1
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024. [PMID: 39481095 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Antonio Grimaldi
- Dipartimento di Fisica e Astronomia, Universita' di Bologna, 40127 Bologna, Italy
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento di Fisica e Astronomia, Universita' di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
2
|
Ye X, Kotaru S, Lopes R, Cravens S, Lasagna M, Wand AJ. Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin. Biomolecules 2024; 14:1338. [PMID: 39456270 PMCID: PMC11506642 DOI: 10.3390/biom14101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise control of its catalytic activity. Though its allosterically controlled structural reorganization has been extensively characterized by crystallography, the energetics and mechanisms of allosteric regulation of Parkin are much less well understood. Allostery is fundamentally linked to the energetics of the cooperative (sub)structure of the protein. Herein, we examine the mechanism of allosteric activation by phosphorylated ubiquitin binding to the enzymatic core of Parkin, which lacks the antagonistic Ubl domain. In this way, the allosteric effects of the agonist phosphorylated ubiquitin can be isolated. Using native-state hydrogen exchange monitored by mass spectrometry, we find that the five structural domains of the core of Parkin are energetically distinct. Nevertheless, association of phosphorylated ubiquitin destabilizes structural elements that bind the ubiquitin-like domain antagonist while promoting the dissociation of the catalytic domain and energetically poises the protein for transition to the fully activated structure.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sravya Kotaru
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosana Lopes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shannen Cravens
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Mauricio Lasagna
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A. Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Kawashima F, Okutsu K, Kohno JY. Hydrogen/Deuterium Exchange Reaction Rate of Cytochrome c Determined by Droplet Collision Atmospheric Pressure Infrared Laser Ablation Mass Spectrometry. J Phys Chem A 2024; 128:7208-7213. [PMID: 39141611 DOI: 10.1021/acs.jpca.4c03597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The hydrogen/deuterium (H/D) exchange rate is an optimal measure for studying the structures and dynamics of hydrogen bonding systems, as it reflects the molecular contact environment and the strength of the hydrogen bonds. A method for rapid measurement of the H/D exchange reaction rates is required to examine the intermolecular environments of molecules in solutions. We developed a droplet collision atmospheric pressure infrared laser ablation mass spectrometry technique for this purpose. We obtained the H/D exchange reaction rate of cytochrome c in a methanol/H2O·D2O solution. We revealed that the first hydration shell of the cytochrome c molecule hinders the penetration of D2O to the surface of the molecule from the rates, which provides a novel method to investigate solution structures by a mass-spectrometric method. The droplet-collision mass spectrometry method developed in the present study can be extended to research on the molecular interactions in solutions, such as the mutual interactions of protein molecules, which are of importance in living cells.
Collapse
Affiliation(s)
- Fusae Kawashima
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kenichi Okutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
4
|
Lui TY, Chen X, Zhang S, Hu D, Chan TWD. A millimeter water-in-oil droplet as an alternative back exchange prevention strategy for hydrogen/deuterium exchange mass spectrometry of peptides/proteins. Analyst 2024; 149:2388-2398. [PMID: 38462973 DOI: 10.1039/d4an00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a versatile bioanalytical technique for protein analysis. Since the reliability of HDX-MS analysis considerably depends on the retention of deuterium labels in the post-labeling workflow, deuterium/hydrogen (D/H) back exchange prevention strategies, including decreasing the pH, temperature, and exposure time to protic sources of the deuterated samples, are widely adopted in the conventional HDX-MS protocol. Herein, an alternative and effective back exchange prevention strategy based on the encapsulation of a millimeter droplet of a labeled peptide solution in a water-immiscible organic solvent (cyclohexane) is proposed. Cyclohexane was used to prevent the undesirable uptake of water by the droplet from the atmospheric vapor through the air-water interface. Using the pepsin digest of deuterated myoglobin, our results show that back exchange kinetics of deuterated peptides is retarded in a millimeter droplet as compared to that in the bulk solution. Performing pepsin digestion directly in a water-in-oil droplet at room temperature (18-21 °C) was found to preserve more deuterium labels than that in the bulk digestion with an ice-water bath. Based on the present findings, it is proposed that keeping deuterated peptides in the form of water-in-oil droplets during the post-labelling workflow will facilitate the preservation of deuterium labels on the peptide backbone and thereby enhance the reliability of the H/D exchange data.
Collapse
Affiliation(s)
- T-Y Lui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China.
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China.
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, P. R. China
| | - Simin Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China.
| | - Danna Hu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China.
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P. R. China.
| |
Collapse
|
5
|
Anderson KW, Hudgens JW. Hydrophilic Interaction Liquid Chromatography at Subzero Temperature for Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2672-2679. [PMID: 37930109 PMCID: PMC10704588 DOI: 10.1021/jasms.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Chromatographic separations at subzero temperature significantly improve the precision of back-exchange-corrected hydrogen-deuterium exchange mass spectrometry (HDX-MS) determinations. Our previously reported dual-enzyme HDX-MS analysis instrument used reversed phase liquid chromatography (RPLC) at -30 °C, but high backpressures limited flow rates and required materials and equipment rated for very high pressures. Here, we report the design and performance of a dual-enzyme HDX-MS analysis instrument comprising a RPLC trap column and a hydrophilic interaction liquid chromatography (HILIC) analytical column in a two-dimensional RPLC-HILIC configuration at subzero temperature. During operation at -30 °C, the HILIC column manifests greatly reduced backpressure, which enables faster analytical flow rates and the use of materials rated for lower maximum pressures. The average peptide eluted from a HILIC column during a 40 min gradient at -30 °C contained ≈13% more deuterium than peptides eluted from a tandem RPLC-RPLC apparatus using a conventional 8 min gradient at 0 °C. A subset of peptides eluted from the HILIC apparatus contained ≈24% more deuterium.
Collapse
Affiliation(s)
- Kyle W. Anderson
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Jeffrey W. Hudgens
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
6
|
Paço L, Hackett JC, Atkins WM. Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. J Inorg Biochem 2023; 244:112211. [PMID: 37080138 PMCID: PMC10175226 DOI: 10.1016/j.jinorgbio.2023.112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-β1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.
Collapse
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America
| | - John C Hackett
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America.
| |
Collapse
|
7
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
8
|
Kish M, Subramanian S, Smith V, Lethbridge N, Cole L, Vollmer F, Bond NJ, Phillips JJ. Allosteric Regulation of Glycogen Phosphorylase by Order/Disorder Transition of the 250' and 280s Loops. Biochemistry 2023; 62:1360-1368. [PMID: 36989206 PMCID: PMC10116597 DOI: 10.1021/acs.biochem.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Allostery is a fundamental mechanism of protein activation, yet the precise dynamic changes that underlie functional regulation of allosteric enzymes, such as glycogen phosphorylase (GlyP), remain poorly understood. Despite being the first allosteric enzyme described, its structural regulation is still a challenging problem: the key regulatory loops of the GlyP active site (250' and 280s) are weakly stable and often missing density or have large b-factors in structural models. This led to the longstanding hypothesis that GlyP regulation is achieved through gating of the active site by (dis)order transitions, as first proposed by Barford and Johnson. However, testing this requires a quantitative measurement of weakly stable local structure which, to date, has been technically challenging in such a large protein. Hydrogen-deuterium-exchange mass spectrometry (HDX-MS) is a powerful tool for studying protein dynamics, and millisecond HDX-MS has the ability to measure site-localized stability differences in weakly stable structures, making it particularly valuable for investigating allosteric regulation in GlyP. Here, we used millisecond HDX-MS to measure the local structural perturbations of glycogen phosphorylase b (GlyPb), the phosphorylated active form (GlyPa), and the inhibited glucose-6 phosphate complex (GlyPb:G6P) at near-amino acid resolution. Our results support the Barford and Johnson hypothesis for GlyP regulation by providing insight into the dynamic changes of the key regulatory loops.
Collapse
Affiliation(s)
- Monika Kish
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
| | - Sivaraman Subramanian
- Living Systems Institute, Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 6QD, U.K
| | | | | | - Lindsay Cole
- Applied Photophysics Ltd, Leatherhead, KT227BA, U.K
| | - Frank Vollmer
- Living Systems Institute, Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 6QD, U.K
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
- Alan Turing Institute, British Library, London, NW1 2DB, U.K
| |
Collapse
|
9
|
Kalaninová Z, Fojtík L, Chmelík J, Novák P, Volný M, Man P. Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2718:303-334. [PMID: 37665467 DOI: 10.1007/978-1-0716-3457-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Fojtík
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michael Volný
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
10
|
Vávra J, Sergunin A, Stráňava M, Kádek A, Shimizu T, Man P, Martínková M. Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. Methods Mol Biol 2023; 2648:99-122. [PMID: 37039988 DOI: 10.1007/978-1-0716-3080-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Stráňava
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic.
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
11
|
Pillai VG, Zheng XL. A novel mechanism underlying allosteric regulation of ADAMTS-13 revealed by hydrogen-deuterium exchange plus mass spectrometry. Res Pract Thromb Haemost 2022; 7:100012. [PMID: 36852110 PMCID: PMC9958085 DOI: 10.1016/j.rpth.2022.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 02/15/2023] Open
Abstract
Background ADAMTS-13, a plasma metalloprotease, cleaves von Willebrand factor. ADAMTS-13 activity appears to be regulated through allosteric inhibition by its distal C-terminus. Objectives The objective of this study was to better understand how domain-domain interactions may affect ADAMTS-13 conformations and functions. Methods We performed deuterium-hydrogen exchange plus mass spectrometry to assess the number and rate of deuterium incorporation into various peptides of full-length ADAMTS-13 and its truncated variants. Results Under physiological conditions, a bimodal distribution of deuterium incorporation was detected in the peptides from metalloprotease (217-230 and 282-304), cysteine-rich (446-482), and CUB (for complement C1r/C1s, Uegf, Bmp1) domains (1185-1214, 1313-1330, 1341-1347, 1358-1378, and 1393-1407) of full-length recombinant ADAMTS-13, but not of truncated variants. These results suggest that the full-length ADAMTS-13 undergoes conformational changes. On removal of the middle and distal C-terminal domains, the number and rate of deuterium incorporation were increased in the peptides from cysteine-rich (445-467, 467-482, and 495-503) and spacer domains (621-642 and 655-654) but decreased in the peptides from metalloprotease (115-124, 217-230, and 274-281). Moreover, most peptides, except for 217-230 and 1357-1376, exhibited a pD-dependent deuterium incorporation in the full-length ADAMTS-13, but not in the truncated variant (eg, MDTCS or T5C). These results further suggest that the bimodal deuterium incorporation observed in the peptides from the full-length ADAMTS-13 is the result of potential impact from the middle to distal C-terminal domains. Surface plasmon resonance revealed the direct binding interactions between the distal and proximal domains of ADAMTS-13. Conclusion Our results provide novel insight on how intramolecular interactions may affect conformations of ADAMTS-13, thus regulating its proteolytic functions.
Collapse
Affiliation(s)
- Vikram G. Pillai
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Department of Biophysics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, USA,Correspondence X. Long Zheng, MD, PhD, Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, 5016 Delp, Kansas City, Kansas 66160, USA.
| |
Collapse
|
12
|
Tajoddin NN, Konermann L. Structural Dynamics of a Thermally Stressed Monoclonal Antibody Characterized by Temperature-Dependent H/D Exchange Mass Spectrometry. Anal Chem 2022; 94:15499-15509. [DOI: 10.1021/acs.analchem.2c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
13
|
Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Comput Struct Biotechnol J 2022; 20:5824-5837. [PMID: 36382197 PMCID: PMC9630627 DOI: 10.1016/j.csbj.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
14
|
Anderson KW, Hudgens JW. Chromatography at -30 °C for Reduced Back-Exchange, Reduced Carryover, and Improved Dynamic Range for Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1282-1292. [PMID: 35732031 PMCID: PMC9264389 DOI: 10.1021/jasms.2c00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
For hydrogen-deuterium exchange mass spectrometry (HDX-MS) to have an increased role in quality control of biopharmaceuticals, H for D back-exchange occurring during protein analyses should be minimized to promote greater reproducibility. Standard HDX-MS analysis systems that digest proteins and separate peptides at pH 2.7 and 0 °C can lose >30% of the deuterium marker within 15 min of sample injection. This report describes the architecture and performance of a dual-enzyme, HDX-MS instrument that conducts liquid chromatography (LC) separations at subzero temperature, thereby reducing back-exchange and supporting longer LC separations with improved chromatographic resolution. LC separations of perdeuterated, fully reduced, iodoacetamide-treated BSA protein digest standard peptides were performed at 0, -10, -20, and -30 °C in ethylene glycol (EG)/H2O mixtures. Analyses conducted at -20 and -30 °C produced similar results. After subtracting for deuterium retained in arginine side chains, the average peptide eluted during a 40 min gradient contained ≈16% more deuterium than peptides eluted with a conventional 8 min gradient at 0 °C. A subset of peptides exhibited ≈26% more deuterium. Although chromatographic peaks shift with EG concentration and temperature, the apparatus elutes unbroadened LC peaks. Electrospray ion intensity does not decline with increasing EG fraction. To minimize bias from sample carryover, the fluidic circuits allow flush and backflush cleaning of all enzyme and LC columns. The system can perform LC separations and clean enzyme columns simultaneously. Temperature zones are controlled ±0.058 °C. The potential of increased sensitivity by mixing acetonitrile with the analytical column effluent was also examined.
Collapse
Affiliation(s)
- Kyle W. Anderson
- National
Institute of Standards and Technology, Bioprocess
Measurement Group, Biomolecular Measurements Division, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Jeffrey W. Hudgens
- National
Institute of Standards and Technology, Bioprocess
Measurement Group, Biomolecular Measurements Division, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
15
|
Tran MH, Schoeder CT, Schey KL, Meiler J. Computational Structure Prediction for Antibody-Antigen Complexes From Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook. Front Immunol 2022; 13:859964. [PMID: 35720345 PMCID: PMC9204306 DOI: 10.3389/fimmu.2022.859964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Although computational structure prediction has had great successes in recent years, it regularly fails to predict the interactions of large protein complexes with residue-level accuracy, or even the correct orientation of the protein partners. The performance of computational docking can be notably enhanced by incorporating experimental data from structural biology techniques. A rapid method to probe protein-protein interactions is hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens (Ags) in the past few years. In this paper, we review the current state of HDX-MS in studying protein interactions, specifically Ab-Ag interactions, and how it has been used to inform computational structure prediction calculations. Particularly, we address the limitations of HDX-MS in epitope mapping and techniques and protocols applied to overcome these barriers. Furthermore, we explore computational methods that leverage HDX-MS to aid structure prediction, including the computational simulation of HDX-MS data and the combination of HDX-MS and protein docking. We point out challenges in interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight the opportunities they provide to build towards a more optimized hybrid method, allowing for more reliable, high throughput epitope identification.
Collapse
Affiliation(s)
- Minh H. Tran
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, United States
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Clara T. Schoeder
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
16
|
Stofella M, Skinner SP, Sobott F, Houwing-Duistermaat J, Paci E. High-Resolution Hydrogen-Deuterium Protection Factors from Sparse Mass Spectrometry Data Validated by Nuclear Magnetic Resonance Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:813-822. [PMID: 35385652 PMCID: PMC9074100 DOI: 10.1021/jasms.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Experimental measurement of time-dependent spontaneous exchange of amide protons with deuterium of the solvent provides information on the structure and dynamical structural variation in proteins. Two experimental techniques are used to probe the exchange: NMR, which relies on different magnetic properties of hydrogen and deuterium, and MS, which exploits the change in mass due to deuteration. NMR provides residue-specific information, that is, the rate of exchange or, analogously, the protection factor (i.e., the unitless ratio between the rate of exchange for a completely unstructured state and the observed rate). MS provides information that is specific to peptides obtained by proteolytic digestion. The spatial resolution of HDX-MS measurements depends on the proteolytic pattern of the protein, the fragmentation method used, and the overlap between peptides. Different computational approaches have been proposed to extract residue-specific information from peptide-level HDX-MS measurements. Here, we demonstrate the advantages of a method recently proposed that exploits self-consistency and classifies the possible sets of protection factors into a finite number of alternative solutions compatible with experimental data. The degeneracy of the solutions can be reduced (or completely removed) by exploiting the additional information encoded in the shape of the isotopic envelopes. We show how sparse and noisy MS data can provide high-resolution protection factors that correlate with NMR measurements probing the same protein under the same conditions.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, 40127 Bologna, Italy
| | - Simon P. Skinner
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
| | - Frank Sobott
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Emanuele Paci
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, 40127 Bologna, Italy
- (E.P.)
| |
Collapse
|
17
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
18
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
19
|
Hamuro Y. Quantitative Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2711-2727. [PMID: 34749499 DOI: 10.1021/jasms.1c00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This Account describes considerations for the data generation, data analysis, and data interpretation of a hydrogen/deuterium exchange-mass spectrometry (HDX-MS) experiment to have a quantitative argument. Although HDX-MS has gained its popularity as a biophysical tool, the argument from its data often remains qualitative. To generate HDX-MS data that are more suitable for a quantitative argument, the sequence coverage and sequence resolution should be optimized during the feasibility stage, and the time window coverage and time window resolution should be improved during the HDX stage. To extract biophysically meaningful values for a certain perturbation from medium-resolution HDX-MS data, there are two major ways: (i) estimating the area between the two deuterium buildup curves using centroid values with and without the perturbation when plotted against log time scale and (ii) dissecting into multiple single-exponential curves using the isotope envelopes. To have more accurate arguments for an HDX-MS perturbation study, (i) false negatives due to sequence coverage, (ii) false negatives due to time window coverage, (iii) false positives due to sequence resolution, and (iv) false positives due to allosteric effects should be carefully examined.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
20
|
Wan W, Zeng L, Jin W, Chen X, Shen D, Huang Y, Wang M, Bai Y, Lyu H, Dong X, Gao Z, Wang L, Liu X, Liu Y. A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lianggang Zeng
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xinxin Chen
- National Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road 116023 China Dalian
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road 116023 China Dalian
| | - Lei Wang
- National Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Xiaojing Liu
- Institute of Molecular Sciences and Engineering Shan Dong University 72 Binhai Road Qingdao 266237 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
21
|
Wan W, Zeng L, Jin W, Chen X, Shen D, Huang Y, Wang M, Bai Y, Lyu H, Dong X, Gao Z, Wang L, Liu X, Liu Y. A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angew Chem Int Ed Engl 2021; 60:25865-25871. [PMID: 34562048 DOI: 10.1002/anie.202107943] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Indexed: 02/02/2023]
Abstract
We report a crystallization-induced emission fluorophore to quantitatively interrogate the polarity of aggregated proteins. This solvatochromic probe, namely "AggRetina" probe, inherently binds to aggregated proteins and exhibits both a polarity-dependent fluorescence emission wavelength shift and a viscosity-dependent fluorescence intensity increase. Regulation of its polarity sensitivity was achieved by extending the conjugation length. Different proteins bear diverse polarity upon aggregation, leading to different resistance to proteolysis. Polarity primarily decreases during protein misfolding but viscosity mainly increases upon the formation of insoluble aggregates. We quantified the polarity of aggregated protein-of-interest in live cells via HaloTag bioorthogonal labeling, revealing polarity heterogeneity within cellular aggregates. The enriched micro-environment details inside misfolded and aggregated proteins may correlate to their bio-chemical properties and pathogenicity.
Collapse
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Lianggang Zeng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinxin Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xuepeng Dong
- The Second Hospital of, Dalian Medical University, 467 Zhongshan Road, 116023, China, Dalian
| | - Zhenming Gao
- The Second Hospital of, Dalian Medical University, 467 Zhongshan Road, 116023, China, Dalian
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiaojing Liu
- Institute of Molecular Sciences and Engineering, Shan Dong University, 72 Binhai Road, Qingdao, 266237, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
22
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Rose GD. Protein folding - seeing is deceiving. Protein Sci 2021; 30:1606-1616. [PMID: 33938055 PMCID: PMC8284583 DOI: 10.1002/pro.4096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022]
Abstract
This Perspective is intended to raise questions about the conventional interpretation of protein folding. According to the conventional interpretation, developed over many decades, a protein population can visit a vast number of conformations under unfolding conditions, but a single dominant native population emerges under folding conditions. Accordingly, folding comes with a substantial loss of conformational entropy. How is this price paid? The conventional answer is that favorable interactions between and among the side chains can compensate for entropy loss, and moreover, these interactions are responsible for the structural particulars of the native conformation. Challenging this interpretation, the Perspective introduces a proposal that high energy (i.e., unfavorable) excluding interactions winnow the accessible population substantially under physical-chemical conditions that favor folding. Both steric clash and unsatisfied hydrogen bond donors and acceptors are classified as excluding interactions, so called because conformers with such disfavored interactions will be largely excluded from the thermodynamic population. Both excluding interactions and solvent factors that induce compactness are somewhat nonspecific, yet together they promote substantial chain organization. Moreover, proteins are built on a backbone scaffold consisting of α-helices and strands of β-sheet, where the number of hydrogen bond donors and acceptors is exactly balanced. These repetitive secondary structural elements are the only two conformers that can be both completely hydrogen-bond satisfied and extended indefinitely without encountering a steric clash. Consequently, the number of fundamental folds is limited to no more than ~10,000 for a protein domain. Once excluding interactions are taken into account, the issue of "frustration" is largely eliminated and the Levinthal paradox is resolved. Putting the "bottom line" at the top: it is likely that hydrogen-bond satisfaction represents a largely under-appreciated parameter in protein folding models.
Collapse
Affiliation(s)
- George D. Rose
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
24
|
Sivaraman T. A Review on Computational Approaches for Analyzing Hydrogen- Deuterium (H/D) Exchange of Proteins. Protein Pept Lett 2021; 28:372-381. [PMID: 33006533 DOI: 10.2174/0929866527666201002145859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Native state Hydrogen-Deuterium (H/D) exchange method has been used to study the structures and the unfolding pathways for quite a number of proteins. The H/D exchange method is generally monitored using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) techniques. NMR-assisted H/D exchange methods primarily monitor the residue level fluctuation of proteins, whereas MS-assisted H/D exchange methods analyze multifold ensemble conformations of proteins. In this connection, quite a large number of computational tools and algorithms have been developed for processing and analyzing huge amount of the H/D exchange data generated from these techniques. In this review, most of the freely available computational tools associated with the H/D exchange of proteins have been comprehensively reviewed and scopes to improve/ develop novel computational approaches for analyzing the H/D exchange data of proteins have also been brought into fore.
Collapse
Affiliation(s)
- Thirunavukkarasu Sivaraman
- Drug Design and Discovery Lab, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore - 641021, Tamil Nadu, India
| |
Collapse
|
25
|
Abstract
Quantification of hydrogen deuterium exchange (HDX) kinetics can provide information on the stability of individual amino acids in proteins by finding the degree to which the local backbone environment corresponds to that of a random coil. When characterized by mass spectrometry, extraction of HDX kinetics is not possible because different residue exchange rates become merged depending on the peptides that are formed during proteolytic digestion. We have recently developed an advanced programming tool called HDXmodeller, which enables the exchange rates of individual amino acids to be understood by optimization of low-resolution HDX-mass spectrometry (MS) data. HDXmodeller is also uniquely able to appraise each optimization and quantify the accuracy of modeled exchange rates ab initio using a novel autovalidation method based on a covariance matrix. Here, we address the noise-handling capabilities of HDXmodeller and demonstrate the effectiveness of the algorithm on self-inconsistent datasets. Reference intervals for experimental HDX-MS data are also derived, and this information is presented in an updated online workflow for HDXmodeller, allowing users to evaluate the consistency of their data. The development of a modified version of HDXmodeller is also discussed with enhanced noise-handling capability brought about through loss function optimization. Changes in optimizer accuracy with different loss functions are also demonstrated along with the effectiveness of HDXmodeller to select the most effective optimizer for different data using currently embedded autovalidation criteria.
Collapse
|
26
|
HDXmodeller: an online webserver for high-resolution HDX-MS with auto-validation. Commun Biol 2021; 4:199. [PMID: 33589746 PMCID: PMC7884430 DOI: 10.1038/s42003-021-01709-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The extent to which proteins are protected from hydrogen deuterium exchange (HDX) provides valuable insight into their folding, dynamics and interactions. Characterised by mass spectrometry (MS), HDX benefits from negligible mass restrictions and exceptional throughput and sensitivity but at the expense of resolution. Exchange mechanisms which naturally transpire for individual residues cannot be accurately located or understood because amino acids are characterised in differently sized groups depending on the extent of proteolytic digestion. Here we report HDXmodeller, the world's first online webserver for high-resolution HDX-MS. HDXmodeller accepts low-resolution HDX-MS input data and returns high-resolution exchange rates quantified for each residue. Crucially, HDXmodeller also returns a set of unique statistics that can correctly validate exchange rate models to an accuracy of 99%. Remarkably, these statistics are derived without any prior knowledge of the individual exchange rates and facilitate unparallel user confidence and the capacity to evaluate different data optimisation strategies.
Collapse
|
27
|
Characterization of Small-Molecule-Induced Changes in Parkinson's-Related Trafficking via the Nedd4 Ubiquitin Signaling Cascade. Cell Chem Biol 2021; 28:14-25.e9. [PMID: 33176158 PMCID: PMC9812001 DOI: 10.1016/j.chembiol.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023]
Abstract
The benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses. NAB2 was found to bind Nedd4 (KDapp = 42 nM), but this binding is side chain mediated and does not alter its conformation or ubiquitination kinetics in vitro. Nedd4 co-localizes with trafficking organelles, and NAB2 exposure did not alter its co-localization. Ubiquitin enrichment coupled proteomics revealed that NAB2 stimulates ubiquitination of trafficking-associated proteins, most likely through modulating the substrate specificity of Nedd4, providing a putative protein network involved in the NAB2 mechanism and revealing trafficking scaffold protein TFG as a Nedd4 substrate.
Collapse
|
28
|
Hamuro Y. Tutorial: Chemistry of Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:133-151. [PMID: 33227208 DOI: 10.1021/jasms.0c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemistry related to hydrogen/deuterium exchange-mass spectrometry (HDX-MS) for the analysis of proteins is described. First, the HDX rates of various functional groups in proteins are explained by reviewing the observed rates described in the literature, followed by estimating rates of all types of heteroatom hydrogens in proteins using proton transfer theory and the pKa values. The estimated HDX rates match well with the respective observed rates for most functional groups, with the exception of indole and amide groups. The discrepancies between the observed and estimated HDX rates for these groups are explained by the reaction mechanisms. Second, the factors that affect the HDX rates of backbone amide hydrogen, including side chain, N- and C-terminals, pH, temperature, organic solvent, and isotopes, are discussed. These factors are important for the proper design of exchange reactions and downstream process as well as the analysis and interpretation of HDX-MS data.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
29
|
Sun H, Ma L, Wang L, Xiao P, Li H, Zhou M, Song D. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem 2021; 413:2345-2359. [PMID: 33404742 DOI: 10.1007/s00216-020-03091-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
With the development of biomedical technology, epitope mapping of proteins has become critical for developing and evaluating new protein drugs. The application of hydrogen-deuterium exchange for protein epitope mapping holds great potential. Although several reviews addressed the hydrogen-deuterium exchange, to date, only a few systematic reviews have focused on epitope mapping using this technology. Here, we introduce the basic principles, development history, and review research progress in hydrogen-deuterium exchange epitope mapping technology and discuss its advantages. We summarize the main hurdles in applying hydrogen-deuterium exchange epitope mapping technology, combined with relevant examples to provide specific solutions. We describe the epitope mapping of virus assemblies, disease-associated proteins, and polyclonal antibodies as examples of pattern introduction. Finally, we discuss the outlook of hydrogen-deuterium exchange epitope mapping technology. This review will help researchers studying protein epitopes to gain a more comprehensive understanding of this technology.
Collapse
Affiliation(s)
- Haofeng Sun
- National Institute of Metrology, Beijing, 100029, China
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Ma
- National Institute of Metrology, Beijing, 100029, China
| | - Leyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China
| | - Min Zhou
- School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China.
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
30
|
Filandrova R, Kavan D, Kadek A, Novak P, Man P. Studying Protein-DNA Interactions by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2021; 2247:193-219. [PMID: 33301119 DOI: 10.1007/978-1-0716-1126-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein-DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.
Collapse
Affiliation(s)
- Ruzena Filandrova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alan Kadek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Petr Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
32
|
Bivalent antibody pliers inhibit β-tryptase by an allosteric mechanism dependent on the IgG hinge. Nat Commun 2020; 11:6435. [PMID: 33353951 PMCID: PMC7755903 DOI: 10.1038/s41467-020-20143-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Human β-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of allergic inflammatory responses in asthma. Antibodies generally inhibit proteases by blocking substrate access by binding to active sites or exosites or by allosteric modulation. The bivalency of IgG antibodies can increase potency via avidity, but has never been described as essential for activity. Here we report an inhibitory anti-tryptase IgG antibody with a bivalency-driven mechanism of action. Using biochemical and structural data, we determine that four Fabs simultaneously occupy four exosites on the β-tryptase tetramer, inducing allosteric changes at the small interface. In the presence of heparin, the monovalent Fab shows essentially no inhibition, whereas the bivalent IgG fully inhibits β-tryptase activity in a hinge-dependent manner. Our results suggest a model where the bivalent IgG acts akin to molecular pliers, pulling the tetramer apart into inactive β-tryptase monomers, and may provide an alternative strategy for antibody engineering. β-tryptases are responsible for most of the proteolytic activity during mast cell activation. Here, the authors develop β-tryptase-inhibiting antibodies and provide structural and biochemical evidence that the bivalency of the antibodies is a prerequisite for their inhibitory activity.
Collapse
|
33
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
34
|
Tajoddin NN, Konermann L. Analysis of Temperature-Dependent H/D Exchange Mass Spectrometry Experiments. Anal Chem 2020; 92:10058-10067. [DOI: 10.1021/acs.analchem.0c01828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
35
|
Bastos VA, Gomes-Neto F, Rocha SLG, Teixeira-Ferreira A, Perales J, Neves-Ferreira AGC, Valente RH. The interaction between the natural metalloendopeptidase inhibitor BJ46a and its target toxin jararhagin analyzed by structural mass spectrometry and molecular modeling. J Proteomics 2020; 221:103761. [PMID: 32247172 DOI: 10.1016/j.jprot.2020.103761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Snakebite envenoming affects millions of people worldwide, being officially considered a neglected tropical disease by the World Health Organization. The antivenom is effective in neutralizing the systemic effects of envenomation, but local effects are poorly neutralized, often leading to permanent disability. The natural resistance of the South American pit viper Bothrops jararaca to its venom is partly attributed to BJ46a, a natural snake venom metalloendopeptidase inhibitor. Upon complex formation, BJ46a binds non-covalently to the metalloendopeptidase, rendering it unable to exert its proteolytic activity. However, the structural features that govern this interaction are largely unknown. In this work, we applied structural mass spectrometry techniques (cross-linking-MS and hydrogen-deuterium exchange MS) and in silico analyses (molecular modeling, docking, and dynamics simulations) to understand the interaction between BJ46a and jararhagin, a metalloendopeptidase from B. jararaca venom. We explored the distance restraints generated from XL-MS experiments to guide the modeling of BJ46a and jararhagin, as well as the protein-protein docking simulations. HDX-MS data pinpointed regions of protection/deprotection at the interface of the BJ46a-jararhagin complex which, in addition to the molecular dynamics simulation data, reinforced our proposed interaction model. Ultimately, the structural understanding of snake venom metalloendopeptidases inhibition by BJ46a could lead to the rational design of drugs to improve anti-snake venom therapeutics, alleviating the high morbidity rates currently observed.
Collapse
Affiliation(s)
- Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Surza Lucia G Rocha
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Na S, Paek E. Computational methods in mass spectrometry-based structural proteomics for studying protein structure, dynamics, and interactions. Comput Struct Biotechnol J 2020; 18:1391-1402. [PMID: 32637038 PMCID: PMC7322682 DOI: 10.1016/j.csbj.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry (MS) has made enormous contributions to comprehensive protein identification and quantification in proteomics. MS is also gaining momentum for structural biology in a variety of ways, complementing conventional structural biology techniques. Here, we will review how MS-based techniques, such as hydrogen/deuterium exchange, covalent labeling, and chemical cross-linking, enable the characterization of protein structure, dynamics, and interactions, especially from a perspective of their data analyses. Structural information encoded by chemical probes in intact proteins is decoded by interpreting MS data at a peptide level, i.e., revealing conformational and dynamic changes in local regions of proteins. The structural MS data are not amenable to data analyses in traditional proteomics workflow, requiring dedicated software for each type of data. We first provide basic principles of data interpretation, including isotopic distribution and peptide sequencing. We then focus particularly on computational methods for structural MS data analyses and discuss outstanding challenges in a proteome-wide large scale analysis.
Collapse
Affiliation(s)
- Seungjin Na
- Dept. of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunok Paek
- Dept. of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
37
|
Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell 2020; 179:417-431.e19. [PMID: 31585081 DOI: 10.1016/j.cell.2019.09.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active β-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human β-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a β-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Collapse
Affiliation(s)
- Henry R Maun
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy L Staton
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Dressen
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin T Walters
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Neil N Trivedi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley Morando
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Depratment of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz D Orozco
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin Christensen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Q Hang
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Magda Babina
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rahul Ahuja
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - George H Caughey
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Aija Kusi
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kathila R Alatsis
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
38
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
39
|
Wollenberg DTW, Pengelley S, Mouritsen JC, Suckau D, Jørgensen CI, Jørgensen TJD. Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Anal Chem 2020; 92:7453-7461. [PMID: 32427467 DOI: 10.1021/acs.analchem.9b05208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.
Collapse
Affiliation(s)
- Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2280, Denmark
| | - Stuart Pengelley
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
40
|
Zhang Z. Complete Extraction of Protein Dynamics Information in Hydrogen/Deuterium Exchange Mass Spectrometry Data. Anal Chem 2020; 92:6486-6494. [DOI: 10.1021/acs.analchem.9b05724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhongqi Zhang
- Process Development, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
41
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
42
|
Structural and kinetic basis for the regulation and potentiation of Hsp104 function. Proc Natl Acad Sci U S A 2020; 117:9384-9392. [PMID: 32277033 DOI: 10.1073/pnas.1921968117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.
Collapse
|
43
|
Mullahoo J, Zhang T, Clauser K, Carr SA, Jaffe JD, Papanastasiou M. Dual protease type XIII/pepsin digestion offers superior resolution and overlap for the analysis of histone tails by HX-MS. Methods 2020; 184:135-140. [PMID: 32004545 DOI: 10.1016/j.ymeth.2020.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 01/26/2023] Open
Abstract
The N-terminal regions of histone proteins (tails) are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications (PTMs) present on these regions contribute to transcriptional regulation. While hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed to analyze histones due to the poor N-terminal coverage obtained using pepsin. Here, we test the applicability of a dual protease type XIII/pepsin digestion column to this class of proteins. We optimize online digestion conditions using the H4 monomer, and extend the method to the analysis of histones in monomeric states and nucleosome core particles (NCPs). We show that the dual protease column generates many short and overlapping N-terminal peptides. We evaluate our method by performing hydrogen exchange experiments of NCPs for different time points and present full coverage of the tails at excellent resolution. We further employ electron transfer dissociation and showcase an unprecedented degree of overlap across multiple peptides that is several fold higher than previously reported methods. The method we report here may be readily applied to the HX-MS investigation of histone dynamics and to the footprints of histone binding proteins on nucleosomes.
Collapse
Affiliation(s)
- James Mullahoo
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Terry Zhang
- Thermo Scientific, San Jose, CA, United States
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | |
Collapse
|
44
|
Tischer A, Machha VR, Moon-Tasson L, Benson LM, Auton M. Glycosylation sterically inhibits platelet adhesion to von Willebrand factor without altering intrinsic conformational dynamics. J Thromb Haemost 2020; 18:79-90. [PMID: 31479573 PMCID: PMC6940534 DOI: 10.1111/jth.14628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A molecular basis for von Willebrand factor (VWF) self-inhibition has been proposed by which the N-terminal and C-terminal flanking sequences of the globular A1 domain disulfide loop bind to and suppress the conformational dynamics of A1. These flanking sequences are rich in O-linked glycosylation (OLG), which is known to suppress platelet adhesion to VWF, presumably by steric hindrance. The inhibitory mechanism remains unresolved as to whether inhibition is due to steric exclusion by OLGs or a direct self-association interaction that stabilizes the domain. OBJECTIVES The platelet adhesive function, thermodynamic stability, and conformational dynamics of the wild-type and type 2M G1324S A1 domain lacking glycosylation (Escherichia coli) are compared with the wild-type glycosylated A1 domain (HEK293 cell culture) to decipher the self-inhibitory mechanism. METHODS Surface plasmon resonance and analytical rheology are utilized to assess Glycoprotein Ibα (GPIbα) binding at equilibrium and platelet adhesion under shear flow. The conformational stability is assessed through a combination of protein unfolding thermodynamics and hydrogen-deuterium exchange mass spectrometry (HXMS). RESULTS A1 glycosylation inhibits both GPIbα binding and platelet adhesion. Glycosylation increases the hydrodynamic size of A1 and stabilizes the thermal unfolding of A1 without changing its equilibrium stability. Glycosylation does not alter the intrinsic conformational dynamics of the A1 domain. CONCLUSIONS These studies invalidate the proposed inhibition through conformational suppression since glycosylation within these flanking sequences does not alter the native state stability or the conformational dynamics of A1. Rather, they confirm a mechanism by which glycosylation sterically hinders platelet adhesion to the A1 domain at equilibrium and under rheological shear stress.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Venkata R. Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Linda M. Benson
- Proteomics Core, Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
45
|
Niu B, Appleby TC, Wang R, Morar M, Voight J, Villaseñor AG, Clancy S, Wise S, Belzile JP, Papalia G, Wong M, Brendza KM, Lad L, Gross ML. Protein Footprinting and X-ray Crystallography Reveal the Interaction of PD-L1 and a Macrocyclic Peptide. Biochemistry 2019; 59:541-551. [PMID: 31841311 DOI: 10.1021/acs.biochem.9b00822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blocking interactions between PD-1 and PD-L1 opens a new era of cancer treatment involving immunity modulation. Although most immunotherapies use monoclonal antibodies, small-molecule inhibitors offer advantages. To facilitate development of small-molecule therapeutics, we implemented a rapid approach to characterize the binding interfaces of small-molecule inhibitors with PD-L1. We determined its interaction with a synthetic macrocyclic peptide by using two mass spectrometry-based approaches, hydrogen-deuterium exchange and fast photochemical oxidation of proteins (FPOP), and corroborated the findings with our X-ray structure of the PD-L1/macrocycle complex. Although all three approaches show that the macrocycle binds directly to PD-L1 over the regions of residues 46-87 and 114-125, the two protein footprinting approaches show additional binding at the N-terminus of PD-L1, and FPOP reveals some critical binding residues. The outcomes not only show the binding regions but also demonstrate the utility of MS-based footprinting in probing protein/ligand inhibitory interactions in cancer immunotherapy.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Todd C Appleby
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Ruth Wang
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Mariya Morar
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Johannes Voight
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Armando G Villaseñor
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Sheila Clancy
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Sarah Wise
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Jean-Philippe Belzile
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Giuseppe Papalia
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Melanie Wong
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Katherine M Brendza
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Latesh Lad
- Gilead Sciences, Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| |
Collapse
|
46
|
Tischer A, Machha VR, Moon-Tasson L, Auton M. Platelet-type von Willebrand disease: Local disorder of the platelet GPIbα β-switch drives high-affinity binding to von Willebrand factor. J Thromb Haemost 2019; 17:2022-2034. [PMID: 31448872 DOI: 10.1111/jth.14597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations in the β-switch of GPIbα cause gain-of-function in the platelet-type von Willebrand disease. Structures of free and A1-bound GPIbα suggest that the β-switch undergoes a conformational change from a coil to a β-hairpin. OBJECTIVES Platelet-type von Willebrand disease (VWD) mutations have been proposed to stabilize the β-switch by shifting the equilibrium in favor of the β-hairpin, a hypothesis predicated on the assumption that the complex crystal structure between A1 and GPIbα is the high-affinity state. METHODS Hydrogen-deuterium exchange mass spectrometry is employed to test this hypothesis using G233V, M239V, G233V/M239V, W230L, and D235Y disease variants of GPIbα. If true, the expectation is a decrease in hydrogen-deuterium exchange within the β-switch as a result of newly formed hydrogen bonds between the β-strands of the β-hairpin. RESULTS Hydrogen-exchange is enhanced, indicating that the β-switch favors the disordered loop conformation. Hydrogen-exchange is corroborated by differential scanning calorimetry, which confirms that these mutations destabilize GPIbα by allowing the β-switch to dissociate from the leucine-rich-repeat (LRR) domain. The stability of GPIbα and its A1 binding affinity, determined by surface plasmon resonance, are correlated to the extent of hydrogen exchange in the β-switch. CONCLUSION These studies demonstrate that GPIbα with a disordered loop is binding-competent and support a mechanism in which local disorder in the β-switch exposes the LRR-domain of GPIbα enabling high-affinity interactions with the A1 domain.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Venkata R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
47
|
Lumpkin RJ, Komives EA. DECA, A Comprehensive, Automatic Post-processing Program for HDX-MS Data. Mol Cell Proteomics 2019; 18:2516-2523. [PMID: 31594786 PMCID: PMC6885705 DOI: 10.1074/mcp.tir119.001731] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Indexed: 11/06/2022] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) has become widely popular for mapping protein-ligand interfaces, for understanding protein-protein interactions, and for discovering dynamic allostery. Several platforms are now available which provide large data sets of amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data. Although many of these platforms provide some down-stream processing, a comprehensive software that provides the most commonly used down-stream processing tools such as automatic back-exchange correction options, analysis of overlapping peptides, calculations of relative deuterium uptake into regions of the protein after such corrections, rigorous statistical analysis of the significance of uptake differences, and generation of high quality figures for data presentation is not yet available. Here we describe the Deuterium Exchange Correction and Analysis (DECA) software package, which provides all these downstream processing options for data from the most popular mass spectrometry platforms. The major functions of the software are demonstrated on sample data.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378.
| |
Collapse
|
48
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
49
|
Evidence for the Misfolding of the A1 Domain within Multimeric von Willebrand Factor in Type 2 von Willebrand Disease. J Mol Biol 2019; 432:305-323. [PMID: 31628947 PMCID: PMC7028320 DOI: 10.1016/j.jmb.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Von Willebrand factor (VWF), an exceptionally large multimeric plasma glycoprotein, functions to initiate coagulation by agglutinating platelets in the blood stream to sites of vascular injury. This primary hemostatic function is perturbed in type 2 dysfunctional subtypes of von Willebrand disease (VWD) by mutations that alter the structure and function of the platelet GPIbα adhesive VWF A1 domains. The resulting amino acid substitutions cause local disorder and misfold the native structure of the isolated platelet GPIbα-adhesive A1 domain of VWF in both gain-of-function (type 2B) and loss-of-function (type 2M) phenotypes. These structural effects have not been explicitly observed in A1 domains of VWF multimers native to blood plasma. New mass spectrometry strategies are applied to resolve the structural effects of 2B and 2M mutations in VWF to verify the presence of A1 domain structural disorder in multimeric VWF harboring type 2 VWD mutations. Limited trypsinolysis mass spectrometry (LTMS) and hydrogen-deuterium exchange mass spectrometry (HXMS) are applied to wild-type and VWD variants of the single A1, A2, and A3 domains, an A1A2A3 tridomain fragment of VWF, plasmin-cleaved dimers of VWF, multimeric recombinant VWF, and normal VWF plasma concentrates. Comparatively, these methods show that mutations known to misfold the isolated A1 domain increase the rate of trypsinolysis and the extent of hydrogen-deuterium exchange in local secondary structures of A1 within multimeric VWF. VWD mutation effects are localized to the A1 domain without appreciably affecting the structure and dynamics of other VWF domains. The intrinsic dynamics of A1 observed in recombinant fragments of VWF are conserved in plasma-derived VWF. These studies reveal that structural disorder does occur in VWD variants of the A1 domain within multimeric VWF and provides strong support for VWF misfolding as a result of some, but not all, type 2 VWD variants.
Collapse
|
50
|
Papanastasiou M, Mullahoo J, DeRuff KC, Bajrami B, Karageorgos I, Johnston SE, Peckner R, Myers SA, Carr SA, Jaffe JD. Chasing Tails: Cathepsin-L Improves Structural Analysis of Histones by HX-MS. Mol Cell Proteomics 2019; 18:2089-2098. [PMID: 31409669 PMCID: PMC6773551 DOI: 10.1074/mcp.ra119.001325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Karageorgos
- Biomolecular Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD;; Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Ryan Peckner
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|