Research, 9052, Ghent (Zwijnaarde), Belgium.
| |
Collapse
|
25
|
Structural cycle of the Thermus thermophilus PilF ATPase: the powering of type IVa pilus assembly. Sci Rep 2018; 8:14022. [PMID: 30232337 PMCID: PMC6145873 DOI: 10.1038/s41598-018-32218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Type IV pili are responsible for a diverse range of functions, including twitching motility and cell adhesion. Assembly of the pilus fiber is driven by a cytoplasmic ATPase: it interacts with an inner membrane complex of biogenesis proteins which, in turn, bind to nascent pilin subunits and mediate fiber assembly. Here we report the structural characterization of the PilF TFP assembly ATPase from Thermus thermophilus. The crystal structure of a recombinant C-terminal fragment of PilF revealed bound, unhydrolysed ATP, although the full length complex was enzymatically active. 3D reconstructions were carried out by single particle cryoelectron microscopy for full length apoprotein PilF and in complex with AMPPNP. The structure forms an hourglass-like shape, with the ATPase domains in one half and the N1 domains in the second half which, we propose, interact with the other pilus biogenesis components. Molecular models for both forms were generated: binding of AMPPNP causes an upward shift of the N1 domains towards the ATPase domains of ~8 Å. We advocate a model in which ATP hydrolysis is linked to displacement of the N1 domains which is associated with lifting pilin subunits out of the inner membrane, and provide the activation energy needed to form the pilus fiber.
Collapse
|
26
|
Reguera G. Harnessing the power of microbial nanowires. Microb Biotechnol 2018; 11:979-994. [PMID: 29806247 PMCID: PMC6201914 DOI: 10.1111/1751-7915.13280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
The reduction of iron oxide minerals and uranium in model metal reducers in the genus Geobacter is mediated by conductive pili composed primarily of a structurally divergent pilin peptide that is otherwise recognized, processed and assembled in the inner membrane by a conserved Type IVa pilus apparatus. Electronic coupling among the peptides is promoted upon assembly, allowing the discharge of respiratory electrons at rates that greatly exceed the rates of cellular respiration. Harnessing the unique properties of these conductive appendages and their peptide building blocks in metal bioremediation will require understanding of how the pilins assemble to form a protein nanowire with specialized sites for metal immobilization. Also important are insights into how cells assemble the pili to make an electroactive matrix and grow on electrodes as biofilms that harvest electrical currents from the oxidation of waste organic substrates. Genetic engineering shows promise to modulate the properties of the peptide building blocks, protein nanowires and current‐harvesting biofilms for various applications. This minireview discusses what is known about the pilus material properties and reactions they catalyse and how this information can be harnessed in nanotechnology, bioremediation and bioenergy applications.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd., Rm. 6190, East Lansing, MI, 48824, USA
| |
Collapse
|
27
|
Leighton TL, Mok MC, Junop MS, Howell PL, Burrows LL. Conserved, unstructured regions in Pseudomonas aeruginosa PilO are important for type IVa pilus function. Sci Rep 2018; 8:2600. [PMID: 29422606 PMCID: PMC5805733 DOI: 10.1038/s41598-018-20925-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/25/2018] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa uses long, thin fibres called type IV pili (T4P) for adherence to surfaces, biofilm formation, and twitching motility. A conserved subcomplex of PilMNOP is required for extension and retraction of T4P. To better understand its function, we attempted to co-crystallize the soluble periplasmic portions of PilNOP, using reductive surface methylation to promote crystal formation. Only PilOΔ109 crystallized; its structure was determined to 1.7 Å resolution using molecular replacement. This new structure revealed two novel features: a shorter N-terminal α1-helix followed by a longer unstructured loop, and a discontinuous β-strand in the second αββ motif, mirroring that in the first motif. PISA analysis identified a potential dimer interface with striking similarity to that of the PilO homolog EpsM from the Vibrio cholerae type II secretion system. We identified highly conserved residues within predicted unstructured regions in PilO proteins from various Pseudomonads and performed site-directed mutagenesis to assess their role in T4P function. R169D and I170A substitutions decreased surface piliation and twitching motility without disrupting PilO homodimer formation. These residues could form important protein-protein interactions with PilN or PilP. This work furthers our understanding of residues critical for T4aP function.
Collapse
Affiliation(s)
- T L Leighton
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - M C Mok
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry, Western University, London, ON, Canada
| | - M S Junop
- Department of Biochemistry, Western University, London, ON, Canada
| | - P L Howell
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 2017; 44:1659-1666. [PMID: 27913675 DOI: 10.1042/bst20160221] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.
Collapse
|
29
|
Goosens VJ, Busch A, Georgiadou M, Castagnini M, Forest KT, Waksman G, Pelicic V. Reconstitution of a minimal machinery capable of assembling periplasmic type IV pili. Proc Natl Acad Sci U S A 2017; 114:E4978-E4986. [PMID: 28588140 PMCID: PMC5488919 DOI: 10.1073/pnas.1618539114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type IV pili (Tfp), which are key virulence factors in many bacterial pathogens, define a large group of multipurpose filamentous nanomachines widespread in Bacteria and Archaea. Tfp biogenesis is a complex multistep process, which relies on macromolecular assemblies composed of 15 conserved proteins in model gram-negative species. To improve our limited understanding of the molecular mechanisms of filament assembly, we have used a synthetic biology approach to reconstitute, in a nonnative heterologous host, a minimal machinery capable of building Tfp. Here we show that eight synthetic genes are sufficient to promote filament assembly and that the corresponding proteins form a macromolecular complex at the cytoplasmic membrane, which we have purified and characterized biochemically. Our results contribute to a better mechanistic understanding of the assembly of remarkable dynamic filaments nearly ubiquitous in prokaryotes.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Busch
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Michaella Georgiadou
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marta Castagnini
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Vladimir Pelicic
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
30
|
Yang P, Zhang M, van Elsas JD. Role of flagella and type four pili in the co-migration of Burkholderia terrae BS001 with fungal hyphae through soil. Sci Rep 2017; 7:2997. [PMID: 28592860 PMCID: PMC5462819 DOI: 10.1038/s41598-017-02959-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
Burkholderia terrae BS001 has previously been found to be able to disperse along with growing fungal hyphae in soil, with the type-3 secretion system having a supportive role in this movement. In this study, we focus on the role of two motility- and adherence-associated appendages, i.e. type-4 pili (T4P) and flagella. Electron microcopy and motility testing revealed that strain BS001 produces polar flagella and can swim on semi-solid R2A agar. Flagellum- and T4P-negative mutants were then constructed to examine the ecological roles of the respective systems. Both in liquid media and on swimming agar, the mutant strains showed similar fitness to the wild-type strain in mixed culture. The flagellar mutant had completely lost its flagella, as well as its swimming capacity. It also lost its co-migration ability with two soil-exploring fungi, Lyophyllum sp. strain Karsten and Trichoderma asperellum 302, in soil microcosms. In contrast, the T4P mutant showed reduced surface twitching motility, whereas its co-migration ability in competition with the wild-type strain was slightly reduced. We conclude that the co-migration of strain BS001 with fungal hyphae through soil is dependent on the presence of functional flagella conferring swimming motility, with the T4P system having a minor effect.
Collapse
Affiliation(s)
- Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Miaozhi Zhang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
31
|
Santos-Moreno J, East A, Guilvout I, Nadeau N, Bond PJ, Tran Van Nhieu G, Francetic O. Polar N-terminal Residues Conserved in Type 2 Secretion Pseudopilins Determine Subunit Targeting and Membrane Extraction Steps during Fibre Assembly. J Mol Biol 2017; 429:1746-1765. [PMID: 28427876 DOI: 10.1016/j.jmb.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Bacterial type 2 secretion systems (T2SS), type 4 pili, and archaeal flagella assemble fibres from initially membrane-embedded pseudopilin and pilin subunits. Fibre subunits are made as precursors with positively charged N-terminal anchors, whose cleavage via the prepilin peptidase, essential for pilin membrane extraction and assembly, is followed by N-methylation of the mature (pseudo)pilin N terminus. The conserved Glu residue at position 5 (E5) of mature (pseudo)pilins is essential for assembly. Unlike T4 pilins, where E5 residue substitutions also abolish N-methylation, the E5A variant of T2SS pseudopilin PulG remains N-methylated but is affected in interaction with the T2SS component PulM. Here, biochemical and functional analyses showed that the PulM interaction defect only partly accounts for the PulGE5A assembly defect. First, PulGT2A variant, equally defective in PulM interaction, remained partially functional. Furthermore, pseudopilus assembly defect of pulG(E5A) mutant was stronger than that of the pulM deletion mutant. To understand the dominant effect of E5A mutation, we used molecular dynamics simulations of PulGE5A, methylated PulGWT (MePulGWT), and MePulGE5A variant in a model membrane. These simulations pointed to a key role for an intramolecular interaction between the pseudopilin N-terminal amine and E5 to limit polar interactions with membrane phospholipids. N-methylation of the N-terminal amine further limited its interactions with phospholipid head-groups to facilitate pseudopilin membrane escape. By binding to polar residues in the conserved N-terminal region of PulG, we propose that PulM acts as chaperone to promote pseudopilin recruitment and coordinate its membrane extraction with subsequent steps of the fibre assembly process.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité, 11 Place Marcelin Berthelot, 75231 Paris, France; Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Alexandra East
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ingrid Guilvout
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Nathalie Nadeau
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Olivera Francetic
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| |
Collapse
|
32
|
Chang YW, Kjær A, Ortega DR, Kovacikova G, Sutherland JA, Rettberg LA, Taylor RK, Jensen GJ. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat Microbiol 2017; 2:16269. [PMID: 28165453 PMCID: PMC5302817 DOI: 10.1038/nmicrobiol.2016.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi-Wei Chang
- California Institute of Technology, Pasadena, California 91125, USA
| | - Andreas Kjær
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Davi R Ortega
- California Institute of Technology, Pasadena, California 91125, USA
| | | | - John A Sutherland
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Lee A Rettberg
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Ronald K Taylor
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Grant J Jensen
- California Institute of Technology, Pasadena, California 91125, USA.,Howard Hughes Medical Institute, Pasadena, California 91125, USA
| |
Collapse
|
33
|
Karuppiah V, Thistlethwaite A, Derrick JP. Structures of type IV pilins from Thermus thermophilus demonstrate similarities with type II secretion system pseudopilins. J Struct Biol 2016; 196:375-384. [PMID: 27612581 PMCID: PMC5131608 DOI: 10.1016/j.jsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Type IV pilins are proteins which form polymers that extend from the surface of the bacterial cell; they are involved in mediating a wide variety of functions, including adhesion, motility and natural competence. Here we describe the determination of the crystal structures of three type IVa pilins proteins from the thermophile Thermus thermophilus. They form part of a cluster of pilus-like proteins within the genome; our results show that one, Tt1222, is very closely related to the main structural type IV pilin, PilA4. The other two, Tt1218 and Tt1219, also adopt canonical pilin-like folds but, interestingly, are most closely related to the structures of the type II secretion system pseudopilins, EpsI/GspI and XcpW/GspJ. GspI and GspJ have been shown to form a complex with another pseudopilin, GspK, and this heterotrimeric complex is known to play a key role in initiating assembly of a pseudopilus which is thought to drive the secretion process. The structural similarity of Tt1218 and Tt1219 to GspI and GspJ suggests that they might work in a similar way, to deliver functions associated with type IV pili in T. thermophilus, such as natural competence.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Angela Thistlethwaite
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Jeremy P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
34
|
Leighton TL, Yong DH, Howell PL, Burrows LL. Type IV Pilus Alignment Subcomplex Proteins PilN and PilO Form Homo- and Heterodimers in Vivo. J Biol Chem 2016; 291:19923-38. [PMID: 27474743 DOI: 10.1074/jbc.m116.738377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to many antibiotics. Type IV pili (T4P) are among the key virulence factors used by P. aeruginosa for host cell attachment, biofilm formation, and twitching motility, making this system a promising target for novel therapeutics. Point mutations in the conserved PilMNOP alignment subcomplex were previously shown to have distinct effects on assembly and disassembly of T4P, suggesting that it may function in a dynamic manner. We introduced mutations encoding Cys substitutions into pilN and/or pilO on the chromosome to maintain normal stoichiometry and expression levels and captured covalent PilNO heterodimers, as well as PilN and PilO homodimers, in vivo Most covalent PilN or PilO homodimers had minimal functional impact in P. aeruginosa, suggesting that homodimers are a physiologically relevant state. However, certain covalent homo- or heterodimers eliminated twitching motility, suggesting that specific PilNO configurations are essential for T4P function. These data were verified using soluble N-terminal truncated fragments of PilN and PilO Cys mutants, which purified as a mixture of homo- and heterodimers at volumes consistent with a tetramer. Deletion of genes encoding alignment subcomplex components, PilM or PilP, but not other T4P components, including the motor ATPases PilB or PilT, blocked in vivo formation of disulfide-bonded PilNO heterodimers, suggesting that both PilM and PilP influence the heterodimer interface. Combined, our data suggest that T4P function depends on rearrangements at PilN and PilO interfaces.
Collapse
Affiliation(s)
- Tiffany L Leighton
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Daniel H Yong
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - P Lynne Howell
- the Program in Molecular Structure and Function, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto M5G 0A4 Ontario, Canada
| | - Lori L Burrows
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| |
Collapse
|
35
|
Salzer R, D'Imprima E, Gold VAM, Rose I, Drechsler M, Vonck J, Averhoff B. Topology and Structure/Function Correlation of Ring- and Gate-forming Domains in the Dynamic Secretin Complex of Thermus thermophilus. J Biol Chem 2016; 291:14448-56. [PMID: 27226590 DOI: 10.1074/jbc.m116.724153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique βββαβ fold is essential for the formation of gate 2. Furthermore, we identified four βαββα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.
Collapse
Affiliation(s)
- Ralf Salzer
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Edoardo D'Imprima
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vicki A M Gold
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilona Rose
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Moritz Drechsler
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Janet Vonck
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beate Averhoff
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| |
Collapse
|
36
|
Gold V, Kudryashev M. Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 2016; 39:1-7. [PMID: 26995496 DOI: 10.1016/j.sbi.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/05/2023]
Abstract
Advances in hard-ware and soft-ware for electron cryo-microscopy and tomography have provided unprecedented structural insights into large protein complexes in bacterial membranes. Tomographic volumes of native complexes in situ, combined with other structural and functional data, reveal functionally important conformational changes. Here, we review recent progress in elucidating the structure and mechanism of dual-membrane-spanning nanomachines involved in bacterial motility, adhesion, pathogenesis and biofilm formation, including the type IV pilus assembly machinery and the type III and VI secretions systems. We highlight how these new structural data shed light on the assembly and action of such machines and discuss future directions for more detailed mechanistic understanding of these massive, fascinating complexes.
Collapse
Affiliation(s)
- Vicki Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Chang YW, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ. Architecture of the type IVa pilus machine. Science 2016; 351:aad2001. [PMID: 26965631 DOI: 10.1126/science.aad2001] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells forward by extending, adhering to surfaces, and then retracting. We used cryo-electron tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 T4PM core components and the minor pilins, thereby providing insights into pilus assembly, structure, and function.
Collapse
Affiliation(s)
- Yi-Wei Chang
- California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Lee A Rettberg
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Anke Treuner-Lange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Janet Iwasa
- University of Utah, Salt Lake City, UT 84112, USA
| | | | - Grant J Jensen
- California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis. Curr Top Microbiol Immunol 2016; 398:185-205. [PMID: 27000091 DOI: 10.1007/82_2016_493] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections by motile, pathogenic bacteria, such as Campylobacter species, Clostridium species, Escherichia coli, Helicobacter pylori, Listeria monocytogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Salmonella species, Vibrio cholerae, and Yersinia species, represent a severe economic and health problem worldwide. Of special importance in this context is the increasing emergence and spread of multidrug-resistant bacteria. Due to the shortage of effective antibiotics for the treatment of infections caused by multidrug-resistant, pathogenic bacteria, the targeting of novel, virulence-relevant factors constitutes a promising, alternative approach. Bacteria have evolved distinct motility structures for movement across surfaces and in aqueous environments. In this review, I will focus on the bacterial flagellum, the associated chemosensory system, and the type-IV pilus as motility devices, which are crucial for bacterial pathogens to reach a preferred site of infection, facilitate biofilm formation, and adhere to surfaces or host cells. Thus, those nanomachines constitute potential targets for the development of novel anti-infectives that are urgently needed at a time of spreading antibiotic resistance. Both bacterial flagella and type-IV pili (T4P) are intricate macromolecular complexes made of dozens of different proteins and their motility function relies on the correct spatial and temporal assembly of various substructures. Specific type-III and type-IV secretion systems power the export of substrate proteins of the bacterial flagellum and type-IV pilus, respectively, and are homologous to virulence-associated type-III and type-II secretion systems. Accordingly, bacterial flagella and T4P represent attractive targets for novel antivirulence drugs interfering with synthesis, assembly, and function of these motility structures.
Collapse
|
39
|
Juan PA, Attaiech L, Charpentier X. Natural transformation occurs independently of the essential actin-like MreB cytoskeleton in Legionella pneumophila. Sci Rep 2015; 5:16033. [PMID: 26526572 PMCID: PMC4630621 DOI: 10.1038/srep16033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes – a situation referred to as “competence” – allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the cell these large imported DNA molecules are protected from degradation and brought to the chromosome for recombination. Here, we report elevated expression of mreB during competence in the Gram-negative pathogen Legionella pneumophila. Interestingly a similar observation had previously been reported in the distantly-related Gram-positive organism Bacillus subtilis. MreB is often viewed as the bacterial actin homolog contributing to bacterial morphogenesis by coordinating peptidoglycan-synthesising complexes. In addition MreB is increasingly found to be involved in a growing number of processes including chromosome segregation and motor-driven motility. Using genetic and pharmacological approaches, we examined the possible role of MreB during natural transformation in L. pneumophila. Our data show that natural transformation does not require MreB dynamics and exclude a direct role of MreB filaments in the transport of foreign DNA and its recombination in the chromosome.
Collapse
Affiliation(s)
- Pierre-Alexandre Juan
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laetitia Attaiech
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
40
|
Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V. Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol 2015; 99:380-92. [PMID: 26435398 PMCID: PMC4832360 DOI: 10.1111/mmi.13237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/30/2022]
Abstract
Type IV pili (Tfp), which have been studied extensively in a few Gram‐negative species, are the paradigm of a group of widespread and functionally versatile nano‐machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram‐positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram‐negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface‐associated motility. Tfp power ‘train‐like’ directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis
Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano‐machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram‐negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano‐machines.
Collapse
Affiliation(s)
- Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ingrid Spielman
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Mark R Davies
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajan Lala
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Peter Gaustad
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicolas Biais
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
41
|
Maier B, Wong GCL. How Bacteria Use Type IV Pili Machinery on Surfaces. Trends Microbiol 2015; 23:775-788. [PMID: 26497940 DOI: 10.1016/j.tim.2015.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile molecular machine with a broad range of functions. Recent advances revealed that the molecular components and the biophysical properties of the machine are well conserved among phylogenetically distant bacterial species. However, its functions are diverse, and include adhesion, motility, and horizontal gene transfer. This review focusses on the role of T4P in surface motility and bacterial interactions. Different species have evolved distinct mechanisms for intracellular coordination of multiple pili and of pili with other motility machines, ranging from physical coordination to biochemical clocks. Coordinated behavior between multiple bacteria on a surface is achieved by active manipulation of surfaces and modulation of pilus-pilus interactions. An emerging picture is that the T4P actively senses and responds to environmental conditions.
Collapse
Affiliation(s)
- Berenike Maier
- Department of Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry & Biochemistry, California Nano Systems Institute, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
42
|
Leighton TL, Buensuceso RNC, Howell PL, Burrows LL. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ Microbiol 2015; 17:4148-63. [PMID: 25808785 DOI: 10.1111/1462-2920.12849] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/27/2022]
Abstract
Type IV pili (T4P) are bacterial virulence factors involved in a wide variety of functions including deoxyribonucleic acid uptake, surface attachment, biofilm formation and twitching motility. While T4P are common surface appendages, the systems that assemble them and the regulation of their function differ between species. Pseudomonas aeruginosa, Neisseria spp. and Myxococcus xanthus are common model systems used to study T4P biology. This review focuses on recent advances in P. aeruginosa T4P structural biology, and the regulatory pathways controlling T4P biogenesis and function.
Collapse
Affiliation(s)
- Tiffany L Leighton
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Ryan N C Buensuceso
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
43
|
Gold VAM, Salzer R, Averhoff B, Kühlbrandt W. Structure of a type IV pilus machinery in the open and closed state. eLife 2015; 4. [PMID: 25997099 PMCID: PMC4463427 DOI: 10.7554/elife.07380] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023] Open
Abstract
Proteins of the secretin family form large macromolecular complexes, which assemble in the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P molecular machine in the open and the closed state. Comparison reveals a major conformational change whereby the N-terminal domains of the central secretin PilQ shift by ∼30 Å, and two periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of the assembled pilus. DOI:http://dx.doi.org/10.7554/eLife.07380.001 Gram-negative bacteria can cause serious diseases in humans, such as cholera and bacterial meningitis. These bacteria are surrounded by two membranes: an inner membrane and an outer membrane. Proteins called secretins are components of several large molecular complexes that are embedded within the outer membrane. Some secretin-containing complexes form pores in the bacterial membranes and allow molecules to pass in or out of the cell. Some secretins also form part of the machinery that allow Gram-negative bacteria to grow fibre-like structures called type IV pili. These pili help bacteria that cause infections to move and stick to host cells, where they can also trigger massive changes in the host cells' architecture. Multiple copies of a secretin protein called PilQ form a channel in the outer membrane of the bacteria that allows a type IV pilus to grow out of the surface of the cell. The pilus can then hook the bacteria onto surfaces and other cells. There is evidence to suggest the type IV pilus machinery is involved in the uptake of DNA from other bacteria, an important but poorly understood process that has contributed to the spread of multi-drug resistance. Now, Gold et al. have used a cutting-edge technique called ‘electron cryo-tomography’ to analyse the three-dimensional structure of the machinery that builds the type IV pili in the membranes of a bacterium called Thermus thermophilus. This analysis revealed that, similar to many other channel complexes, the PilQ channel can be ‘open’ or ‘closed’. When pili are absent, the channel is closed, but the channel opens when pili are present. Further analysis also revealed the structure of an assembled pilus. Next, Gold et al. studied the open state of the type IV pilus in more detail and observed that a region of each of the PilQ proteins moves a considerable distance to make way for the pilus to enter the central pore. These results will pave the way for future studies of type IV pili and other secretin-containing complexes and underpin efforts to investigate new drug targets to combat bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.07380.002
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Novel Role for PilNO in Type IV Pilus Retraction Revealed by Alignment Subcomplex Mutations. J Bacteriol 2015; 197:2229-2238. [PMID: 25917913 DOI: 10.1128/jb.00220-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Type IV pili (T4P) are dynamic protein filaments that mediate bacterial adhesion, biofilm formation, and twitching motility. The highly conserved PilMNOP proteins form an inner membrane alignment subcomplex required for function of the T4P system, though their exact roles are unclear. Three potential interaction interfaces for PilNO were identified: core-core, coiled coils (CC), and the transmembrane segments (TMSs). A high-confidence PilNO heterodimer model was used to select key residues for mutation, and the resulting effects on protein-protein interactions were examined both in a bacterial two-hybrid (BTH) system and in their native Pseudomonas aeruginosa context. Mutations in the oppositely charged CC regions or the TMS disrupted PilNO heterodimer formation in the BTH assay, while up to six combined mutations in the core failed to disrupt the interaction. When the mutations were introduced into the P. aeruginosa chromosome at the pilN or pilO locus, specific changes at each of the three interfaces--including core mutations that failed to disrupt interactions in the BTH system--abrogated surface piliation and/or impaired twitching motility. Unexpectedly, specific CC mutants were hyperpiliated but nonmotile, a hallmark of pilus retraction defects. These data suggest that PilNO participate in both the extension and retraction of T4P. Our findings support a model of multiple, precise interaction interfaces between PilNO; emphasize the importance of studying protein function in a minimally perturbed context and stoichiometry; and highlight potential target sites for development of small-molecule inhibitors of the T4P system. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that uses type IV pili (T4P) for host attachment. The T4P machinery is composed of four cell envelope-spanning subcomplexes. PilN and PilO heterodimers are part of the alignment subcomplex and essential for T4P function. Three potential PilNO interaction interfaces (the core-core, coiled-coil, and transmembrane segment interfaces) were probed using site-directed mutagenesis followed by functional assays in an Escherichia coli two-hybrid system and in P. aeruginosa. Several mutations blocked T4P assembly and/or motility, including two that revealed a novel role for PilNO in pilus retraction, while other mutations affected extension dynamics. These critical PilNO interaction interfaces represent novel targets for small-molecule inhibitors with the potential to disrupt T4P function.
Collapse
|
45
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
46
|
Gorgel M, Ulstrup JJ, Bøggild A, Jones NC, Hoffmann SV, Nissen P, Boesen T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC STRUCTURAL BIOLOGY 2015; 15:4. [PMID: 25886849 PMCID: PMC4376143 DOI: 10.1186/s12900-015-0031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/10/2022]
Abstract
Background Type IV pili are widely expressed among Gram-negative bacteria, where they are involved in biofilm formation, serve in the transfer of DNA, motility and in the bacterial attachment to various surfaces. Type IV pili in Shewanella oneidensis are also supposed to play an important role in extracellular electron transfer by the attachment to sediments containing electron acceptors and potentially forming conductive nanowires. Results The potential nanowire type IV pilin PilBac1 from S. oneidensis was characterized by a combination of complementary structural methods and the atomic structure was determined at a resolution of 1.67 Å by X-ray crystallography. PilBac1 consists of one long N-terminal α-helix packed against four antiparallel β-strands, thus revealing the core fold of type IV pilins. In the crystal, PilBac1 forms a parallel dimer with a sodium ion bound to one of the monomers. Interestingly, our PilBac1 crystal structure reveals two unusual features compared to other type IVa pilins: an unusual position of the disulfide bridge and a straight α-helical section, which usually exhibits a pronounced kink. This straight helix leads to a distinct packing in a filament model of PilBac1 based on an EM model of a Neisseria pilus. Conclusions In this study we have described the first structure of a pilin from Shewanella oneidensis. The structure possesses features of the common type IV pilin core, but also exhibits significant variations in the α-helical part and the D-region. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| |
Collapse
|
47
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Salzer R, Joos F, Averhoff B. Different effects of MglA and MglB on pilus-mediated functions and natural competence in Thermus thermophilus. Extremophiles 2014; 19:261-7. [PMID: 25472010 DOI: 10.1007/s00792-014-0711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/16/2014] [Indexed: 02/02/2023]
Abstract
The thermophilic bacterium Thermus thermophilus is known for its high natural competence. Uptake of DNA is mediated by a DNA translocator that shares components with type IV pili. Localization and function of type IV pili in other bacteria depend on the cellular localization at the poles of the bacterium, a process that involves MglA and MglB. T. thermophilus contains homologs of MglA and MglB. The genes encoding MglA and MglB were deleted and the physiology of the mutants was studied. Deletion of the genes individually or in tandem had no effect on pili formation but pili lost their localization at the poles. The mutants abolished pilus-mediated functions such as twitching motility and adherence but had no effect on uptake of DNA by natural competence. These data demonstrate that MglA and MglB are dispensable for natural transformation and are consistent with the hypothesis that uptake of DNA does not depend on type IV pili or their cellular localization.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
49
|
Lu C, Korotkov KV, Hol WGJ. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J Struct Biol 2014; 187:223-235. [PMID: 25092625 DOI: 10.1016/j.jsb.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022]
Abstract
The type II secretion system (T2SS) is present in many Gram-negative bacteria and is responsible for secreting a large number of folded proteins, including major virulence factors, across the outer membrane. The T2SS consists of 11-15 different proteins most of which are present in multiple copies in the assembled secretion machinery. The ATPase GspE, essential for the functioning of the T2SS, contains three domains (N1E, N2E and CTE) of which the N1E domain is associated with the cytoplasmic domain of the inner membrane protein GspL. Here we describe and analyze the structure of the GspE•cyto-GspL complex from Vibrio vulnificus in the presence of an ATP analog, AMPPNP. There are three such ∼83 kDa complexes per asymmetric unit with essentially the same structure. The N2E and CTE domains of a single V. vulnificus GspE subunit adopt a mutual orientation that has not been seen before in any of the previous GspE structures, neither in structures of related ATPases from other secretion systems. This underlines the tremendous conformational flexibility of the T2SS secretion ATPase. Cyto-GspL interacts not only with the N1E domain, but also with the CTE domain and is even in contact with AMPPNP. Moreover, the cyto-GspL domains engage in two types of mutual interactions, resulting in two essentially identical, but crystallographically independent, "cyto-GspL rods" that run throughout the crystal. Very similar rods are present in previous crystals of cyto-GspL and of the N1E•cyto-GspL complex. This arrangement, now seen four times in three entirely different crystal forms, involves contacts between highly conserved residues suggesting a role in the biogenesis or the secretion mechanism or both of the T2SS.
Collapse
Affiliation(s)
- Connie Lu
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States
| | - Konstantin V Korotkov
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States
| | - Wim G J Hol
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
50
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|