1
|
Lee H, Gupta K, Wang L, Dunbrack RL, Majtan T, Kruger WD. Impact of primary sequence changes on the self-association properties of mammalian cystathionine beta-synthase enzymes. Protein Sci 2024; 33:e5223. [PMID: 39548832 PMCID: PMC11568414 DOI: 10.1002/pro.5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Cystathionine beta-synthase (CBS) is an evolutionarily conserved enzyme that plays a key role in mammalian sulfur amino acid biochemistry, mutations in which are the cause of classical homocystinuria (HCU), an inborn error of metabolism. Although there is agreement in the literature that CBS is a homomultimer, its precise structure is a source of confusion. Here, we performed a series of experiments examining the quaternary structure of various wild-type and mutant CBS enzymes using a combination of native gel electrophoresis, in situ activity assays, analytical ultracentrifugation, and gel filtration. Our data show that recombinantly expressed and purified full-length wild-type human CBS enzyme (hCBS) and HCU-causing variants (p.P422L, p.I435T, and p.R125Q CBS) form high molecular weight assemblies that are consistent with the properties expected of a filament. The filament is enzymatically active, and its size is sensitive to protein concentration. This behavior contrasts sharply with hCBS enzymes containing small deletions within the Bateman domain, which form stable tetramers and octamers regardless of concentration. Examination of liver lysates from humans and mice confirms the existence of enzymatically active high molecular weight aggregates in vivo, but also shows that these aggregates are specific to human CBS and do not occur in mice. Molecular modeling using AlphaFold2 suggests that these experimentally observed differences may be explained by subtle differences in the interaction mediated by the Bateman domains. Our results show that small differences in amino acid sequence can cause large differences in the size and shape of CBS multimers.
Collapse
Affiliation(s)
- Hyung‐Ok Lee
- Cancer Signaling and Microenvironment ProgramFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Kushol Gupta
- Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liqun Wang
- Cancer Signaling and Microenvironment ProgramFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Roland L. Dunbrack
- Cancer Signaling and Microenvironment ProgramFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Warren D. Kruger
- Cancer Signaling and Microenvironment ProgramFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Zhu YW, Liu HX, Ji XY, Wu DD. The role of cystathionine β-synthase in cancer. Cell Signal 2024; 124:111406. [PMID: 39270916 DOI: 10.1016/j.cellsig.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cystathionine β-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Hong-Xia Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
He M, Wan H, Cong P, Li X, Cheng C, Huang X, Zhang Q, Wu H, Tian L, Xu K, Xiong L. Structural basis for the inhibition of cystathionine-β-synthase by isoflurane and its role in anaesthesia-induced social dysfunction in mice. Br J Anaesth 2024:S0007-0912(24)00600-7. [PMID: 39603853 DOI: 10.1016/j.bja.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Anaesthesia has been shown to impair social functioning, but the underlying mechanisms remain largely unknown. The volatile anaesthetic isoflurane potentially disrupts the methionine cycle and trans-sulphuration pathway, contributing to social deficits. Cystathionine-β-synthase (CBS), a key enzyme in this pathway, might be targeted by isoflurane. We investigated the CBS-isoflurane interaction and its role in neuronal function and social behaviour. METHODS Mice aged 3-15 months were anaesthetised with 2 vol% isoflurane for 2 h, and social behaviours were tested 24 h after exposure. Alterations in neuronal activity were assessed using electrophysiological analysis in vivo. Pharmacological activators (S-adenosylmethionine [SAM]) or inhibitors (amino-oxyacetic acid [AOAA]), and adeno-associated virus (AAV) were used to modulate CBS activity. The binding site of isoflurane on CBS was determined using X-ray crystallography. A novel transgenic model with a point mutation knock-in was constructed to eliminate the CBS-isoflurane interaction. RESULTS Isoflurane inhibited CBS activity (by 0.35-fold [0.07] vs 1.00-fold [0.05]; P<0.001), leading to neuronal hypoactivity in the anterior cingulate cortex (ACC) and social impairments in adult and elderly mice. SAM, AOAA, and AAV interventions demonstrated a causal link. Structural and functional analysis identified the lysine 273 (K273) in CBS to be involved in isoflurane inhibition. CBS K273A knock-in mice exhibited increased CBS activity compared with wild-type littermates after isoflurane exposure (2.2-fold [0.22] vs 1.0-fold [0.28]; P<0.001), with successful alleviation of ACC neuronal hypoactivity and social dysfunction. CONCLUSIONS These findings reveal a crucial role for CBS inhibition by isoflurane in anaesthesia-induced social impairment.
Collapse
Affiliation(s)
- Mengfan He
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peilin Cong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyang Li
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chun Cheng
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Zhang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Tian
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ke Xu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Myszkowska J, Klotz K, Leandro P, Kruger WD, Froese DS, Baumgartner MR, Spiekerkoetter U, Hannibal L. Real-time detection of enzymatically formed hydrogen sulfide by pathogenic variants of cystathionine beta-synthase using hemoglobin I of Lucina pectinata as a biosensor. Free Radic Biol Med 2024; 223:281-295. [PMID: 39067625 DOI: 10.1016/j.freeradbiomed.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Classical homocystinuria is a rare disease caused by mutations in cystathionine β-synthase (CBS) gene (OMIM 613381). CBS catalyzes the first step of the transsulfuration pathway that converts homocysteine (Hcy) into cystathionine (Cysta) via a number of co-substrates and mechanisms. Formation of Cysta by condensation of Hcy and cysteine (Cys) produces a molar equivalent of hydrogen sulfide (H2S). H2S plays important roles in cognitive and vascular functions. Clinically, patients with CBS deficiency present with vascular, ocular, neurological and skeletal impairments. Biochemically, CBS deficiency manifests with elevated Hcy and reduced concentration of Cysta in plasma and urine. A number of pathogenic variants of human CBS have been characterized by their residual enzymatic activity, but very few studies have examined H2S production by pathogenic CBS variants, possibly due to technical hurdles in H2S detection and quantification. We describe a method for the real-time, continuous quantification of H2S formed by wild-type and pathogenic variants of human recombinant CBS, as well as by fibroblast extracts from healthy controls and patients diagnosed with CBS deficiency. The method takes advantage of the specificity and high affinity of hemoglobin I of the clam Lucina pectinata toward H2S and is based on UV-visible spectrophotometry. Comparison with the gold-standard, end-point H2S quantification method employing monobromobimane, as well as correlations with CBS enzymatic activity determined by LC-MS/MS showed agreement and correlation, and permitted the direct, time-resolved determination of H2S production rates by purified human recombinant CBS and by CBS present in fibroblast extracts. Rates of H2S production were highest for wild-type CBS, and lower for pathogenic variants. This method enables the examination of structural determinants of CBS that are important for H2S production and its possible relevance to the clinical outcome of patients.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Kožich V, Majtan T. Komrower Memorial Lecture 2023. Molecular basis of phenotype expression in homocystinuria: Where are we 30 years later? J Inherit Metab Dis 2024; 47:841-859. [PMID: 38873792 DOI: 10.1002/jimd.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
This review summarises progress in the research of homocystinuria (HCU) in the past three decades. HCU due to cystathionine β-synthase (CBS) was discovered in 1962, and Prof. Jan Peter Kraus summarised developments in the field in the first-ever Komrower lecture in 1993. In the past three decades, significant advancements have been achieved in the biology of CBS, including gene organisation, tissue expression, 3D structures, and regulatory mechanisms. Renewed interest in CBS arose in the late 1990s when this enzyme was implicated in biogenesis of H2S. Advancements in genetic and biochemical techniques enabled the identification of several hundreds of pathogenic CBS variants and the misfolding of missense mutations as a common mechanism. Several cellular, invertebrate and murine HCU models allowed us to gain insights into functional and metabolic pathophysiology of the disease. Establishing the E-HOD consortium and patient networks, HCU Network Australia and HCU Network America, offered new possibilities for acquiring clinical data in registries and data on patients' quality of life. A recent analysis of data from the E-HOD registry showed that the clinical variability of HCU is broad, extending from severe childhood disease to milder (late) adulthood forms, which typically respond to pyridoxine. Pyridoxine responsiveness appears to be the key factor determining the clinical course of HCU. Increased awareness about HCU played a role in developing novel therapies, such as gene therapy, correction of misfolding by chaperones, removal of methionine from the gut and enzyme therapies that decrease homocysteine or methionine in the circulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Mijatovic E, Ascenção K, Szabo C, Majtan T. Cellular turnover and degradation of the most common missense cystathionine beta-synthase variants causing homocystinuria. Protein Sci 2024; 33:e5123. [PMID: 39041895 PMCID: PMC11264351 DOI: 10.1002/pro.5123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is the most common inborn error of sulfur amino acid metabolism. Recent work suggests that missense pathogenic mutations-regardless of their topology-cause instability of the C-terminal regulatory domain, which likely translates into CBS misfolding, impaired assembly, and loss of function. However, it is unknown how instability of the regulatory domain translates into cellular CBS turnover and which degradation pathways are involved in CBS proteostasis. Here, we developed a human HEK293-based cellular model lacking intrinsic CBS and stably overexpressing wild-type (WT) CBS or its 10 most common missense HCU mutants. We found that HCU mutants, except the I278T variant, expressed similarly or better than CBS WT, with some of them showing impaired oligomerization, activity and response to allosteric activator S-adenosylmethionine. Cellular stability of all HCU mutants, except P49L and A114V, was significantly lower than the stability of CBS WT, suggesting their increased degradation. Ubiquitination analysis of CBS WT and two representative CBS mutants (T191M and I278T) showed that proteasomal degradation is the major pathway for CBS disposal, with a minor involvement of lysosomal-autophagic and endoplasmic reticulum-associated degradation (ERAD) pathways for HCU mutants. Proteasomal inhibition significantly increased the half-life and activity of T191M and I278T CBS mutants. Lysosomal and ERAD inhibition had only a minor impact on CBS turnover, but ERAD inhibition rescued the activity of T191M and I278T CBS mutants similarly as proteasomal inhibition. In conclusion, the present study provides new insights into proteostasis of CBS in HCU.
Collapse
Affiliation(s)
- Ela Mijatovic
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Kelly Ascenção
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Csaba Szabo
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Tomas Majtan
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
7
|
McFarlane NR, Gui J, Oláh J, Harvey JN. Gaseous inhibition of the transsulfuration pathway by cystathionine β-synthase. Phys Chem Chem Phys 2024; 26:16579-16588. [PMID: 38832404 DOI: 10.1039/d4cp01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine β-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.
Collapse
Affiliation(s)
- Neil R McFarlane
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-box 2404, B-3001 Leuven, Belgium.
| | - Jiangli Gui
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-box 2404, B-3001 Leuven, Belgium.
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics H-1111 Budapest, Műegyeten rakpart 3, Hungary.
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-box 2404, B-3001 Leuven, Belgium.
| |
Collapse
|
8
|
Al-Sadeq DW, Conter C, Thanassoulas A, Al-Dewik N, Safieh-Garabedian B, Martínez-Cruz LA, Nasrallah GK, Astegno A, Nomikos M. Biochemical and structural impact of two novel missense mutations in cystathionine β-synthase gene associated with homocystinuria. Biochem J 2024; 481:569-585. [PMID: 38563463 DOI: 10.1042/bcj20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Homocystinuria is a rare disease caused by mutations in the CBS gene that results in a deficiency of cystathionine β-synthase (CBS). CBS is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme in the transsulfuration pathway, responsible for combining serine with homocysteine to produce cystathionine, whose activity is enhanced by the allosteric regulator S-adenosylmethionine (SAM). CBS also plays a role in generating hydrogen sulfide (H2S), a gaseous signaling molecule with diverse regulatory functions within the vascular, nervous, and immune systems. In this study, we present the clinical and biochemical characterization of two novel CBS missense mutations that do not respond to pyridoxine treatment, namely c.689T > A (L230Q) and 215A > T (K72I), identified in a Chinese patient. We observed that the disease-associated K72I genetic variant had no apparent effects on the spectroscopic and catalytic properties of the full-length enzyme. In contrast, the L230Q variant expressed in Escherichia coli did not fully retain heme and when compared with the wild-type enzyme, it exhibited more significant impairments in both the canonical cystathionine-synthesis and the alternative H2S-producing reactions. This reduced activity is consistent with both in vitro and in silico evidence, which indicates that the L230Q mutation significantly decreases the overall protein's stability, which in turn, may represent the underlying cause of its pathogenicity.
Collapse
Affiliation(s)
- Duaa W Al-Sadeq
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Verona, Italy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | | | - Nader Al-Dewik
- Department of Research and Translational and Precision Medicine Research Lab, Women's Wellness and Research Center, Hamad Medical Corporation, and Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
McCorvie TJ, Adamoski D, Machado RAC, Tang J, Bailey HJ, Ferreira DSM, Strain-Damerell C, Baslé A, Ambrosio ALB, Dias SMG, Yue WW. Architecture and regulation of filamentous human cystathionine beta-synthase. Nat Commun 2024; 15:2931. [PMID: 38575566 PMCID: PMC10995199 DOI: 10.1038/s41467-024-46864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Raquel A C Machado
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Jiazhi Tang
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Henry J Bailey
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Douglas S M Ferreira
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire Strain-Damerell
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andre L B Ambrosio
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Wyatt W Yue
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
10
|
Roman JV, Mascarenhas R, Ceric K, Ballou DP, Banerjee R. Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation. J Biol Chem 2023; 299:105449. [PMID: 37949228 PMCID: PMC10746528 DOI: 10.1016/j.jbc.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cystathionine β-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.
Collapse
Affiliation(s)
- Joseph V Roman
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Karanfil Ceric
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - David P Ballou
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Conter C, Favretto F, Dominici P, Martinez-Cruz LA, Astegno A. Key substrate recognition residues in the active site of cystathionine beta-synthase from Toxoplasma gondii. Proteins 2023; 91:1383-1393. [PMID: 37163386 DOI: 10.1002/prot.26507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Cystathionine β-synthase (CBS) catalyzes the condensation of l-serine and l-homocysteine to give l-cystathionine in the transsulfuration pathway. Recently, a few O-acetylserine (l-OAS)-dependent CBSs (OCBSs) have been found in bacteria that can exclusively function with l-OAS. CBS from Toxoplasma gondii (TgCBS) can efficiently use both l-serine and l-OAS to form l-cystathionine. In this work, a series of site-specific variants substituting S84, Y160, and Y246 with hydrophobic residues found at the same positions in OCBSs was generated to explore the roles of the hydroxyl moieties of these residues as determinants of l-serine/l-OAS preference in TgCBS. We found that the S84A/Y160F/Y246V triple mutant behaved like an OCBS in terms of both substrate requirements, showing β-replacement activity only with l-OAS, and pH optimum, which is decreased by ~1 pH unit. Formation of a stable aminoacrylate upon reaction with l-serine is prevented by the triple mutation, indicating the importance of the H-bonds between the hydroxyl groups of Y160, Y246, and S84 with l-serine in formation of the intermediate. Analysis of the independent effect of each mutation on TgCBS activity and investigation of the protein-aminoacrylate complex structure allowed for the conclusion that the hydroxyl group of Y246 has a major, but not exclusive, role in controlling the l-serine preference by efficiently stabilizing its leaving group. These studies demonstrate that differences in substrate specificity of CBSs are controlled by natural variations in as few as three residue positions. A better understanding of substrate specificity in TgCBS will facilitate the design of new antimicrobial compounds.
Collapse
Affiliation(s)
- Carolina Conter
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Alfonso Martinez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | |
Collapse
|
12
|
Hoskins I, Sun S, Cote A, Roth FP, Cenik C. satmut_utils: a simulation and variant calling package for multiplexed assays of variant effect. Genome Biol 2023; 24:82. [PMID: 37081510 PMCID: PMC10116734 DOI: 10.1186/s13059-023-02922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
The impact of millions of individual genetic variants on molecular phenotypes in coding sequences remains unknown. Multiplexed assays of variant effect (MAVEs) are scalable methods to annotate relevant variants, but existing software lacks standardization, requires cumbersome configuration, and does not scale to large targets. We present satmut_utils as a flexible solution for simulation and variant quantification. We then benchmark MAVE software using simulated and real MAVE data. We finally determine mRNA abundance for thousands of cystathionine beta-synthase variants using two experimental methods. The satmut_utils package enables high-performance analysis of MAVEs and reveals the capability of variants to alter mRNA abundance.
Collapse
Affiliation(s)
- Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Song Sun
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Atina Cote
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Frederick P Roth
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Lin M, Hu G, Yu B. Dysregulated cystathionine-β-synthase/hydrogen sulfide signaling promotes chronic stress-induced colonic hypermotility in rats. Neurogastroenterol Motil 2023; 35:e14488. [PMID: 36371703 DOI: 10.1111/nmo.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2 S), an important endogenous gasotransmitter, is involved in the modulation of gastrointestinal motility, but whether it mediates the intestinal dysmotility in irritable bowel syndrome (IBS) is not known. This study explored the significance of cystathionine-β-synthase (CBS)/H2 S signaling in stress-induced colonic dysmotility. METHODS A rat model of IBS was established using chronic water avoidance stress (WAS). Colonic pathological alterations were detected histologically. Intestinal motility was determined by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was assessed using the visceromotor response (VMR) to colorectal distension (CRD). Real-time PCR, Western blotting, and immunostaining were performed to identify the expression of CBS in the colon. The contractions of distal colon were studied in an organ bath system and H2 S content was measured by ELISA. The effects of SAM, a selective CBS activator, on colonic dysmotility were examined. MEK1 was tested as a potential upstream effector of CBS/H2 S loss. KEY RESULTS After 10 days of WAS, the ITT was decreased and FWC was increased, and the VMR magnitude in response to CRD was enhanced. The colonic CBS expression and H2 S levels were significantly declined in WAS-exposed rats, and the density of CBS-positive enteric neurons in the myenteric plexus in WAS-treated rats was lower than that in controls. SAM treatment relieved WAS-induced colonic hypermotility via increased H2 S production. AZD6244, a selective inhibitor of MEK1, partially reversed CBS downregulation and colonic hypermotility in WAS-treated rats. CONCLUSIONS & INFERENCES Decreased CBS/H2 S signaling through increased MEK1 signaling might be important in the pathogenesis of chronic stress-induced colonic hypermotility. SAM could be administered for disorders associated with intestinal hypermotility.
Collapse
Affiliation(s)
- Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Guiying Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
14
|
Ascenção K, Dilek N, Zuhra K, Módis K, Sato T, Szabo C. Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids. Antioxidants (Basel) 2022; 11:antiox11091823. [PMID: 36139896 PMCID: PMC9495861 DOI: 10.3390/antiox11091823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H2S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H2S producing enzymes. Western blotting was used to detect the expression of the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H2S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H2S levels were detected by live-cell imaging using a fluorescent H2S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H2S-producing enzymes coincided with the downregulation of the H2S-degrading enzyme SQR, increased H2S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H2S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
16
|
Zuhra K, Petrosino M, Gupta B, Panagaki T, Cecconi M, Myrianthopoulos V, Schneiter R, Mikros E, Majtan T, Szabo C. Epigallocatechin gallate is a potent inhibitor of cystathionine beta-synthase: Structure-activity relationship and mechanism of action. Nitric Oxide 2022; 128:12-24. [PMID: 35973674 DOI: 10.1016/j.niox.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022]
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine β-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 μM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Maria Petrosino
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Barkha Gupta
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Theodora Panagaki
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Marco Cecconi
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Tomas Majtan
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| |
Collapse
|
17
|
Insights into Domain Organization and Regulatory Mechanism of Cystathionine Beta-Synthase from Toxoplasma gondii. Int J Mol Sci 2022; 23:ijms23158169. [PMID: 35897745 PMCID: PMC9331509 DOI: 10.3390/ijms23158169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of homocysteine metabolism. Although eukaryotic CBS have a similar domain architecture with a catalytic core and a C-terminal Bateman module, their regulation varies widely across phyla. In human CBS (HsCBS), the C-terminus has an autoinhibitory effect by acting as a cap that avoids the entry of substrates into the catalytic site. The binding of the allosteric modulator AdoMet to this region alleviates this cap, allowing the protein to progress from a basal toward an activated state. The same activation is obtained by artificial removal or heat-denaturation of the Bateman module. Recently, we reported the crystal structure of CBS from Toxoplasma gondii (TgCBS) showing that the enzyme assembles into basket-like dimers similar to the basal conformers of HsCBS. These findings would suggest a similar lid function for the Bateman module which, as in HsCBS, should relax in the absence of the C-terminal module. However, herein we demonstrate that, in contrast with HsCBS, removal of the Bateman module in TgCBS through deletion mutagenesis, limited proteolysis, or thermal denaturation has no effects on its activity, oligomerization, and thermal stability. This opposite behavior we have now found in TgCBS provides evidence of a novel type of CBS regulation.
Collapse
|
18
|
Petrosino M, Zuhra K, Kopec J, Hutchin A, Szabo C, Majtan T. H 2S biogenesis by cystathionine beta-synthase: mechanism of inhibition by aminooxyacetic acid and unexpected role of serine. Cell Mol Life Sci 2022; 79:438. [PMID: 35864237 PMCID: PMC9304066 DOI: 10.1007/s00018-022-04479-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Cystathionine beta-synthase (CBS) is a pivotal enzyme of the transsulfuration pathway responsible for diverting homocysteine to the biosynthesis of cysteine and production of hydrogen sulfide (H2S). Aberrant upregulation of CBS and overproduction of H2S contribute to pathophysiology of several diseases including cancer and Down syndrome. Therefore, pharmacological CBS inhibition has emerged as a prospective therapeutic approach. Here, we characterized binding and inhibitory mechanism of aminooxyacetic acid (AOAA), the most commonly used CBS inhibitor. We found that AOAA binds CBS tighter than its respective substrates and forms a dead-end PLP-bound intermediate featuring an oxime bond. Surprisingly, serine, but not cysteine, replaced AOAA from CBS and formed an aminoacrylate reaction intermediate, which allowed for the continuation of the catalytic cycle. Indeed, serine rescued and essentially normalized the enzymatic activity of AOAA-inhibited CBS. Cellular studies confirmed that AOAA decreased H2S production and bioenergetics, while additional serine rescued CBS activity, H2S production and mitochondrial function. The crystal structure of AOAA-bound human CBS showed a lack of hydrogen bonding with residues G305 and Y308, found in the serine-bound model. Thus, AOAA-inhibited CBS could be reactivated by serine. This difference may be important in a cellular environment in multiple pathophysiological conditions and may modulate the CBS-inhibitory activity of AOAA. In addition, our results demonstrate additional complexities of using AOAA as a CBS-specific inhibitor of H2S biogenesis and point to the urgent need to develop a potent, selective and specific pharmacological CBS inhibitor.
Collapse
Affiliation(s)
- Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Jola Kopec
- Structural Biology Unit, Evotec Ltd, 114 Innovation Drive, Abingdon, OX14 4RZ, UK
| | - Andrew Hutchin
- Structural Biology Unit, Evotec Ltd, 114 Innovation Drive, Abingdon, OX14 4RZ, UK
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland.
| |
Collapse
|
19
|
Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022; 13:e0075422. [PMID: 35856606 PMCID: PMC9426449 DOI: 10.1128/mbio.00754-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine β-synthase (CβS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CβS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Collapse
|
20
|
Bandyopadhyay P, Pramanick I, Biswas R, PS S, Sreedharan S, Singh S, Rajmani RS, Laxman S, Dutta S, Singh A. S-Adenosylmethionine-responsive cystathionine β-synthase modulates sulfur metabolism and redox balance in Mycobacterium tuberculosis. SCIENCE ADVANCES 2022; 8:eabo0097. [PMID: 35749503 PMCID: PMC9232105 DOI: 10.1126/sciadv.abo0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 05/10/2023]
Abstract
Methionine and cysteine metabolisms are important for the survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The transsulfuration pathway converts methionine to cysteine and represents an important link between antioxidant and methylation metabolism in diverse organisms. Using a combination of biochemistry and cryo-electron microscopy, we characterized the first enzyme of the transsulfuration pathway, cystathionine β-synthase (MtbCbs) in Mtb. We demonstrated that MtbCbs is a heme-less, pyridoxal-5'-phosphate-containing enzyme, allosterically activated by S-adenosylmethionine (SAM). The atomic model of MtbCbs in its native and SAM-bound conformations revealed a unique mode of SAM-dependent allosteric activation. Further, SAM stabilized MtbCbs by sterically occluding proteasomal degradation, which was crucial for supporting methionine and redox metabolism in Mtb. Genetic deficiency of MtbCbs reduced Mtb survival upon homocysteine overload in vitro, inside macrophages, and in mice coinfected with HIV. Thus, the MtbCbs-SAM axis constitutes an important mechanism of coordinating sulfur metabolism in Mtb.
Collapse
Affiliation(s)
- Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ishika Pramanick
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sabarinath PS
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Shalini Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
21
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
22
|
Mosbah A, Dhaouadi R, Abdeljelil NB, Guerbej H, Banni M. Multifactorial Screening Reveals New Insight into Early Cadmium Exposure and Garlic Interactions in Dicentrarchus labrax. Biol Trace Elem Res 2021; 199:4759-4771. [PMID: 33586117 DOI: 10.1007/s12011-021-02592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Environmental pollutants and especially metal trace elements remain an unmitigated threat to the overall life support system. Their chemical stability and accumulation pattern in the ecosystem make them a persistent hazard. This study aims to characterize the early cadmium (Cd) histological and hematological alterations and their corresponding plasma indicators in the Mediterranean sea bass (Dicentrarchus labrax). We also assessed garlic potential to prevent cadmium toxicity. For this purpose, 200 fish of 55 g mean weight were separated into 3 cylindroconical fiberglass tanks of 500-L capacity, each with a stocking density of 4 kg m-3. The fish were regularly hand-fed 0% (control group), 2%, and 6% garlic-supplemented diets to apparent satiation twice a day for 1 month. At the end of the experiment, we injected 22.2 mM cadmium (CdCl2) intraperitoneally to the experimental groups and a placebo solution (9% NaCl) to the control groups; liver, kidney, heart, and blood tissue alterations were monitored with a full screening of their plasmatic indicators, 24 h before and 48 h after Cd injection. Subsequently, whole blood count and blood smears were performed to follow up on Cd-induced vascular damages. Our data showed that Cd induced thrombotic thrombocytopenic purpura, leading to widespread bleeding and cellular alterations in the targeted tissues. These alterations were associated with an obvious normochromic normocytic anemia in favor of microangiopathic hemolytic anemia. Cd injection has also seriously inhibited the overall enzymatic activities triggering a metabolic shift. Although garlic supplementation had little effect on cadmium-induced alterations, it significantly reduced biomass dispersion. Our data is the first evidence of the cadmium versatile toxicity involving vascular alterations as a central and a leading cause of the overall parenchymal lesions. Cd toxicity was associated with a specific enzymatic signature, which must be considered during the interpretation.
Collapse
Affiliation(s)
- Amine Mosbah
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Sousse University, 4042, Chott Mariem, Tunisia.
| | - Raouf Dhaouadi
- Laboratory of Ichthyology, National School of Veterinary Medicine, Manouba University, 2010, Manouba, Tunisia
| | - Nouha Ben Abdeljelil
- Department of Pathology, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technologies, Monastir Center, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Sousse University, 4042, Chott Mariem, Tunisia
| |
Collapse
|
23
|
Kruger WD. How to fix a broken protein: restoring function to mutant human cystathionine β-synthase. Hum Genet 2021; 141:1299-1308. [PMID: 34636997 DOI: 10.1007/s00439-021-02386-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Inborn errors of metabolism (IEM) comprise a large class of recessive genetic diseases involving disorders of cellular metabolism that tend to be caused by missense mutations in which a single incorrect amino acid is substituted in the polypeptide chain. Cystathionine beta-synthase (CBS) deficiency is an example of an IEM that causes large elevations of blood total homocysteine levels, resulting in phenotypes in several tissues. Current treatment strategies involve dietary restriction and vitamin therapy, but these are only partially effective and do not work in all patients. Over 85% of the described mutations in CBS-deficient patients are missense mutations in which the mutant protein fails to fold into an active conformation. The ability of CBS to achieve an active conformation is affected by a variety of intracellular protein networks including the chaperone system and the ubiquitin/proteasome system, collectively referred to as the proteostasis network. Proteostasis modulators are drugs that perturb various aspects of these networks. In this article, we will review the evidence that modulation of the intracellular protein folding environment can be used as a potential therapeutic strategy to treat CBS deficiency and discuss the pros and cons of such a strategy.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants (Basel) 2021; 10:1065. [PMID: 34356298 PMCID: PMC8301176 DOI: 10.3390/antiox10071065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter and the smallest signaling thiol metabolite with important roles in human health. The turnover of H2S in humans is mainly governed by enzymes of sulfur amino acid metabolism and also by the microbiome. As is the case with other small signaling molecules, disease-promoting effects of H2S largely depend on its concentration and compartmentalization. Genetic defects that impair the biogenesis and catabolism of H2S have been described; however, a gap in knowledge remains concerning physiological steady-state concentrations of H2S and their direct clinical implications. The small size and considerable reactivity of H2S renders its quantification in biological samples an experimental challenge. A compilation of methods currently employed to quantify H2S in biological specimens is provided in this review. Substantial discrepancy exists in the concentrations of H2S determined by different techniques. Available methodologies permit end-point measurement of H2S concentration, yet no definitive protocol exists for the continuous, real-time measurement of H2S produced by its enzymatic sources. We present a summary of available animal models, monogenic diseases that impair H2S metabolism in humans including structure-function relationships of pathogenic mutations, and discuss possible approaches to overcome current limitations of study.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ilia Derevenkov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Sergei V. Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
25
|
Structural perspectives on H 2S homeostasis. Curr Opin Struct Biol 2021; 71:27-35. [PMID: 34214926 DOI: 10.1016/j.sbi.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022]
Abstract
The enzymes involved in H2S homeostasis regulate its production from sulfur-containing amino acids and its oxidation to thiosulfate and sulfate. Two gatekeepers in this homeostatic circuit are cystathionine beta-synthase, which commits homocysteine to cysteine, and sulfide quinone oxidoreductase, which commits H2S to oxidation via a mitochondrial pathway. Inborn errors at either locus affect sulfur metabolism, increasing homocysteine-derived H2S synthesis in the case of CBS deficiency and reducing complex IV activity in the case of SQOR deficiency. In this review, we focus on structural perspectives on the reaction mechanisms and regulation of these two enzymes, which are key to understanding H2S homeostasis in health and its dysregulation and potential targeting in disease.
Collapse
|
26
|
Structural insight into the unique conformation of cystathionine β-synthase from Toxoplasma gondii. Comput Struct Biotechnol J 2021; 19:3542-3555. [PMID: 34194677 PMCID: PMC8225704 DOI: 10.1016/j.csbj.2021.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Cysteine plays a major role in the redox homeostasis and antioxidative defense mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine biosynthesis in this parasite is the reverse transsulfuration pathway involving two key enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from T. gondii (TgCBS) catalyzes the pyridoxal-5́-phosphate-dependent condensation of homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can perform alternative reactions that use homocysteine and cysteine as substrates leading to the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex with reaction intermediates. A complementary molecular dynamics analysis revealed a unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our data provides one missing piece in the structural diversity of CBSs by revealing the so far unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These results pave the way for understanding the mechanisms by which TgCBS regulates the intracellular redox of the parasite, and have far-reaching consequences for the functional understanding of CBSs with similar domain distribution.
Collapse
|
27
|
Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021; 10:729. [PMID: 34063102 PMCID: PMC8148161 DOI: 10.3390/antiox10050729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide and carbon monoxide share the ability to be beneficial or harmful molecules depending on the concentrations to which organisms are exposed. Interestingly, humans and some bacteria produce small amounts of these compounds. Since several publications have summarized the recent knowledge of its effects in humans, here we have chosen to focus on the role of H2S and CO on microbial physiology. We briefly review the current knowledge on how bacteria produce and use H2S and CO. We address their potential antimicrobial properties when used at higher concentrations, and describe how microbial systems detect and survive toxic levels of H2S and CO. Finally, we highlight their antimicrobial properties against human pathogens when endogenously produced by the host and when released by external chemical donors.
Collapse
|
28
|
Li M, Liu Y, Deng Y, Pan L, Fu H, Han X, Li Y, Shi H, Wang T. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review). Oncol Rep 2021; 45:68. [PMID: 33760221 PMCID: PMC8020202 DOI: 10.3892/or.2021.8019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S), the third gas signal molecule, is associated with the modulation of various physiological and pathological processes. Recent studies have reevealed that endogenous H2S may promote proliferation, induce angiogenesis and inhibit apoptosis, thereby stimulating oncogenesis. Conversely, decreased endogenous H2S release suppresses growth of various tumors including breast cancer. This observation suggests an alternative tumor therapy strategy by inhibiting H2S-producing enzymes to reduce the release of endogenous H2S. Breast cancer is the most common type of cancer in women. Due to the lack of approved targeted therapy, its recurrence and metastasis still affect its clinical treatment. In recent years, significant progress has been made in the control of breast cancer by using inhibitors on H2S-producing enzymes. This review summarized the roles of endogenous H2S-producing enzymes in breast cancer and the effects of the enzyme inhibitors on anticancer and anti-metastasis, with the aim of providing new insights for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ming Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuying Deng
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Limin Pan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Han Fu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xue Han
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuxi Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haimei Shi
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tianxiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
29
|
Benchoam D, Cuevasanta E, Julió Plana L, Capece L, Banerjee R, Alvarez B. Heme-Thiolate Perturbation in Cystathionine β-Synthase by Mercury Compounds. ACS OMEGA 2021; 6:2192-2205. [PMID: 33521459 PMCID: PMC7841933 DOI: 10.1021/acsomega.0c05475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 05/11/2023]
Abstract
Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)- and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3-0.4 s-1 for Fe(III)-CBS and 40 ± 4 s-1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS.
Collapse
Affiliation(s)
- Dayana Benchoam
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
| | - Ernesto Cuevasanta
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
- Unidad
de Bioquímica Analítica, Centro de Investigaciones Nucleares,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
| | - Laia Julió Plana
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/Instituto de Química
Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA Buenos
Aires, Argentina
| | - Luciana Capece
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/Instituto de Química
Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA Buenos
Aires, Argentina
| | - Ruma Banerjee
- Department
of Biological Chemistry, University of Michigan
Medical School, Ann Arbor, Michigan 48109, United States
| | - Beatriz Alvarez
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo, 11400 Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800 Uruguay
| |
Collapse
|
30
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
31
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Stipanuk MH. Metabolism of Sulfur-Containing Amino Acids: How the Body Copes with Excess Methionine, Cysteine, and Sulfide. J Nutr 2020; 150:2494S-2505S. [PMID: 33000151 DOI: 10.1093/jn/nxaa094] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolism of excess methionine (Met) to homocysteine (Hcy) by transmethylation is facilitated by the expression of methionine adenosyltransferase (MAT) I/III and glycine N-methyltransferase (GNMT) in liver, and a lack of either enzyme results in hypermethioninemia despite normal concentrations of MATII and methyltransferases other than GNMT. The further metabolism of Hcy by the transsulfuration pathway is facilitated by activation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) as well as the relatively high KM of CBS for Hcy. Transmethylation plus transsulfuration effects catabolism of the Met molecule along with transfer of the sulfur atom of Met to serine to synthesize cysteine (Cys). Oxidation and excretion of Met sulfur depend upon Cys catabolism and sulfur oxidation pathways. Excess Cys is oxidized by cysteine dioxygenase 1 (CDO1) and further metabolized to taurine or sulfate. Some Cys is normally metabolized by desulfhydration pathways, and the hydrogen sulfide (H2S) produced is further oxidized to sulfate. If Cys or Hcy concentrations are elevated, Cys or Hcy desulfhydration can result in excess H2S and thiosulfate production. Excess Cys or Met may also promote their limited metabolism by transamination pathways.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Conter C, Fruncillo S, Fernández-Rodríguez C, Martínez-Cruz LA, Dominici P, Astegno A. Cystathionine β-synthase is involved in cysteine biosynthesis and H 2S generation in Toxoplasma gondii. Sci Rep 2020; 10:14657. [PMID: 32887901 PMCID: PMC7474069 DOI: 10.1038/s41598-020-71469-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Cystathionine β-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed β-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.
Collapse
Affiliation(s)
- Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Fruncillo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Carmen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
34
|
Anashkin VA, Salminen A, Orlov VN, Lahti R, Baykov AA. The tetrameric structure of nucleotide-regulated pyrophosphatase and its modulation by deletion mutagenesis and ligand binding. Arch Biochem Biophys 2020; 692:108537. [PMID: 32810477 DOI: 10.1016/j.abb.2020.108537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022]
Abstract
A quarter of prokaryotic Family II inorganic pyrophosphatases (PPases) contain a regulatory insert comprised of two cystathionine β-synthase (CBS) domains and one DRTGG domain in addition to the two catalytic domains that form canonical Family II PPases. The CBS domain-containing PPases (CBS-PPases) are allosterically activated or inhibited by adenine nucleotides that cooperatively bind to the CBS domains. Here we use chemical cross-linking and analytical ultracentrifugation to show that CBS-PPases from Desulfitobacterium hafniense and four other bacterial species are active as 200-250-kDa homotetramers, which seems unprecedented among the four PPase families. The tetrameric structure is stabilized by Co2+, the essential cofactor, pyrophosphate, the substrate, and adenine nucleotides, including diadenosine tetraphosphate. The deletion variants of dhPPase containing only catalytic or regulatory domains are dimeric. Co2+ depletion by incubation with EDTA converts CBS-PPase into inactive tetrameric and dimeric forms. Dissociation of tetrameric CBS-PPase and its catalytic part by dilution renders them inactive. The structure of CBS-PPase tetramer was modelled from the structures of dimeric catalytic and regulatory parts. These findings signify the role of the unique oligomeric structure of CBS-PPase in its multifaced regulation.
Collapse
Affiliation(s)
- Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anu Salminen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Victor N Orlov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Reijo Lahti
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
35
|
Bublil EM, Majtan T. Classical homocystinuria: From cystathionine beta-synthase deficiency to novel enzyme therapies. Biochimie 2020; 173:48-56. [DOI: 10.1016/j.biochi.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
|
36
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
37
|
Sun S, Weile J, Verby M, Wu Y, Wang Y, Cote AG, Fotiadou I, Kitaygorodsky J, Vidal M, Rine J, Ješina P, Kožich V, Roth FP. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med 2020; 12:13. [PMID: 32000841 PMCID: PMC6993387 DOI: 10.1186/s13073-020-0711-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/10/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.
Collapse
Affiliation(s)
- Song Sun
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123, Uppsala, Sweden
| | - Jochen Weile
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Marta Verby
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Yingzhou Wu
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Atina G Cote
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Iosifina Fotiadou
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Julia Kitaygorodsky
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasper Rine
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Pavel Ješina
- Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08, Praha 2, Czech Republic
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08, Praha 2, Czech Republic.
| | - Frederick P Roth
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
38
|
Giuffrè A, Tomé CS, Fernandes DGF, Zuhra K, Vicente JB. Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:335-353. [PMID: 32130707 DOI: 10.1007/978-3-030-34025-4_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.
Collapse
Affiliation(s)
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Dalila G F Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Karim Zuhra
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal.
| |
Collapse
|
39
|
Kasak L, Bakolitsa C, Hu Z, Yu C, Rine J, Dimster-Denk DF, Pandey G, Baets GD, Bromberg Y, Cao C, Capriotti E, Casadio R, Durme JV, Giollo M, Karchin R, Katsonis P, Leonardi E, Lichtarge O, Martelli PL, Masica D, Mooney SD, Olatubosun A, Pal LR, Radivojac P, Rousseau F, Savojardo C, Schymkowitz J, Thusberg J, Tosatto SC, Vihinen M, Väliaho J, Repo S, Moult J, Brenner SE, Friedberg I. Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants. Hum Mutat 2019; 40:1530-1545. [PMID: 31301157 PMCID: PMC7325732 DOI: 10.1002/humu.23868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.
Collapse
Affiliation(s)
- Laura Kasak
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Constantina Bakolitsa
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Changhua Yu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jasper Rine
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Dago F. Dimster-Denk
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Gaurav Pandey
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Greet De Baets
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Chen Cao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD, USA
| | - Emidio Capriotti
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Joost Van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Manuel Giollo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - David Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ayodeji Olatubosun
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Predrag Radivojac
- School of Informatics and Computing, Indiana University, Bloomington, IN, USA
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | | | - Mauno Vihinen
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Jouni Väliaho
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Susanna Repo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John Moult
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Steven E. Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, OH, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA USA
| |
Collapse
|
40
|
Devi S, Tarique KF, Ali MF, Abdul Rehman SA, Gourinath S. Identification and characterization of Helicobacter pylori O-acetylserine-dependent cystathionine β-synthase, a distinct member of the PLP-II family. Mol Microbiol 2019; 112:718-739. [PMID: 31132312 DOI: 10.1111/mmi.14315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 02/02/2023]
Abstract
O-acetylserine sulfhydrylase (OASS) and cystathionine β-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Public Health Research Institute, Rutgers, Newark, NJ, USA
| | - Mohammad Farhan Ali
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Arif Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
41
|
Guo SX, Yao GF, Ye HR, Tang J, Huang ZQ, Yang F, Li YH, Han Z, Hu LY, Zhang H, Hu KD. Functional Characterization of a Cystathionine β-Synthase Gene in Sulfur Metabolism and Pathogenicity of Aspergillus niger in Pear Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4435-4443. [PMID: 30945533 DOI: 10.1021/acs.jafc.9b00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aspergillus niger, which is a fungal pathogen, causes rot in a variety of fruits. In this study, the cystathionine β-synthase cbsA gene was deleted by homologous recombination to study its role in sulfur metabolism and pathogenicity of A. niger. The results showed that Δ cbsA strain maintained normal mycelia growth and sporulation compared with the control strain A. niger MA 70.15, whereas the contents of cysteine and glutathione (GSH) increased significantly after cbsA deletion. However, Δ cbsA strain showed reduced endogenous H2S production. Further results showed that cbsA gene deletion induced higher resistance to cadmium stress and stronger infectivity to pears. It was also found that a stronger response of reactive oxygen species (ROS) production was induced in Δ cbsA mutant-infected pear compared with the control strain. In all, the present research suggested the important role of cbsA in sulfur metabolism and pathogenicity of A. niger in pear fruit.
Collapse
Affiliation(s)
- Shang-Xuan Guo
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Gai-Fang Yao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Hui-Ran Ye
- School of Science , Renmin University of China , Beijing 100872 , China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131 , China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131 , China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131 , China
| | - Yan-Hong Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Zhuo Han
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Lan-Ying Hu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
- Anhui Province Key Laboratory of Functional Compound Seasoning , Anhui Qiangwang Seasoning Food Co., Ltd. , Jieshou 236500 , China
| | - Hua Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Kang-Di Hu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , China
| |
Collapse
|
42
|
First-in-class allosteric inhibitors of bacterial IMPDHs. Eur J Med Chem 2019; 167:124-132. [PMID: 30769241 DOI: 10.1016/j.ejmech.2019.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 01/27/2019] [Indexed: 01/18/2023]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme in many bacterial pathogens and is considered as a potential drug target for the development of new antibacterial agents. Our recent work has revealed the crucial role of one of the two structural domains (i.e. Bateman domain) in the regulation of the quaternary structure and enzymatic activity of bacterial IMPDHs. Thus, we have screened chemical libraries to search for compounds targeting the Bateman domain and identified first in-class allosteric inhibitors of a bacterial IMPDH. These inhibitors were shown to counteract the activation by the natural positive effector, MgATP, and to block the enzyme in its apo conformation (low affinity for IMP). Our structural studies demonstrate the versatility of the Bateman domain to accommodate totally unrelated chemical scaffolds and pave the way for the development of allosteric inhibitors, an avenue little explored until now.
Collapse
|
43
|
Sriretnakumar V, Harripaul R, Vincent JB, Kennedy JL, So J. Enrichment of pathogenic variants in genes associated with inborn errors of metabolism in psychiatric populations. Am J Med Genet B Neuropsychiatr Genet 2019; 180:46-54. [PMID: 30556376 DOI: 10.1002/ajmg.b.32702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
Many genetic conditions can mimic mental health disorders, with psychiatric symptoms that are difficult to treat with standard psychotropic medications. This study tests the hypothesis that psychiatric populations are enriched for pathogenic variants associated with selected inborn errors of metabolism (IEMs). Using next-generation sequencing, 2046 psychiatric patients were screened for pathogenic variants in genes associated with four IEMs, Niemann-Pick disease type C (NPC), Wilson disease (WD), homocystinuria (HOM), and acute intermittent porphyria (AIP). Among the 2046 cases, carrier rates of 0.83, 0.98, and 0.20%, for NPC, WD and HOM, and affected rates of 0.10 and 0.24% for NPC and AIP were seen, respectively. An enrichment of known and predicted pathogenic variants in the genes associated with NPC and AIP was found in the psychiatric cohort and especially in schizophrenia patients. The results of this study support that pathogenic variants in genes associated with IEMs are enriched in psychiatric populations. Underlying undiagnosed IEMs could account for the psychiatric symptomatology in a subset of psychiatric patients. Further studies are warranted to investigate the possibility that carriers for IEMs may have an increased risk for psychiatric disorders, particularly in the context of poor treatment response.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ricardo Harripaul
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - John B Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Joyce So
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Prouteau M, Loewith R. Regulation of Cellular Metabolism through Phase Separation of Enzymes. Biomolecules 2018; 8:biom8040160. [PMID: 30513998 PMCID: PMC6316564 DOI: 10.3390/biom8040160] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Metabolism is the sum of the life-giving chemical processes that occur within a cell. Proper regulation of these processes is essential for all organisms to thrive and prosper. When external factors are too extreme, or if internal regulation is corrupted through genetic or epigenetic changes, metabolic homeostasis is no longer achievable and diseases such as metabolic syndrome or cancer, aging, and, ultimately, death ensue. Metabolic reactions are catalyzed by proteins, and the in vitro kinetic properties of these enzymes have been studied by biochemists for many decades. These efforts led to the appreciation that enzyme activities can be acutely regulated and that this regulation is critical to metabolic homeostasis. Regulation can be mediated through allosteric interactions with metabolites themselves or via post-translational modifications triggered by intracellular signal transduction pathways. More recently, enzyme regulation has attracted the attention of cell biologists who noticed that change in growth conditions often triggers the condensation of diffusely localized enzymes into one or more discrete foci, easily visible by light microscopy. This reorganization from a soluble to a condensed state is best described as a phase separation. As summarized in this review, stimulus-induced phase separation has now been observed for dozens of enzymes suggesting that this could represent a widespread mode of activity regulation, rather than, or in addition to, a storage form of temporarily superfluous enzymes. Building on our recent structure determination of TOROIDs (TORc1 Organized in Inhibited Domain), the condensate formed by the protein kinase Target Of Rapamycin Complex 1 (TORC1), we will highlight that the molecular organization of enzyme condensates can vary dramatically and that future work aimed at the structural characterization of enzyme condensates will be critical to understand how phase separation regulates enzyme activity and consequently metabolic homeostasis. This information may ultimately facilitate the design of strategies to target the assembly or disassembly of specific enzymes condensates as a therapeutic approach to restore metabolic homeostasis in certain diseases.
Collapse
Affiliation(s)
- Manoël Prouteau
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
| |
Collapse
|
45
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
46
|
Gupta S, Kelow S, Wang L, Andrake MD, Dunbrack RL, Kruger WD. Mouse modeling and structural analysis of the p.G307S mutation in human cystathionine β-synthase ( CBS) reveal effects on CBS activity but not stability. J Biol Chem 2018; 293:13921-13931. [PMID: 30030379 DOI: 10.1074/jbc.ra118.002164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Mutations in the cystathionine β-synthase (CBS) gene are the cause of classical homocystinuria, the most common inborn error in sulfur metabolism. The p.G307S mutation is the most frequent cause of CBS deficiency in Ireland, which has the highest prevalence of CBS deficiency in Europe. Individuals homozygous for this mutation tend to be severely affected and are pyridoxine nonresponsive, but the molecular basis for the strong effects of this mutation is unclear. Here, we characterized a transgenic mouse model lacking endogenous Cbs and expressing human p.G307S CBS protein from a zinc-inducible metallothionein promoter (Tg-G307S Cbs-/-). Unlike mice expressing other mutant CBS alleles, the Tg-G307S transgene could not efficiently rescue neonatal lethality of Cbs-/- in a C57BL/6J background. In a C3H/HeJ background, zinc-induced Tg-G307S Cbs-/- mice expressed high levels of p.G307S CBS in the liver, and this protein variant forms multimers, similarly to mice expressing WT human CBS. However, the p.G307S enzyme had no detectable residual activity. Moreover, treating mice with proteasome inhibitors failed to significantly increase CBS-specific activity. These findings indicated that the G307S substitution likely affects catalytic function as opposed to causing a folding defect. Using molecular dynamics simulation techniques, we found that the G307S substitution likely impairs catalytic function by limiting the ability of the tyrosine at position 308 to assume the proper conformational state(s) required for the formation of the pyridoxal-cystathionine intermediate. These results indicate that the p.G307S CBS is stable but enzymatically inert and therefore unlikely to respond to chaperone-based therapy.
Collapse
Affiliation(s)
- Sapna Gupta
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Simon Kelow
- the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Liqun Wang
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Mark D Andrake
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Roland L Dunbrack
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| | - Warren D Kruger
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 and
| |
Collapse
|
47
|
Cystathionine β-Synthase in Physiology and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3205125. [PMID: 30050925 PMCID: PMC6046153 DOI: 10.1155/2018/3205125] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023]
Abstract
Cystathionine β-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
Collapse
|
48
|
Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6290931. [PMID: 30050658 PMCID: PMC6040266 DOI: 10.1155/2018/6290931] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a relevant signaling molecule in physiology, taking its seat as a bona fide gasotransmitter akin to nitric oxide (NO) and carbon monoxide (CO). After being merely regarded as a toxic poisonous molecule, it is now recognized that mammalian cells are equipped with sophisticated enzymatic systems for H2S production and breakdown. The signaling role of H2S is mainly related to its ability to modify different protein targets, particularly by promoting persulfidation of protein cysteine residues and by interacting with metal centers, mostly hemes. H2S has been shown to regulate a myriad of cellular processes with multiple physiological consequences. As such, dysfunctional H2S metabolism is increasingly implicated in different pathologies, from cardiovascular and neurodegenerative diseases to cancer. As a highly diffusible reactive species, the intra- and extracellular levels of H2S have to be kept under tight control and, accordingly, regulation of H2S metabolism occurs at different levels. Interestingly, even though H2S, NO, and CO have similar modes of action and parallel regulatory targets or precisely because of that, there is increasing evidence of a crosstalk between the three gasotransmitters. Herein are reviewed the biochemistry, metabolism, and signaling function of hydrogen sulfide, as well as its interplay with the other gasotransmitters, NO and CO.
Collapse
|
49
|
Tu Y, Kreinbring CA, Hill M, Liu C, Petsko GA, McCune CD, Berkowitz DB, Liu D, Ringe D. Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Biochemistry 2018; 57:3134-3145. [PMID: 29630349 DOI: 10.1021/acs.biochem.8b00092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystathionine β-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.
Collapse
Affiliation(s)
- Yupeng Tu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cheryl A Kreinbring
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Megan Hill
- Department of Biology , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cynthia Liu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Gregory A Petsko
- Department of Neurology and Neuroscience , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Christopher D McCune
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - David B Berkowitz
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - Dali Liu
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Dagmar Ringe
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham , Massachusetts 02454 , United States
| |
Collapse
|
50
|
Niu W, Wang J, Qian J, Wang M, Wu P, Chen F, Yan S. Allosteric control of human cystathionine β-synthase activity by a redox active disulfide bond. J Biol Chem 2018; 293:2523-2533. [PMID: 29298893 PMCID: PMC5818181 DOI: 10.1074/jbc.ra117.000103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/27/2017] [Indexed: 01/10/2023] Open
Abstract
Cystathionine β-synthase (CBS) is the central enzyme in the trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of the three major enzymes involved in the biogenesis of H2S. CBS is a complex protein with a modular three-domain architecture, the central domain of which contains a 272CXXC275 motif whose function has yet to be determined. In the present study, we demonstrated that the CXXC motif exists in oxidized and reduced states in the recombinant enzyme by mass spectroscopic analysis and a thiol labeling assay. The activity of reduced CBS is ∼2-3-fold greater than that of the oxidized enzyme, and substitution of either cysteine in CXXC motif leads to a loss of redox sensitivity. The Cys272-Cys275 disulfide bond in CBS has a midpoint potential of -314 mV at pH 7.4. Additionally, the CXXC motif also exists in oxidized and reduced states in HEK293 cells under oxidative and reductive conditions, and stressing these cells with DTT results in more reduced enzyme and a concomitant increase in H2S production in live HEK293 cells as determined using a H2S fluorescent probe. By contrast, incubation of cells with aminooxyacetic acid, an inhibitor of CBS and cystathionine γ-lyase, eliminated the increase of H2S production after the cells were exposed to DTT. These findings indicate that CBS is post-translationally regulated by a redox-active disulfide bond in the CXXC motif. The results also demonstrate that CBS-derived H2S production is increased in cells under reductive stress conditions.
Collapse
Affiliation(s)
- Weining Niu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Qian
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengying Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ping Wu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fei Chen
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shasha Yan
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|