1
|
Naha A, Cameron TA, Margolin W. A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Escherichia coli Cell Division. Antibiotics (Basel) 2025; 14:52. [PMID: 39858338 PMCID: PMC11762379 DOI: 10.3390/antibiotics14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits Escherichia coli cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. Methods: To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity. Results: Modeling suggested that Kil's core segment folds into a helix-turn-helix (HTH) structure. Deleting either the C-terminal 11 residues or the N-terminal 5 residues of Kil still allowed the inhibition of E. coli cell division, but removing both termini nearly abolished this activity, indicating that a minimal region within the Kil HTH core is essential for its structure and function. Another Kil-like peptide from a closely related enterobacterial phage also disrupted FtsZ ring assembly and required ZipA for this activity. Consistent with its broader activity against FtsZ, λ Kil was able to efficiently inhibit cell division of a uropathogenic E. coli (UPEC) strain. Conclusions: Understanding the structure and function of Kil and similar peptides can potentially reveal additional ways to target FtsZ for antimicrobial therapies and elucidate how FtsZ functions in bacterial cell division.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA; (A.N.); (T.A.C.)
| |
Collapse
|
2
|
Beggs GA, Bassler BL. Phage small proteins play large roles in phage-bacterial interactions. Curr Opin Microbiol 2024; 80:102519. [PMID: 39047312 PMCID: PMC11323111 DOI: 10.1016/j.mib.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Phages have wide influence on bacterial physiology, and likewise, bacterial processes impinge on phage biology. Key to these interactions are phage small proteins (<100 aa). Long underappreciated, recent work has revealed millions of phage small proteins, and increasingly, mechanisms by which they function to dictate phage and/or bacterial behavior and evolution. Here, we describe select phage small proteins that mediate phage-bacterial interactions by modulating phage lifestyle decision-making components or by altering host gene expression.
Collapse
Affiliation(s)
- Grace A Beggs
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A phage nucleus-associated protein from the jumbophage Churi inhibits bacterial growth through protein translation interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599175. [PMID: 38915640 PMCID: PMC11195228 DOI: 10.1101/2024.06.15.599175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.
Collapse
|
4
|
Xu Q, Tang L, Liu W, Xu N, Hu Y, Zhang Y, Chen S. Phage protein Gp11 blocks Staphylococcus aureus cell division by inhibiting peptidoglycan biosynthesis. mBio 2024; 15:e0067924. [PMID: 38752726 PMCID: PMC11237401 DOI: 10.1128/mbio.00679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Phages and bacteria have a long history of co-evolution. However, these dynamics of phage-host interactions are still largely unknown; identification of phage inhibitors that remodel host metabolism will provide valuable information for target development for antimicrobials. Here, we perform a comprehensive screen for early-gene products of ΦNM1 that inhibit cell growth in Staphylococcus aureus. A small membrane protein, Gp11, with inhibitory effects on S. aureus cell division was identified. A bacterial two-hybrid library containing 345 essential S. aureus genes was constructed to screen for targets of Gp11, and Gp11 was found to interact with MurG and DivIC. Defects in cell growth and division caused by Gp11 were dependent on MurG and DivIC, which was further confirmed using CRISPRi hypersensitivity assay. Gp11 interacts with MurG, the protein essential for cell wall formation, by inhibiting the production of lipid II to regulate peptidoglycan (PG) biosynthesis on the cell membrane. Gp11 also interacts with cell division protein DivIC, an essential part of the division machinery necessary for septal cell wall assembly, to disrupt the recruitment of division protein FtsW. Mutations in Gp11 result in loss of its ability to cause growth defects, whereas infection with phage in which the gp11 gene has been deleted showed a significant increase in lipid II production in S. aureus. Together, our findings reveal that a phage early-gene product interacts with essential host proteins to disrupt PG biosynthesis and block S. aureus cell division, suggesting a potential pathway for the development of therapeutic approaches to treat pathogenic bacterial infections. IMPORTANCE Understanding the interplay between phages and their hosts is important for the development of novel therapies against pathogenic bacteria. Although phages have been used to control methicillin-resistant Staphylococcus aureus infections, our knowledge related to the processes in the early stages of phage infection is still limited. Owing to the fact that most of the phage early proteins have been classified as hypothetical proteins with uncertain functions, we screened phage early-gene products that inhibit cell growth in S. aureus, and one protein, Gp11, selectively targets essential host genes to block the synthesis of the peptidoglycan component lipid II, ultimately leading to cell growth arrest in S. aureus. Our study provides a novel insight into the strategy by which Gp11 blocks essential host cellular metabolism to influence phage-host interaction. Importantly, dissecting the interactions between phages and host cells will contribute to the development of new and effective therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Qi Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Tang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Neng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yong Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Chitboonthavisuk C, Martin C, Huss P, Peters JM, Anantharaman K, Raman S. Systematic genome-wide discovery of host factors governing bacteriophage infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590424. [PMID: 38659955 PMCID: PMC11042327 DOI: 10.1101/2024.04.20.590424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacterial host factors regulate the infection cycle of bacteriophages. Except for some well-studied host factors (e.g., receptors or restriction-modification systems), the contribution of the rest of the host genome on phage infection remains poorly understood. We developed PHAGEPACK, a pooled assay that systematically and comprehensively measures each host-gene impact on phage fitness. PHAGEPACK combines CRISPR interference with phage packaging to link host perturbation to phage fitness during active infection. Using PHAGEPACK, we constructed a genome-wide map of genes impacting T7 phage fitness in permissive E. coli, revealing pathways previously unknown to affect phage packaging. When applied to the non-permissive E. coli O121, PHAGEPACK identified pathways leading to host resistance; their removal increased phage susceptibility up to a billion-fold. Bioinformatic analysis indicates phage genomes carry homologs or truncations of key host factors, potentially for fitness advantage. In summary, PHAGEPACK offers valuable insights into phage-host interactions, phage evolution, and bacterial resistance.
Collapse
|
6
|
Wang M, Zhang J, Wei J, Jiang L, Jiang L, Sun Y, Zeng Z, Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit Rev Microbiol 2024; 50:196-211. [PMID: 38400715 DOI: 10.1080/1040841x.2023.2181056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| |
Collapse
|
7
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Mahata T, Molshanski-Mor S, Goren MG, Kohen-Manor M, Yosef I, Avram O, Salomon D, Qimron U. Inhibition of host cell division by T5 protein 008 (Hdi). Microbiol Spectr 2023; 11:e0169723. [PMID: 37888989 PMCID: PMC10714956 DOI: 10.1128/spectrum.01697-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE We have identified a novel phage-encoded inhibitor of the major cytoskeletal protein in bacterial division, FtsZ. The inhibition is shown to confer T5 bacteriophage with a growth advantage in dividing hosts. Our studies demonstrate a strategy in bacteriophages to maximize their progeny number by inhibiting escape of one of the daughter cells of an infected bacterium. They further emphasize that FtsZ is a natural target for bacterial growth inhibition.
Collapse
Affiliation(s)
- Tridib Mahata
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Molshanski-Mor
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran G. Goren
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Kohen-Manor
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Yosef I, Mahata T, Goren MG, Degany OJ, Ben-Shem A, Qimron U. Highly active CRISPR-adaptation proteins revealed by a robust enrichment technology. Nucleic Acids Res 2023; 51:7552-7562. [PMID: 37326009 PMCID: PMC10415146 DOI: 10.1093/nar/gkad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Natural prokaryotic defense via the CRISPR-Cas system requires spacer integration into the CRISPR array in a process called adaptation. To search for adaptation proteins with enhanced capabilities, we established a robust perpetual DNA packaging and transfer (PeDPaT) system that uses a strain of T7 phage to package plasmids and transfer them without killing the host, and then uses a different strain of T7 phage to repeat the cycle. We used PeDPaT to identify better adaptation proteins-Cas1 and Cas2-by enriching mutants that provide higher adaptation efficiency. We identified two mutant Cas1 proteins that show up to 10-fold enhanced adaptation in vivo. In vitro, one mutant has higher integration and DNA binding activities, and another has a higher disintegration activity compared to the wild-type Cas1. Lastly, we showed that their specificity for selecting a protospacer adjacent motif is decreased. The PeDPaT technology may be used for many robust screens requiring efficient and effortless DNA transduction.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tridib Mahata
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran G Goren
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or J Degany
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adam Ben-Shem
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Wang CL, Zhang LY, Ding XY, Sun YC. Identification of Toxic Proteins Encoded by Mycobacteriophage TM4 Using a Next-Generation Sequencing-Based Method. Microbiol Spectr 2023; 11:e0501522. [PMID: 37154774 PMCID: PMC10269906 DOI: 10.1128/spectrum.05015-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria and which, due to their diversity, represent a large gene pool. Characterization of the function of these genes should provide useful insights into host-phage interactions. Here, we describe a next-generation sequencing (NGS)-based, high-throughput screening approach for the identification of mycobacteriophage-encoded proteins that are toxic to mycobacteria. A plasmid-derived library representing the mycobacteriophage TM4 genome was constructed and transformed into Mycobacterium smegmatis. NGS and growth assays showed that the expression of TM4 gp43, gp77, -78, and -79, or gp85 was toxic to M. smegmatis. Although the genes associated with bacterial toxicity were expressed during phage infection, they were not required for lytic replication of mycobacteriophage TM4. In conclusion, we describe here an NGS-based approach which required significantly less time and resources than traditional methods and allowed the identification of novel mycobacteriophage gene products that are toxic to mycobacteria. IMPORTANCE The wide spread of drug-resistant Mycobacterium tuberculosis has brought an urgent need for new drug development. Mycobacteriophages are natural killers of M. tuberculosis, and their toxic gene products might provide potential anti-M. tuberculosis candidates. However, the enormous genetic diversity of mycobacteriophages poses challenges for the identification of these genes. Here, we used a simple and convenient screening method, based on next-generation sequencing, to identify mycobacteriophage genes encoding toxic products for mycobacteria. Using this approach, we screened and validated several toxic products encoded by mycobacteriophage TM4. In addition, we also found that the genes encoding these toxic products are nonessential for lytic replication of TM4. Our work describes a promising method for the identification of phage genes that encode proteins that are toxic to mycobacteria and which might facilitate the identification of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Chun-Liang Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan-Yue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
12
|
Xuyang L, Cristina LM, Laura MA, Xu P. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. Nucleic Acids Res 2023; 51:1724-1739. [PMID: 36727447 PMCID: PMC9976892 DOI: 10.1093/nar/gkad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content. Additionally, both gp21 and SiL_0190 can bind to the motif AGTATTA conserved in the promoter of several genes involved in cell division, DNA replication and cellular metabolism thereby repressing or inducing their transcription. Our results suggest that aCcr1 silences cell division and drives progression to the S-phase in Sulfolobales, a function exploited by viruses to facilitate viral propagation.
Collapse
Affiliation(s)
- Li Xuyang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lozano-Madueño Cristina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Martínez-Alvarez Laura
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peng Xu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
13
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
15
|
Heller D, Amaya I, Mohamed A, Ali I, Mavrodi D, Deighan P, Sivanathan V. Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2022; 12:jkac140. [PMID: 35727726 PMCID: PMC9339283 DOI: 10.1093/g3journal/jkac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage-host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.
Collapse
Affiliation(s)
- Danielle Heller
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Isabel Amaya
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Aleem Mohamed
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ilzat Ali
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Dmitri Mavrodi
- Center for Molecular & Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Padraig Deighan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Viknesh Sivanathan
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
16
|
Dhanoa GK, Kushnir I, Qimron U, Roper DI, Sagona AP. Investigating the effect of bacteriophages on bacterial FtsZ localisation. Front Cell Infect Microbiol 2022; 12:863712. [PMID: 35967845 PMCID: PMC9372555 DOI: 10.3389/fcimb.2022.863712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is one of the most common Gram-negative pathogens and is responsible for infection leading to neonatal meningitis and sepsis. The FtsZ protein is a bacterial tubulin homolog required for cell division in most species, including E. coli. Several agents that block cell division have been shown to mislocalise FtsZ, including the bacteriophage λ-encoded Kil peptide, resulting in defective cell division and a filamentous phenotype, making FtsZ an attractive target for antimicrobials. In this study, we have used an in vitro meningitis model system for studying the effect of bacteriophages on FtsZ using fluorescent E. coli EV36/FtsZ-mCherry and K12/FtsZ-mNeon strains. We show localisation of FtsZ to the bacterial cell midbody as a single ring during normal growth conditions, and mislocalisation of FtsZ producing filamentous multi-ringed bacterial cells upon addition of the known inhibitor Kil peptide. We also show that when bacteriophages K1F-GFP and T7-mCherry were applied to their respective host strains, these phages can inhibit FtsZ and block bacterial cell division leading to a filamentous multi-ringed phenotype, potentially delaying lysis and increasing progeny number. This occurs in the exponential growth phase, as actively dividing hosts are needed. We present that ZapA protein is needed for phage inhibition by showing a phenotype recovery with a ZapA mutant strain, and we show that FtsI protein is also mislocalised upon phage infection. Finally, we show that the T7 peptide gp0.4 is responsible for the inhibition of FtsZ in K12 strains by observing a phenotype recovery with a T7Δ0.4 mutant.
Collapse
Affiliation(s)
- Gurneet K. Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Inbar Kushnir
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P. Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Antonia P. Sagona,
| |
Collapse
|
17
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
18
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
19
|
Abstract
Studying the interactions of bacterial viruses (phages) with their bacterial hosts may lead to better understanding of bacterial mechanisms and consequently enable better manipulation of bacterial pathogens. In this study, we characterized the activity of a protein from phage T5, called T5.015. This protein binds to another protein, Ung, and uses its activity to selectively cleave dUMP-containing DNA. Such cleavage of the bacterial DNA stops bacterial DNA replication and also prevents bacterial division. Presumably, the phage DNA is protected from this activity as Ung does not act on the phage DNA, probably due to lower incorporation of the Ung substrate, dUMP. We believe that the findings are general to many phages and reveal a mechanism of self-versus-foreign DNA discrimination. Bacteriophages (phages) have evolved efficient means to take over the machinery of the bacterial host. The molecular tools at their disposal may be applied to manipulate bacteria and to divert molecular pathways at will. Here, we describe a bacterial growth inhibitor, gene product T5.015, encoded by the T5 phage. High-throughput sequencing of genomic DNA of bacterial mutants, resistant to this inhibitor, revealed disruptive mutations in the Escherichia coli ung gene, suggesting that growth inhibition mediated by T5.015 depends on the uracil-excision activity of Ung. We validated that growth inhibition is abrogated in the absence of ung and confirmed physical binding of Ung by T5.015. In addition, biochemical assays with T5.015 and Ung indicated that T5.015 mediates endonucleolytic activity at abasic sites generated by the base-excision activity of Ung. Importantly, the growth inhibition resulting from the endonucleolytic activity is manifested by DNA replication and cell division arrest. We speculate that the phage uses this protein to selectively cause cleavage of the host DNA, which possesses more misincorporated uracils than that of the phage. This protein may also enhance phage utilization of the available resources in the infected cell, since halting replication saves nucleotides, and stopping cell division maintains both daughters of a dividing cell.
Collapse
|
20
|
Chung IY, Kim BO, Han JH, Park J, Kang HK, Park Y, Cho YH. A phage protein-derived antipathogenic peptide that targets type IV pilus assembly. Virulence 2021; 12:1377-1387. [PMID: 34008466 PMCID: PMC8143254 DOI: 10.1080/21505594.2021.1926411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Phage-inspired antibacterial discovery is a new approach that recruits phages in search for antibacterials with new molecular targets, in that phages are the biological entities well adapted to hijack host bacterial physiology in favor of their own thrive. We previously observed that phage-mediated twitching motility inhibition was effective to control the acute infections caused by Pseudomonas aeruginosa and that the motility inhibition was attributed to the delocalization of PilB, the type IV pilus (TFP) assembly ATPase by binding of the 136-amino acid (aa) phage protein, Tip. Here, we created a series of truncated and point-mutant Tip proteins to identify the critical residues in the Tip bioactivity: N-terminal 80-aa residues were dispensable for the Tip activity; we identified that Asp82, Leu84, and Arg85 are crucial in the Tip function. Furthermore, a synthetic 15-aa peptide (P1) that corresponds to Leu73 to Ala87 is shown to suffice for PilB delocalization, twitching inhibition, and virulence attenuation upon exogenous administration. The transgenic flies expressing the 15-aa peptide were resistant to P. aeruginosa infections as well. Taken together, this proof-of-concept study reveals a new antipathogenic peptide hit targeting bacterial motility and provides an insight into antibacterial discovery targeting TFP assembly.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Ju-Hyun Han
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| | - Jonggwan Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, Korea
| |
Collapse
|
21
|
Liu J, Cvirkaite-Krupovic V, Baquero DP, Yang Y, Zhang Q, Shen Y, Krupovic M. Virus-induced cell gigantism and asymmetric cell division in archaea. Proc Natl Acad Sci U S A 2021; 118:e2022578118. [PMID: 33782110 PMCID: PMC8054024 DOI: 10.1073/pnas.2022578118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Archaeal viruses represent one of the most mysterious parts of the global virosphere, with many virus groups sharing no evolutionary relationship to viruses of bacteria or eukaryotes. How these viruses interact with their hosts remains largely unexplored. Here we show that nonlytic lemon-shaped virus STSV2 interferes with the cell cycle control of its host, hyperthermophilic and acidophilic archaeon Sulfolobus islandicus, arresting the cell cycle in the S phase. STSV2 infection leads to transcriptional repression of the cell division machinery, which is homologous to the eukaryotic endosomal sorting complexes required for transport (ESCRT) system. The infected cells grow up to 20-fold larger in size, have 8,000-fold larger volume compared to noninfected cells, and accumulate massive amounts of viral and cellular DNA. Whereas noninfected Sulfolobus cells divide symmetrically by binary fission, the STSV2-infected cells undergo asymmetric division, whereby giant cells release normal-sized cells by budding, resembling the division of budding yeast. Reinfection of the normal-sized cells produces a new generation of giant cells. If the CRISPR-Cas system is present, the giant cells acquire virus-derived spacers and terminate the virus spread, whereas in its absence, the cycle continues, suggesting that CRISPR-Cas is the primary defense system in Sulfolobus against STSV2. Collectively, our results show how an archaeal virus manipulates the cell cycle, transforming the cell into a giant virion-producing factory.
Collapse
Affiliation(s)
- Junfeng Liu
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | | | - Diana P Baquero
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China;
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
22
|
Characterization of DicB Inhibitory Activity in Cell Division Under Stress Conditions. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Bhambhani A, Iadicicco I, Lee J, Ahmed S, Belfatto M, Held D, Marconi A, Parks A, Stewart CR, Margolin W, Levin PA, Haeusser DP. Bacteriophage SP01 Gene Product 56 Inhibits Bacillus subtilis Cell Division by Interacting with FtsL and Disrupting Pbp2B and FtsW Recruitment. J Bacteriol 2020; 203:e00463-20. [PMID: 33077634 PMCID: PMC7950406 DOI: 10.1128/jb.00463-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Previous work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.
Collapse
Affiliation(s)
- Amit Bhambhani
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - Jules Lee
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Syed Ahmed
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Max Belfatto
- Biology Department, Canisius College, Buffalo, New York, USA
| | - David Held
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Alexia Marconi
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Aaron Parks
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, Texas, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
24
|
Evseev PV, Lukianova AA, Shneider MM, Korzhenkov AA, Bugaeva EN, Kabanova AP, Miroshnikov KK, Kulikov EE, Toshchakov SV, Ignatov AN, Miroshnikov KA. Origin and Evolution of Studiervirinae Bacteriophages Infecting Pectobacterium: Horizontal Transfer Assists Adaptation to New Niches. Microorganisms 2020; 8:E1707. [PMID: 33142811 PMCID: PMC7693777 DOI: 10.3390/microorganisms8111707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Black leg and soft rot are devastating diseases causing up to 50% loss of potential potato yield. The search for, and characterization of, bacterial viruses (bacteriophages) suitable for the control of these diseases is currently a sought-after task for agricultural microbiology. Isolated lytic Pectobacterium bacteriophages Q19, PP47 and PP81 possess a similar broad host range but differ in their genomic properties. The genomic features of characterized phages have been described and compared to other Studiervirinae bacteriophages. Thorough phylogenetic analysis has clarified the taxonomy of the phages and their positioning relative to other genera of the Autographiviridae family. Pectobacterium phage Q19 seems to represent a new genus not described previously. The genomes of the phages are generally similar to the genome of phage T7 of the Teseptimavirus genus but possess a number of specific features. Examination of the structure of the genes and proteins of the phages, including the tail spike protein, underlines the important role of horizontal gene exchange in the evolution of these phages, assisting their adaptation to Pectobacterium hosts. The results provide the basis for the development of bacteriophage-based biocontrol of potato soft rot as an alternative to the use of antibiotics.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| | - Anna A. Lukianova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail M. Shneider
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| | | | - Eugenia N. Bugaeva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Anastasia P. Kabanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Eugene E. Kulikov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Alexander N. Ignatov
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Konstantin A. Miroshnikov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| |
Collapse
|
25
|
Grigonyte AM, Harrison C, MacDonald PR, Montero-Blay A, Tridgett M, Duncan J, Sagona AP, Constantinidou C, Jaramillo A, Millard A. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7. Viruses 2020; 12:E193. [PMID: 32050613 PMCID: PMC7077284 DOI: 10.3390/v12020193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
With the recent rise in interest in using lytic bacteriophages as therapeutic agents, there is an urgent requirement to understand their fundamental biology to enable the engineering of their genomes. Current methods of phage engineering rely on homologous recombination, followed by a system of selection to identify recombinant phages. For bacteriophage T7, the host genes cmk or trxA have been used as a selection mechanism along with both type I and II CRISPR systems to select against wild-type phage and enrich for the desired mutant. Here, we systematically compare all three systems; we show that the use of marker-based selection is the most efficient method and we use this to generate multiple T7 tail fibre mutants. Furthermore, we found the type II CRISPR-Cas system is easier to use and generally more efficient than a type I system in the engineering of phage T7. These results provide a foundation for the future, more efficient engineering of bacteriophage T7.
Collapse
Affiliation(s)
- Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - Christian Harrison
- Department Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - Paul R. MacDonald
- MOAC DTC, Senate House, University of Warwick, Coventry CV4 7AL, UK;
| | - Ariadna Montero-Blay
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain;
| | - Matthew Tridgett
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - John Duncan
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - Antonia P. Sagona
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | | | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
- Institute of Systems and Synthetic Biology (ISSB), CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Andrew Millard
- Department Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
26
|
Liu Y, Huang H, Wang H, Zhang Y. A novel approach for T7 bacteriophage genome integration of exogenous DNA. J Biol Eng 2020; 14:2. [PMID: 31988659 PMCID: PMC6966851 DOI: 10.1186/s13036-019-0224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background The comparatively small genome, well elucidated functional genomics and rapid life cycle confer T7 bacteriophage with great advantages for bio-application. Genetic manipulation of T7 genome plays a key role in T7 related applications. As one of the important aspects in T7 phage genetic modification, gene knock-in refers to two main approaches including direct genetic manipulation in vitro and recombineering. Neither of these available methods are efficient enough to support the development of innovative applications capitalizing on T7 bio-system and thus there is room for novel strategies that address this issue. Integration mediated by the ΦC31 integrase is one of the most robust site-specific recombination systems. ΦC31 integrases with enhanced activity and specificity have been developed such that it is ideal to effectuate exogenous DNA knock-in of T7 phage with advanced ΦC31 integrase. Methods Plasmid construction was conducted by routine molecular cloning technology. The engineered T7 bacteriophages were constructed through homologous recombination with corresponding plasmids and the functional T7 phage was designated as T7∆G10G11-attB. In the integration reaction, hosts with both executive plasmids (pEXM4) and donor plasmids (pMCBK) were lysed by T7∆G10G11-attB. Progenies of T7 phages that integrated with pMCBK were isolated in restrict hosts and validated by sequencing. T7∆G10G11-attB capacity limit was explored by another integration reactions with donor plasmids that contain exogenous DNA of various lengths. Results T7∆G10G11-attB exhibits abortive growth in restrictive hosts, and a bacterial attachment site recognized by ΦC31 integrase (attB) was confirmed to be present in the T7∆G10G11-attB genome via sequencing. The integration reaction demonstrated that plasmids containing the corresponding phage attachment site (attP) could be integrated into the T7∆G10G11-attB genome. The candidate recombinant phage was isolated and validated to have integrated exogenous DNA. The maximum capacity of T7∆G10G11-attB was explored, and it’s found that insertion of exogenous DNA sequences longer than 2 kbp long can be accommodated stably. Conclusion We advanced and established a novel approach for gene knock-in into the T7 genome using ΦC31 integrase.
Collapse
Affiliation(s)
- Ying Liu
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hongxing Huang
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hua Wang
- 2Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong, Provincial Key Laboratory of Stomatology, SunYat-sen University, Guangzhou, 510055 People's Republic of China
| | - Yan Zhang
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| |
Collapse
|
27
|
Knecht LE, Veljkovic M, Fieseler L. Diversity and Function of Phage Encoded Depolymerases. Front Microbiol 2020; 10:2949. [PMID: 31998258 PMCID: PMC6966330 DOI: 10.3389/fmicb.2019.02949] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages of the Podoviridae family often exhibit so-called depolymerases as structural components of the virion. These enzymes appear as tail spike proteins (TSPs). After specific binding to capsular polysaccharides (CPS), exopolysaccharides (EPS) or lipopolysaccharide (LPS) of the host bacteria, polysaccharide-repeating units are specifically cleaved. Finally, the phage reaches the last barrier, the cell wall, injects its DNA, and infects the cell. Recently, similar enzymes from bacteriophages of the Ackermannviridae, Myoviridae, and Siphoviridae families were also described. In this mini-review the diversity and function of phage encoded CPS-, EPS-, and LPS-degrading depolymerases is summarized. The function of the enzymes is described in terms of substrate specificity and applications in biotechnology.
Collapse
Affiliation(s)
- Leandra E Knecht
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Marjan Veljkovic
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
28
|
Brzozowski RS, Huber M, Burroughs AM, Graham G, Walker M, Alva SS, Aravind L, Eswara PJ. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Front Microbiol 2019; 10:623. [PMID: 31024470 PMCID: PMC6459960 DOI: 10.3389/fmicb.2019.00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mirella Huber
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Gianni Graham
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Merryck Walker
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Sameeksha S Alva
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
29
|
Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Viruses 2019; 11:v11030268. [PMID: 30889807 PMCID: PMC6466130 DOI: 10.3390/v11030268] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Despite the successful use of antibacterials, the emergence of multidrug-resistant bacteria has become a serious threat to global healthcare. In this era of antibacterial crisis, bacteriophages (phages) are being explored as an antibacterial treatment option since they possess a number of advantages over conventional antibacterials, especially in terms of specificity and biosafety; phages specifically lyse target bacteria while not affecting normal and/or beneficial bacteria and display little or no toxicity in that they are mainly composed of proteins and nucleic acids, which consequently significantly reduces the time and cost involved in antibacterial development. However, these benefits also create potential issues regarding antibacterial spectra and host immunity; the antibacterial spectra being very narrow when compared to those of chemicals, with the phage materials making it possible to trigger host immune responses, which ultimately disarm antibacterial efficacy upon successive treatments. In addition, phages play a major role in horizontal gene transfer between bacterial populations, which poses serious concerns for the potential of disastrous consequences regarding antibiotic resistance. Fortunately, however, recent advancements in synthetic biology tools and the speedy development of phage genome resources have allowed for research on methods to circumvent the potentially disadvantageous aspects of phages. These novel developments empower research which goes far beyond traditional phage therapy approaches, opening up a new chapter for phage applications with new antibacterial platforms. Herein, we not only highlight the most recent synthetic phage engineering and phage product engineering studies, but also discuss a new proof-of-concept for phage-inspired antibacterial design based on the studies undertaken by our group.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Yeon-Ji Yoo
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| |
Collapse
|
30
|
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 2018; 175:1380-1392.e14. [PMID: 30343895 PMCID: PMC6239978 DOI: 10.1016/j.cell.2018.09.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dustin E Bosch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shuo Huang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine A Kelly
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Jimmy K Eng
- Proteomics Resource, University of Washington, Seattle, WA 98195, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Veesler
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul A Wiggins
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Physics, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Yang S, Pei H, Zhang X, Wei Q, Zhu J, Zheng J, Jia Z. Characterization of DicB by partially masking its potent inhibitory activity of cell division. Open Biol 2017; 6:rsob.160082. [PMID: 27466443 PMCID: PMC4967827 DOI: 10.1098/rsob.160082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/01/2016] [Indexed: 11/12/2022] Open
Abstract
DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP–DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP–DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP–DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function.
Collapse
Affiliation(s)
- Shaoyuan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hairun Pei
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaoying Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiang Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zongchao Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China Department of Biomedical and Molecular Sciences, Queen's University, Ontario, Canada K7L 3N6
| |
Collapse
|
32
|
Tabib-Salazar A, Liu B, Shadrin A, Burchell L, Wang Z, Wang Z, Goren MG, Yosef I, Qimron U, Severinov K, Matthews SJ, Wigneshweraraj S. Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein. Nucleic Acids Res 2017; 45:7697-7707. [PMID: 28486695 PMCID: PMC5569994 DOI: 10.1093/nar/gkx370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 11/13/2022] Open
Abstract
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development.
Collapse
Affiliation(s)
- Aline Tabib-Salazar
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Bing Liu
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Andrey Shadrin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow 142290, Russia
| | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Zhexin Wang
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Zhihao Wang
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Moran G Goren
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Steve J Matthews
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
33
|
CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PLoS Genet 2017; 13:e1007007. [PMID: 28931012 PMCID: PMC5624674 DOI: 10.1371/journal.pgen.1007007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. Bacterially encoded toxin-antitoxin systems, which consist of a small toxin protein that is co-produced with a neutralizing antitoxin, are a potential avenue for the identification of novel antibiotic targets. These toxins typically target essential cellular processes, causing growth arrest or cell death when unchecked by the antitoxin. Our study is focused on the CbtA toxin of E. coli, which was known to inhibit both bacterial cell division and also bacterial cell elongation (the process by which rod-shaped bacteria grow prior to cell division). We report that the effects of CbtA on cell division and cell elongation are genetically separable, and that they are due to direct and independent interactions with its targets FtsZ and MreB, essential cytoskeletal proteins that direct cell division and cell elongation, respectively. Our genetic analysis defines the functionally relevant target surfaces on FtsZ and MreB; in the case of FtsZ this surface represents a novel inhibitory target. As a dual-function toxin that independently targets two essential cytoskeletal elements, CbtA could guide the design of dual-function antibiotics whose ability to independently target more than one essential cellular process might impede the development of drug resistance, which is a growing public health threat.
Collapse
|
34
|
Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. Extending the Host Range of Bacteriophage Particles for DNA Transduction. Mol Cell 2017; 66:721-728.e3. [DOI: 10.1016/j.molcel.2017.04.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023]
|
35
|
Araújo-Bazán L, Ruiz-Avila LB, Andreu D, Huecas S, Andreu JM. Cytological Profile of Antibacterial FtsZ Inhibitors and Synthetic Peptide MciZ. Front Microbiol 2016; 7:1558. [PMID: 27752253 PMCID: PMC5045927 DOI: 10.3389/fmicb.2016.01558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division.
Collapse
Affiliation(s)
- Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Laura B Ruiz-Avila
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Sonia Huecas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Andreu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
36
|
Zhao X, Chen C, Jiang X, Shen W, Huang G, Le S, Lu S, Zou L, Ni Q, Li M, Zhao Y, Wang J, Rao X, Hu F, Tan Y. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol 2016; 7:1519. [PMID: 27725812 PMCID: PMC5035744 DOI: 10.3389/fmicb.2016.01519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The impact of phage infection on the host cell is severe. In order to take over the cellular machinery, some phage proteins were produced to shut off the host biosynthesis early in the phage infection. The discovery and identification of these phage-derived inhibitors have a significant prospect of application in antibacterial treatment. This work presented a phage protein, gp70.1, with non-specific inhibitory effects on Pseudomonas aeruginosa and Escherichia coli. Gp70.1 was encoded by early gene – orf 70.1 from P. aeruginosa phage PaP3. The P. aeruginosa with a plasmid encoding gp70.1 showed with delayed growth and had the appearance of a small colony. The combination of multifaceted analysis including microarray-based transcriptomic analysis, RT-qPCR, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and phenotype experiments were performed to investigate the effects of gp70.1 on P. aeruginosa. A total of 178 genes of P. aeruginosa mainly involved in extracellular function and metabolism were differentially expressed in the presence of gp70.1 at three examined time points. Furthermore, our results indicated that gp70.1 had an extensive impact on the extracellular phenotype of P. aeruginosa, such as motility, pyocyanin, extracellular protease, polysaccharide, and cellulase. For the metabolism of P. aeruginosa, the main effect of gp70.1 was the reduction of amino acid consumption. Finally, the RNA polymerase sigma factor RpoS was identified as a potential cellular target of gp70.1. Gp70.1 was the first bacterial inhibitor identified from Pseudomonas aeruginosa phage PaP3. It was also the first phage protein that interacted with the global regulator RpoS of bacteria. Our results indicated the potential value of gp70.1 in antibacterial applications. This study preliminarily revealed the biological function of gp70.1 and provided a reference for the study of other phage genes sharing similarities with orf70.1.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | | | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Guangtao Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Qingshan Ni
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University Chongqing, China
| |
Collapse
|
37
|
Simpkin AJ, Rigden DJ. GP0.4 from bacteriophage T7: in silico characterisation of its structure and interaction with E. coli FtsZ. BMC Res Notes 2016; 9:343. [PMID: 27411831 PMCID: PMC4944311 DOI: 10.1186/s13104-016-2149-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/06/2016] [Indexed: 01/21/2023] Open
Abstract
Background Proteins produced by bacteriophages can have potent antimicrobial activity. The study of phage-host interactions can therefore inform small molecule drug discovery by revealing and characterising new drug targets. Here we characterise in silico the predicted interaction of gene protein 0.4 (GP0.4) from the Escherichia coli (E. coli) phage T7 with E. coli filamenting temperature-sensitive mutant Z division protein (FtsZ). FtsZ is a tubulin homolog which plays a key role in bacterial cell division and that has been proposed as a drug target. Results Using ab initio, fragment assembly structure modelling, we predicted the structure of GP0.4 with two programs. A structure similarity-based network was used to identify a U-shaped helix-turn-helix candidate fold as being favoured. ClusPro was used to dock this structure prediction to a homology model of E. coli FtsZ resulting in a favourable predicted interaction mode. Alternative docking methods supported the proposed mode which offered an immediate explanation for the anti-filamenting activity of GP0.4. Importantly, further strong support derived from a previously characterised insertion mutation, known to abolish GP0.4 activity, that is positioned in close proximity to the proposed GP0.4/FtsZ interface. Conclusions The mode of interaction predicted by bioinformatics techniques strongly suggests a mechanism through which GP0.4 inhibits FtsZ and further establishes the latter’s druggable intrafilament interface as a potential drug target. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2149-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam J Simpkin
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
38
|
Busiek KK, Margolin W. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 2016; 25:R243-R254. [PMID: 25784047 DOI: 10.1016/j.cub.2015.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
39
|
Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 2016; 14:305-19. [PMID: 27040757 DOI: 10.1038/nrmicro.2016.26] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria must divide to increase in number and colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine - the divisome - that spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall growth while flexibly responding to various cellular inputs.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA.,Biology Department, Canisius College, 2001 Main Street, Buffalo, New York 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Kim MS, Bae JW. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol 2016; 18:1498-510. [PMID: 26690305 DOI: 10.1111/1462-2920.13182] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/28/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
Abstract
Gut microbial biogeography is a key feature of host-microbe relationships. In gut viral ecology, biogeography and responses to dietary intervention remain poorly understood. Here, we conducted a metagenomic study to determine the composition of the mucosal and luminal viromes of the gut and to evaluate the impact of a Western diet on gut viral ecology. We found that mucosal and luminal viral assemblages comprised predominantly temperate phages. The mucosal virome significantly differed from the luminal virome in low-fat diet-fed lean mice, where spatial variation correlated with bacterial microbiota from the mucosa and lumen. The mucosal and luminal viromes of high-fat, high-sucrose 'Western' diet-fed obese mice were significantly enriched with temperate phages of the Caudovirales order. Interestingly, this community alteration occurred to a greater extent in the mucosa than lumen, leading to loss of spatial differences; however, these changes recovered after switching to a low-fat diet. Temperate phages enriched in the Western diet-induced obese mice were associated with the Bacilli, Negativicutes and Bacteroidia classes and temperate phages from the Bacteroidia class particularly encoded stress and niche-specific functions advantageous to bacterial host adaptation. This study illustrates a biogeographic view of the gut virome and phage-bacterial host connections under the diet-induced microbial dysbiosis.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
41
|
Ronayne EA, Wan YCS, Boudreau BA, Landick R, Cox MM. P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 2016; 12:e1005797. [PMID: 26765929 PMCID: PMC4713147 DOI: 10.1371/journal.pgen.1005797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/19/2015] [Indexed: 12/11/2022] Open
Abstract
Ref is an HNH superfamily endonuclease that only cleaves DNA to which RecA protein is bound. The enigmatic physiological function of this unusual enzyme is defined here. Lysogenization by bacteriophage P1 renders E. coli more sensitive to the DNA-damaging antibiotic ciprofloxacin, an example of a phenomenon termed phage-antibiotic synergy (PAS). The complementary effect of phage P1 is uniquely traced to the P1-encoded gene ref. Ref is a P1 function that amplifies the lytic cycle under conditions when the bacterial SOS response is induced due to DNA damage. The effect of Ref is multifaceted. DNA binding by Ref interferes with normal DNA metabolism, and the nuclease activity of Ref enhances genome degradation. Ref also inhibits cell division independently of the SOS response. Ref gene expression is toxic to E. coli in the absence of other P1 functions, both alone and in combination with antibiotics. The RecA proteins of human pathogens Neisseria gonorrhoeae and Staphylococcus aureus serve as cofactors for Ref-mediated DNA cleavage. Ref is especially toxic during the bacterial SOS response and the limited growth of stationary phase cultures, targeting aspects of bacterial physiology that are closely associated with the development of bacterial pathogen persistence.
Collapse
Affiliation(s)
- Erin A. Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Y. C. Serena Wan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Boudreau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
42
|
Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3. Sci Rep 2016; 6:19237. [PMID: 26750429 PMCID: PMC4707531 DOI: 10.1038/srep19237] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
The interactions between Bacteriophage (phage) and host bacteria are widespread in nature and influences of phage replication on the host cells are complex and extensive. Here, we investigate genome-wide interactions of Pseudomonas aeruginosa (P. aeruginosa) and its temperate phage PaP3 at five time points during phage infection. Compared to the uninfected host, 38% (2160/5633) genes of phage-infected host were identified as differentially expressed genes (DEGs). Functional analysis of the repressed DEGs revealed infection-stage-dependent pathway communications. Based on gene co-expression analysis, most PaP3 middle genes were predicted to have negative impact on host transcriptional regulators. Sub-network enrichment analysis revealed that adjacent genes of PaP3 interacted with the same host genes and might possess similar functions. Finally, our results suggested that during the whole infection stage, the early genes of PaP3 had stronger regulatory role in host gene expression than middle and late genes, while the host genes involved amino acid metabolism were the most “vulnerable” targets of these phage genes. This work provides the basis for understanding survival mechanisms of parasites and host, and seeking phage gene products that could potentially be used in anti-bacterial infection.
Collapse
|
43
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
44
|
Revealing bacterial targets of growth inhibitors encoded by bacteriophage T7. Proc Natl Acad Sci U S A 2014; 111:18715-20. [PMID: 25512533 DOI: 10.1073/pnas.1413271112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Today's arsenal of antibiotics is ineffective against some emerging strains of antibiotic-resistant pathogens. Novel inhibitors of bacterial growth therefore need to be found. The target of such bacterial-growth inhibitors must be identified, and one way to achieve this is by locating mutations that suppress their inhibitory effect. Here, we identified five growth inhibitors encoded by T7 bacteriophage. High-throughput sequencing of genomic DNA of resistant bacterial mutants evolving against three of these inhibitors revealed unique mutations in three specific genes. We found that a nonessential host gene, ppiB, is required for growth inhibition by one bacteriophage inhibitor and another nonessential gene, pcnB, is required for growth inhibition by a different inhibitor. Notably, we found a previously unidentified growth inhibitor, gene product (Gp) 0.6, that interacts with the essential cytoskeleton protein MreB and inhibits its function. We further identified mutations in two distinct regions in the mreB gene that overcome this inhibition. Bacterial two-hybrid assay and accumulation of Gp0.6 only in MreB-expressing bacteria confirmed interaction of MreB and Gp0.6. Expression of Gp0.6 resulted in lemon-shaped bacteria followed by cell lysis, as previously reported for MreB inhibitors. The described approach may be extended for the identification of new growth inhibitors and their targets across bacterial species and in higher organisms.
Collapse
|
45
|
Yosef I, Kiro R, Molshanski-Mor S, Edgar R, Qimron U. Different approaches for using bacteriophages against antibiotic-resistant bacteria. BACTERIOPHAGE 2014; 4:e28491. [PMID: 24653944 DOI: 10.4161/bact.28491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/03/2014] [Accepted: 03/10/2014] [Indexed: 01/21/2023]
Abstract
Bacterial resistance to antibiotics is an emerging threat requiring urgent solutions. Ever since their discovery, lytic bacteriophages have been suggested as therapeutic agents, but their application faces various obstacles: sequestration of the phage by the spleen and liver, antibodies against the phage, narrow host range, poor accessibility to the infected tissue, and bacterial resistance. Variations on bacteriophage use have been suggested, such as temperate phages as gene-delivery vehicles into pathogens. This approach, which is proposed to sensitize pathogens residing on hospital surfaces and medical personnel's skin, and its prospects are described in this addendum. Furthermore, phage-encoded products have been proposed as weapons against antibiotic resistance in bacteria. We describe a new phage protein which was identified during basic research into T7 bacteriophages. This protein may serendipitously prove useful for treating antibiotic-resistant pathogens. We believe that further basic research will lead to novel strategies in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Ruth Kiro
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Shahar Molshanski-Mor
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Rotem Edgar
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
46
|
Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, Thomason LC, Court DL, Margolin W. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 2014; 10:e1004217. [PMID: 24651041 PMCID: PMC3961180 DOI: 10.1371/journal.pgen.1004217] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.
Collapse
Affiliation(s)
- Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Marina Hoashi
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Anna Weaver
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Nathan Brown
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James Pan
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James A. Sawitzke
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Lynn C. Thomason
- Frederick National Laboratory for Cancer Research, Leidos Biomedical, Inc., Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Donald L. Court
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|