1
|
Singh N, Yadav SS. Anti-dengue therapeutic potential of Tinospora cordifolia and its bioactives. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118242. [PMID: 38679398 DOI: 10.1016/j.jep.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue is one of the most prevalent mosquito-borne viral infections. Moreover, due to the absence of appropriate curative and preventive measures against it, the mortality rate is increasing alarmingly. However, remarkable docking and clinical advances have been achieved with plant-based natural and conventional therapeutics. Tinospora cordifolia is one of the highly explored panaceas at the local level for its effective anti-dengue formulations. AIM OF THE STUDY The present article aims for critical assessment of the data available on the anti-dengue therapeutic use of T. cordifolia. Efforts have also been made on the clinical and in-silico anti-dengue efficacy of this plant. The phytochemistry and the antiviral machinery of the plant are also emphasized. MATERIALS AND METHODS The present article is the outcome of the literature survey on the anti-dengue effect of T. cordifolia. A literature survey was conducted from 2011 to 2024 using different databases with appropriate keywords. RESULTS The present study confirms the anti-dengue potential of T. cordifolia. The plant can suppress the initiation of 'cytokine storm', vascular leakage and inhibition of various structural and NS proteins to exert its anti-dengue potential. Berberine and magnoflorine phytocompounds were highly explored for their anti-dengue potential. CONCLUSIONS The present study concluded that T. cordifolia serves as an effective therapeutic agent for treating dengue. Further in-silico and clinical studies are needed so that stable, safe and efficacious anti-dengue drug can be developed. Besides, a precise antiviral mechanism of T. cordifolia against DENV infection is still needed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
2
|
Basheer A, Jamal SB, Alzahrani B, Faheem M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front Immunol 2023; 14:1273838. [PMID: 38045699 PMCID: PMC10690774 DOI: 10.3389/fimmu.2023.1273838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Dengue virus infection (DVI) is a mosquito-borne disease that can lead to serious morbidity and mortality. Dengue fever (DF) is a major public health concern that affects approximately 3.9 billion people each year globally. However, there is no vaccine or drug available to deal with DVI. Dengue virus consists of four distinct serotypes (DENV1-4), each raising a different immunological response. In the present study, we designed a tetravalent subunit multi-epitope vaccine, targeting proteins including the structural protein envelope domain III (EDIII), precursor membrane proteins (prM), and a non-structural protein (NS1) from each serotype by employing an immunoinformatic approach. Only conserved sequences obtained through a multiple sequence alignment were used for epitope mapping to ensure efficacy against all serotypes. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, overall, 11 B-cell epitopes, 10 HTL epitopes, and 10 CTL epitopes from EDIII, prM, and NS1 proteins targeting all serotypes were selected and joined via KK, AAY, and GGGS linkers, respectively. We incorporated a 45-amino-acid-long B-defensins adjuvant in the final vaccine construct for a better immunogenic response. The vaccine construct has an antigenic score of 0.79 via VaxiJen and is non-toxic and non-allergenic. Our refined vaccine structure has a Ramachandran score of 96.4%. The vaccine has shown stable interaction with TLR3, which has been validated by 50 ns of molecular dynamics (MD) simulation. Our findings propose that a designed multi-epitope vaccine has substantial potential to elicit a strong immune response against all dengue serotypes without causing any adverse effects. Furthermore, the proposed vaccine can be experimentally validated as a probable vaccine, suggesting it may serve as an effective preventative measure against dengue virus infection.
Collapse
Affiliation(s)
- Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
3
|
Yen LC, Chen HW, Ho CL, Lin CC, Lin YL, Yang QW, Chiu KC, Lien SP, Lin RJ, Liao CL. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci 2023; 30:41. [PMID: 37316861 DOI: 10.1186/s12929-023-00938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.
Collapse
Affiliation(s)
- Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Lo Ho
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wen Yang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
4
|
Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr Top Med Chem 2022; 22:2435-2462. [PMID: 36415099 DOI: 10.2174/1568026623666221122121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil.,Department of Pharmacy, Cesmac University Center, Maceió, Brazil.,Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| | | | - Manuele Figueiredo da Silva
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| |
Collapse
|
5
|
Kaushal N, Jain S, Baranwal M. Computational design of immunogenic peptide constructs comprising multiple HLA restricted Dengue virus envelope epitopes. J Mol Recognit 2022; 35:e2961. [PMID: 35514257 DOI: 10.1002/jmr.2961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is endemic in 100 countries with ability to impact nearly 50% of world population. DENV envelope (E) protein is responsible for viral attachment to host cells and has been target of various countermeasure development efforts. The current study focuses on a consensus computational approach to identify cross-reactive, immunogenic DENV-2 E peptides displaying promiscuity with a wide array of HLA molecules. Four conserved peptides (FP-1, FP-2, FP-3 and FP-4) containing multiple CD8+ and CD4+ T cell epitopes were identified by employment of various immunoinformatics tools. FP-1, FP-2, FP-3 and FP-4 were estimated to bind with 227, 1787, 1008 and 834 HLA alleles respectively. RMSD values obtained by Molecular docking (CABS-Dock) with 20 HLA alleles (10 each of HLA class I and II) resulted into comparable RMSD values of identified epitopes with native peptides which represents the natural presentation of epitopes to HLA molecules. These peptides were also found to be part of previous experimentally validated immunogenic peptides. Further, a dengue immunogenic peptide construct was generated by linking the four peptides, an adjuvant and a 6x histidine tag. The construct showed strong binding and stability with Toll-like receptor (TLR4). Collectively, these results provide strong evidence in the support of the immunogenic potential of the dengue immunogenic peptide construct. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
6
|
Naresh P, Pottabatula SS, Selvaraj J. Dengue virus entry/fusion inhibition by small bioactive molecules; A critical review. Mini Rev Med Chem 2021; 22:484-497. [PMID: 34353253 DOI: 10.2174/1389557521666210805105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Many flaviviruses are remarkable human pathogens that can be transmitted by mosquitoes and ticks. Despite the availability of vaccines for viral infections such as yellow fever, Japanese encephalitis, and tick-borne encephalitis, flavivirus-like dengue is still a significant life-threatening illness worldwide. To date, there is no antiviral treatment for dengue therapy. Industry and the research community have been taking ongoing steps to improve anti-flavivirus treatment to meet this clinical need. The successful activity has been involved in the inhibition of the virus entry fusion process in the last two decades. In this study, the latest understanding of the use of small molecules used as fusion inhibitors has been comprehensively presented. We summarized the structure, the process of fusion of dengue virus E protein (DENV E), and the amino acids involved in the fusion process. Special attention has been given to small molecules that allow conformational changes to DENV E protein viz. blocking the pocket of βOG, which is important for fusion.
Collapse
Affiliation(s)
- Podila Naresh
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| | - Shyam Sunder Pottabatula
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| |
Collapse
|
7
|
A potent neutralizing mouse monoclonal antibody specific to dengue virus type 1 Mochizuki strain recognized a novel epitope around the N-67 glycan on the envelope protein: A possible explanation of dengue virus evolution regarding the acquisition of N-67 glycan. Virus Res 2020; 294:198278. [PMID: 33388392 DOI: 10.1016/j.virusres.2020.198278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
The analysis of neutralizing epitope of dengue virus (DENV) is important for the development of an effective dengue vaccine. A potent neutralizing mouse monoclonal antibody named 7F4 was previously reported and, here, we further analyzed the detailed epitope of this antibody. 7F4 recognized a novel conformational epitope close to the N-67 glycan on the envelope protein. This antibody was specific to the DENV that lacks N-67 glycan, including the Mochizuki strain. Interestingly, the Mochizuki strain acquired N-67 glycan by 7F4 selective pressure. Considering that most of the currently circulating DENVs possess N-67 glycan, DENVs may have evolved to escape from antibodies targeting 7F4 epitope, suggesting the potency of this neutralizing epitope. In addition, this study demonstrated the existence of the epitopes close to 7F4 epitope and their crucial role in neutralization. In conclusion, the epitopes close to the N-67 glycan are attractive targets for the dengue vaccine antigen. Further analysis of this epitope is warranted.
Collapse
|
8
|
Kamaladasa A, Gomes L, Wijesinghe A, Jeewandara C, Toh YX, Jayathilaka D, Ogg GS, Fink K, Malavige GN. Altered monocyte response to the dengue virus in those with varying severity of past dengue infection. Antiviral Res 2019; 169:104554. [PMID: 31288040 DOI: 10.1016/j.antiviral.2019.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We sought to investigate the differences in monocyte immune responses to the dengue virus (DENV) in those who previously had either severe disease (past SD) or non-severe dengue (past NSD) following a secondary dengue infection. METHOD Monocytes from healthy individuals who had either past SD (n = 6) or past NSD (n = 6) were infected at MOI one with all four DENV serotypes following incubation with autologous serum. 36-hours post infection, levels of inflammatory cytokines and viral loads were measured in the supernatant and expression of genes involved in viral sensing and interferon signaling was determined. RESULTS Monocytes of individuals with past SD produced significantly higher viral loads (p = 0.0426 and cytokines (IL-10 p = 0.008, IL-1β p = 0.008 and IL-6 p = 0.0411) when infected with DENV serotypes they were not immune to, compared to those who has past NSD. Monocytes of individuals with past SD also produced significantly higher viral loads (p = 0.022) and cytokines (IL-10 p < 0.0001, IL-1β < 0.0001 and IL-6 p < 0.0001) when infected with DENV serotypes they were previously exposed to, despite the monocytes being infected in the presence of autologous serum. A significant upregulation of NLRP3 (p = 0.005), RIG-I (0.0004) and IFNB-1 (0.01) genes were observed in those who had past SD compared to past NSD when infected with non-immune DENV serotypes. CONCLUSION Monocytes from those with past SD appear to show marked differences in viral loads, viral sensing and production of inflammatory mediators in response to the DENV, when compared to those who experienced past NSD, suggesting that initial innate immune responses may influence the disease outcome.
Collapse
Affiliation(s)
- Achala Kamaladasa
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Ayesha Wijesinghe
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | | | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deshni Jayathilaka
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - Graham S Ogg
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - G N Malavige
- Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK.
| |
Collapse
|
9
|
Tian JN, Yang CC, Chuang CK, Tsai MH, Wu RH, Chen CT, Yueh A. A Dengue Virus Type 2 (DENV-2) NS4B-Interacting Host Factor, SERP1, Reduces DENV-2 Production by Suppressing Viral RNA Replication. Viruses 2019; 11:v11090787. [PMID: 31461934 PMCID: PMC6783944 DOI: 10.3390/v11090787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Host cells infected with dengue virus (DENV) often trigger endoplasmic reticulum (ER) stress, a key process that allows viral reproduction, without killing the host cells until the late stage of the virus life-cycle. However, little is known regarding which DENV viral proteins interact with the ER machinery to support viral replication. In this study, we identified and characterized a novel host factor, stress-associated ER protein 1 (SERP1), which interacts with the DENV type 2 (DENV-2) NS4B protein by several assays, for example, yeast two-hybrid, subcellular localization, NanoBiT complementation, and co-immunoprecipitation. A drastic increase (34.5-fold) in the SERP1 gene expression was observed in the DENV-2-infected or replicon-transfected Huh7.5 cells. The SERP1 overexpression inhibited viral yields (37-fold) in the DENV-2-infected Huh7.5 cells. In contrast, shRNAi-knockdown and the knockout of SERP1 increased the viral yields (3.4- and 16-fold, respectively) in DENV-2-infected HEK-293 and Huh7.5 cells, respectively. DENV-2 viral RNA replication was severely reduced in stable SERP1-expressing Huh7.5 cells transfected with DENV-2 replicon plasmids. The overexpression of DENV-2 NS4B alleviated the inhibitory effect of SERP1 on DENV-2 RNA replication. Taking these results together, we hypothesized that SERP1 may serve as an antiviral player during ER stress to restrict DENV-2 infection. Our studies revealed novel anti-DENV drug targets that may facilitate anti-DENV drug discovery.
Collapse
Affiliation(s)
- Jia-Ni Tian
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiu-Kai Chuang
- Division of Animal Technology, Agricultural Technology Research Institute, Miaoli 35053, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ren-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|
10
|
Tian JN, Wu RH, Chen SL, Chen CT, Yueh A. Mutagenesis of the dengue virus NS4A protein reveals a novel cytosolic N-terminal domain responsible for virus-induced cytopathic effects and intramolecular interactions within the N-terminus of NS4A. J Gen Virol 2019; 100:457-470. [PMID: 30707666 DOI: 10.1099/jgv.0.001227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The NS4A protein of dengue virus (DENV) has a cytosolic N terminus and four transmembrane domains. NS4A participates in RNA replication and the host antiviral response. However, the roles of amino acid residues within the N-terminus of NS4A during the life cycle of DENV are not clear. Here we explore the function of DENV NS4A by introducing a series of alanine substitutions into the N-terminus of NS4A in the context of a DENV infectious clone or subgenomic replicon. Nine of 17 NS4A mutants displayed a lethal phenotype due to the impairment of RNA replication. M2 and M14 displayed a more than 10 000-fold reduction in viral yields and moderate defects in viral replication by a replicon assay. Sequencing analyses of pseudorevertant viruses derived from M2 and M14 viruses revealed one consensus reversion mutation, A21V, within NS4A. The A21V mutation apparently rescued viral RNA replication in the M2 and M14 mutants although not to wild-type (WT) levels but resulted in 100- and 1000-fold lower titres than that of the WT, respectively. M2 Rev1 (M2+A21V) and M14 Rev1 (M14+A21V) mutants displayed phenotypes of smaller plaque size and WT-like assembly/secretion by a transpackaging assay. A defect in the virus-induced cytopathic effect (CPE) was observed in HEK-293 cells infected with either M2 Rev1 or M14 Rev1 mutant virus by MitoCapture staining, cell proliferation and lactate dehydrogenase release assays. In conclusion, the results revealed the essential roles of the N-terminal NS4A in both RNA replication and virus-induced CPE. Intramolecular interactions in the N-terminus of NS4A were implicated.
Collapse
Affiliation(s)
- Jia Ni Tian
- 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, PR China.,2Department of Life Sciences, National Central University, Jhongli, Taiwan, PR China
| | - Ren Huang Wu
- 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, PR China
| | - Shen Liang Chen
- 2Department of Life Sciences, National Central University, Jhongli, Taiwan, PR China
| | - Chiung Tong Chen
- 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, PR China
| | - Andrew Yueh
- 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, PR China
| |
Collapse
|
11
|
Infectivity of Dengue Virus Serotypes 1 and 2 Is Correlated with E-Protein Intrinsic Dynamics but Not to Envelope Conformations. Structure 2019; 27:618-630.e4. [PMID: 30686666 DOI: 10.1016/j.str.2018.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/02/2018] [Accepted: 12/09/2018] [Indexed: 11/20/2022]
Abstract
Dengue is a mosquito-borne virus with dire health and economic impacts. Dengue is responsible for an estimated 390 million infections per year, with dengue 2 (DENV2) being the most virulent strain among the four serotypes. Interestingly, it is also in strains of this serotype that temperature-dependent large-scale morphological changes, termed "breathing," have been observed. Although the structure of these morphologies has been solved to 3.5-Å resolution, the dynamics of the viral envelope are unknown. Here, we combine fluorescence and mass spectrometry with molecular dynamics simulations to provide insights into DENV2 (NGC strain) structural dynamics in comparison with DENV1 (PVP 159). We observe hitherto unseen conformational changes and structural dynamics of the DENV2 envelope that are influenced by both temperature and divalent cations. Our results show that for DENV2 and DENV1 the intrinsic dynamics, but not the specific morphologies, are correlated with viral infectivity.
Collapse
|
12
|
Halstead SB. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? There Is Only One True Winner. Cold Spring Harb Perspect Biol 2018; 10:a030700. [PMID: 28716893 PMCID: PMC5983193 DOI: 10.1101/cshperspect.a030700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The scientific community now possesses information obtained directly from human beings that makes it possible to understand why breakthrough-enhanced dengue virus (DENV) infections occurred in children receiving Sanofi Pasteur's Dengvaxia tetravalent live attenuated vaccine and to predict the possibility of breakthrough-enhanced DENV infections following immunization with two other tetravalent live attenuated vaccines now in phase III testing. Based upon recent research, Dengvaxia, lacking DENV nonstructural protein antigens, did not protect seronegatives because it failed to raise a competent T-cell response and/or antibodies to NS1. It is also possible that chimeric structure does not present the correct virion conformation permitting the development of protective neutralizing antibodies. A premonitory signal shared by the Sanofi Pasteur and the Takeda vaccines was the failure of fully immunized subhuman primates to prevent low-level viremia and/or anamnestic antibody responses to live DENV challenge. The vaccine developed by the National Institute of Allergy and Infectious Diseases (National Institutes of Health [NIH]) has met virtually all of the goals needed to demonstrate preclinical efficacy and safety for humans. Each monovalent vaccine was comprehensively studied for reactogenicity and immunogenicity in human volunteers. Protective immunity in subjects receiving tetravalent candidate vaccines was evidenced by the fact that when vaccinated subjects were given further doses of vaccine or different strains of DENV the result was "solid immunity," a nonviremic and nonanamnestic immune response.
Collapse
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20817
| |
Collapse
|
13
|
Kim M, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos‐Olvera I, Reyes‐del Valle J, Yang M, Jang Y, Reljic R, Ma JK. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1590-1601. [PMID: 28421694 PMCID: PMC5698049 DOI: 10.1111/pbi.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | | | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Gina R. Webster
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emily Julik
- School of Life SciencesArizona State UniversityTempeAZUSA
| | | | | | - Moon‐Sik Yang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
14
|
Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 2017; 9:v9110338. [PMID: 29137162 PMCID: PMC5707545 DOI: 10.3390/v9110338] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses are enveloped, single-stranded RNA viruses that widely infect many animal species. The envelope protein, a structural protein of flavivirus, plays an important role in host cell viral infections. It is composed of three separate structural envelope domains I, II, and III (EDI, EDII, and EDIII). EDI is a structurally central domain of the envelope protein which stabilizes the overall orientation of the protein, and the glycosylation sites in EDI are related to virus production, pH sensitivity, and neuroinvasiveness. EDII plays an important role in membrane fusion because of the immunodominance of the fusion loop epitope and the envelope dimer epitope. Additionally, EDIII is the major target of neutralization antibodies. The envelope protein is an important target for research to develop vaccine candidates and antiviral therapeutics. This review summarizes the structures and functions of ED I/II/III, and provides practical applications for the three domains, with the ultimate goal of implementing strategies to utilize the envelope protein against flavivirus infections, thus achieving better diagnostics and developing potential flavivirus therapeutics and vaccines.
Collapse
|
15
|
Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys. J Virol 2017; 91:JVI.00525-17. [PMID: 28592531 DOI: 10.1128/jvi.00525-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 105 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection.IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks postvaccination. Furthermore, one of these vaccinated monkeys appeared to be protected against the acquisition of DENV2 infection on the basis of undetectable viral loads and the lack of an anamnestic antibody response. These findings underscore the potential utility of recombinant herpesviruses as vaccine vectors.
Collapse
|
16
|
Tsai WY, Lin HE, Wang WK. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development. Front Microbiol 2017; 8:1372. [PMID: 28775720 PMCID: PMC5517401 DOI: 10.3389/fmicb.2017.01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.
Collapse
Affiliation(s)
- Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Hong-En Lin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| |
Collapse
|
17
|
Chaudhury S, Gromowski GD, Ripoll DR, Khavrutskii IV, Desai V, Wallqvist A. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus. PLoS Negl Trop Dis 2017; 11:e0005395. [PMID: 28222130 PMCID: PMC5336305 DOI: 10.1371/journal.pntd.0005395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/03/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background A majority infections caused by dengue virus (DENV) are asymptomatic, but a higher incidence of severe illness, such as dengue hemorrhagic fever, is associated with secondary infections, suggesting that pre-existing immunity plays a central role in dengue pathogenesis. Primary infections are typically associated with a largely serotype-specific antibody response, while secondary infections show a shift to a broadly cross-reactive antibody response. Methods/Principal findings We hypothesized that the basis for the shift in serotype-specificity between primary and secondary infections can be found in a change in the antibody fine-specificity. To investigate the link between epitope- and serotype-specificity, we assembled the Dengue Virus Antibody Database, an online repository containing over 400 DENV-specific mAbs, each annotated with information on 1) its origin, including the immunogen, host immune history, and selection methods, 2) binding/neutralization data against all four DENV serotypes, and 3) epitope mapping at the domain or residue level to the DENV E protein. We combined epitope mapping and activity information to determine a residue-level index of epitope propensity and cross-reactivity and generated detailed composite epitope maps of primary and secondary antibody responses. We found differing patterns of epitope-specificity between primary and secondary infections, where secondary responses target a distinct subset of epitopes found in the primary response. We found that secondary infections were marked with an enhanced response to cross-reactive epitopes, such as the fusion-loop and E-dimer region, as well as increased cross-reactivity in what are typically more serotype-specific epitope regions, such as the domain I-II interface and domain III. Conclusions/Significance Our results support the theory that pre-existing cross-reactive memory B cells form the basis for the secondary antibody response, resulting in a broadening of the response in terms of cross-reactivity, and a focusing of the response to a subset of epitopes, including some, such as the fusion-loop region, that are implicated in poor neutralization and antibody-dependent enhancement of infection. Dengue virus (DENV) infections are typically asymptomatic, but severe and potentially lethal disease symptoms, such as dengue hemorrhagic fever, are associated with secondary infections. This suggests that pre-existing immunity from primary infection plays a central role in DENV pathogenesis. In order to characterize the antibody response in primary and secondary infections, we assembled the Dengue Virus Antibody Database, a freely accessible online repository (http://denvabdb.bhsai.org) storing over 400 unique monoclonal dengue-specific antibodies annotated by their 1) origin and host immune history, 2) activity information against all four dengue serotypes, and 3) epitope mapping information. Here we demonstrate the utility of the database by carrying out a large-scale analysis to characterize shifts in epitope fine-specificity and serotype cross-reactivity in primary and secondary infections. In particular, we show how the antibody response in secondary infections displays a systematic shift towards increased serotype cross-reactivity by focusing on a subset of cross-reactive epitopes on the dengue E protein. Our findings suggest a mechanistic basis for this shift in epitope and serotype specificity and demonstrate how a detailed understanding of the antibody response can provide insight into the mechanisms of dengue pathogenesis.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel R. Ripoll
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Ilja V. Khavrutskii
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Valmik Desai
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Anders Wallqvist
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
18
|
Suwanmanee S, Luplertlop N. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis. Viral Immunol 2016; 30:13-19. [PMID: 27860556 DOI: 10.1089/vim.2016.0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| |
Collapse
|
19
|
Chakraborty S. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus. F1000Res 2016; 5:1150. [PMID: 27540468 DOI: 10.12688/f1000research.8853.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little emphasis in existing literature, are found to have significant electrostatic perturbation. Thus, a combination of different computational methods enable the rapid and rational detection of critical residues as epitopes in the search for an elusive therapy or vaccine that neutralizes multiple members of the Flaviviridae family. These secondary structures are conserved in the related Dengue virus (DENV), and possibly rationalize isolation techniques particle adsorption on magnetic beads coated with anionic polymers and anionic antiviral agents (viprolaxikine) for DENV. These amphipathic α-helices could enable design of molecules for inhibiting α-helix mediated protein-protein interactions. Finally, comparison of these secondary structures in proteins from related families illuminate subtle changes in the proteins that might render them ineffective to previously successful drugs and vaccines, which are difficult to identify by a simple sequence or structural alignment. Finally, conflicting results about residues that are involved in neutralizing a DENV-E protein by the potent antibody 5J7 (PDB ID:3J6U) are reported.
Collapse
|
20
|
Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res 2016; 2016:6803098. [PMID: 27525287 PMCID: PMC4971387 DOI: 10.1155/2016/6803098] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals.
Collapse
Affiliation(s)
- Niyati Khetarpal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Biochemistry, University of Delhi, Institute of Home Economics, Hauz Khas, New Delhi 110016, India
| | - Ira Khanna
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
21
|
Chakraborty S. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus. F1000Res 2016; 5:1150. [PMID: 27540468 PMCID: PMC4965698 DOI: 10.12688/f1000research.8853.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family
Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little emphasis in existing literature, are found to have significant electrostatic perturbation. Thus, a combination of different computational methods enable the rapid and rational detection of critical residues as epitopes in the search for an elusive therapy or vaccine that neutralizes multiple members of the
Flaviviridae family. These secondary structures are conserved in the related Dengue virus (DENV), and possibly rationalize isolation techniques particle adsorption on magnetic beads coated with anionic polymers and anionic antiviral agents (viprolaxikine) for DENV. These amphipathic α-helices could enable design of molecules for inhibiting α-helix mediated protein-protein interactions. Finally, comparison of these secondary structures in proteins from related families illuminate subtle changes in the proteins that might render them ineffective to previously successful drugs and vaccines, which are difficult to identify by a simple sequence or structural alignment. Finally, conflicting results about residues that are involved in neutralizing a DENV-E protein by the potent antibody 5J7 (PDB ID:3J6U) are reported.
Collapse
|
22
|
Lourenço J, Recker M. Dengue serotype immune-interactions and their consequences for vaccine impact predictions. Epidemics 2016; 16:40-8. [PMID: 27663790 PMCID: PMC5030310 DOI: 10.1016/j.epidem.2016.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/11/2022] Open
Abstract
The firstever dengue vaccine, Dengvaxia®, has recently been licensed for use in several countries. Mathematical models are valuable tools for assessing vaccination impact on dengue burden. Model assumptions regarding dengue serotype immune interactions are inconsistent. Our results demonstrate how model assumptions critically affect vaccine impact predictions.
Dengue is one of the most important and wide-spread viral infections affecting human populations. The last few decades have seen a dramatic increase in the global burden of dengue, with the virus now being endemic or near-endemic in over 100 countries world-wide. A recombinant tetravalent vaccine candidate (CYD-TDV) has recently completed Phase III clinical efficacy trials in South East Asia and Latin America and has been licensed for use in several countries. The trial results showed moderate-to-high efficacies in protection against clinical symptoms and hospitalisation but with so far unknown effects on transmission and infections per se. Model-based predictions about the vaccine's short- or long-term impact on the burden of dengue are therefore subject to a considerable degree of uncertainty. Furthermore, different immune interactions between dengue's serotypes have frequently been evoked by modelling studies to underlie dengue's oscillatory dynamics in disease incidence and serotype prevalence. Here we show how model assumptions regarding immune interactions in the form of antibody-dependent enhancement, temporary cross-immunity and the number of infections required to develop full immunity can significantly affect the predicted outcome of a dengue vaccination campaign. Our results thus re-emphasise the important gap in our current knowledge concerning the effects of previous exposure on subsequent dengue infections and further suggest that intervention impact studies should be critically evaluated by their underlying assumptions about serotype immune-interactions.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn TR10 9EZ, UK.
| |
Collapse
|
23
|
Hicar MD, Chen X, Kalams SA, Sojar H, Landucci G, Forthal DN, Spearman P, Crowe JE. Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations. Mol Immunol 2015; 70:94-103. [PMID: 26748387 DOI: 10.1016/j.molimm.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner.
Collapse
Affiliation(s)
- Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14222, United States; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14222, United States
| | - Xuemin Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Spyros A Kalams
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN 37232, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14222, United States
| | - Gary Landucci
- Department of Medicine, University of California, Irvine, CA 92668, United States
| | - Donald N Forthal
- Department of Medicine, University of California, Irvine, CA 92668, United States
| | - Paul Spearman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; Children's Healthcare of Atlanta, Atlanta, GA 30329, United States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
24
|
Molecular Basis of the Divergent Immunogenicity of Two Pediatric Tick-Borne Encephalitis Virus Vaccines. J Virol 2015; 90:1964-72. [PMID: 26656681 PMCID: PMC4734018 DOI: 10.1128/jvi.02985-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Studies evaluating the immunogenicity of two pediatric tick-borne encephalitis virus (TBEV) vaccines have reported contradictory results. These vaccines are based on two different strains of the European TBEV subtype: FSME-Immun Junior is based on the Neudörfl (Nd) strain, whereas Encepur Children is based on the Karlsruhe (K23) strain. The antibody (Ab) response induced by these two vaccines might be influenced by antigenic differences in the envelope (E) protein, which is the major target of neutralizing antibodies. We used an established hybrid virus assay platform to compare the levels of induction of neutralizing antibodies against the two vaccine virus strains in children aged 1 to 11 years who received two immunizations with FSME-Immun Junior or Encepur Children. The influence of amino acid differences between the E proteins of the Nd and K23 vaccine strains was investigated by mutational analyses and three-dimensional computer modeling. FSME-Immun Junior induced 100% seropositivity and similar neutralizing antibody titers against hybrid viruses containing the TBEV E protein of the two vaccine strains. Encepur Children induced 100% seropositivity only against the hybrid virus containing the E protein of the homologous K23 vaccine strain. Antibody responses induced by Encepur Children to the hybrid virus containing the E protein of the heterologous Nd strain were substantially and significantly (P < 0.001) lower than those to the K23 vaccine strain hybrid virus. Structure-based mutational analyses of the TBEV E protein indicated that this is due to a mutation in the DI-DII hinge region of the K23 vaccine strain E protein which may have occurred during production of the vaccine seed virus and which is not present in any wild-type TBE viruses. IMPORTANCE Our data suggest that there are major differences in the abilities of two European subtype pediatric TBEV vaccines to induce antibodies capable of neutralizing heterologous TBEV strains. This is a result of a mutation in the DI-DII hinge region of the E protein of the K23 vaccine virus strain used to manufacture Encepur Children which is not present in the Nd strain used to manufacture FSME-Immun Junior or in any other known naturally occurring TBEVs.
Collapse
|
25
|
Kotaki T, Yamanaka A, Mulyatno KC, Churrotin S, Sucipto TH, Labiqah A, Ahwanah NLF, Soegijanto S, Kameoka M, Konishi E. Divergence of the dengue virus type 2 Cosmopolitan genotype associated with two predominant serotype shifts between 1 and 2 in Surabaya, Indonesia, 2008-2014. INFECTION GENETICS AND EVOLUTION 2015; 37:88-93. [PMID: 26553170 DOI: 10.1016/j.meegid.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Abstract
Indonesia is one of the biggest dengue endemic countries, and, thus, is an important place to investigate the evolution of dengue virus (DENV). We have continuously isolated DENV in Surabaya, the second biggest city in Indonesia, since 2008. We previously reported sequential changes in the predominant serotype from DENV type 2 (DENV-2) to DENV type 1 (DENV-1) in November 2008 and from DENV-1 to DENV-2 in July 2013. The predominance of DENV-2 continued in 2014, but not in 2015. We herein phylogenetically investigated DENV-2 transitions in Surabaya between 2008 and 2014 to analyze the divergence and evolution of DENV-2 concomitant with serotype shifts. All DENV-2 isolated in Surabaya were classified into the Cosmopolitan genotype, and further divided into 6 clusters. Clusters 1-3, dominated by Surabaya strains, were defined as the "Surabaya lineage". Clusters 4-6, dominated by strains from Singapore, Malaysia, and many parts of Indonesia, were the "South East Asian lineage". The most recent common ancestor of these strains existed in 1988, coinciding with the time that an Indonesian dengue outbreak took place. Cluster 1 appeared to be unique because no other DENV-2 isolate was included in this cluster. The predominance of DENV-2 in 2008 and 2013-14 were caused by cluster 1, whereas clusters 2 and 3 sporadically emerged in 2011 and 2012. The characteristic amino acids of cluster 1, E-170V and E-282Y, may be responsible for its prevalence in Surabaya. No amino acid difference was observed in the envelope region between strains in 2008 and 2013-14, suggesting that the re-emergence of DENV-2 in Surabaya was due to the loss or decrease of herd immunity in the 5-year period when DENV-2 subsided. The South East Asian lineage primarily emerged in Surabaya in 2014, probably imported from other parts of Indonesia or foreign countries.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia; Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan.
| | - Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan(1)
| | - Kris Cahyo Mulyatno
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Churrotin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Teguh Hari Sucipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Amaliah Labiqah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Nur Laila Fitriati Ahwanah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Soegeng Soegijanto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Jl, Mulyorejo, Surabaya 60115, Indonesia
| | - Masanori Kameoka
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan(1)
| |
Collapse
|
26
|
Cox KS, Tang A, Chen Z, Horton MS, Yan H, Wang XM, Dubey SA, DiStefano DJ, Ettenger A, Fong RH, Doranz BJ, Casimiro DR, Vora KA. Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures. MAbs 2015; 8:129-40. [PMID: 26491897 PMCID: PMC4966506 DOI: 10.1080/19420862.2015.1109757] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Monitoring antigen-specific memory B cells and the antibodies they encode is important for understanding the specificity, breadth and duration of immune response to an infection or vaccination. The antibodies isolated could further help design vaccine antigens for raising relevant protective immune responses. However, developing assays to measure and isolate antigen-specific memory B cells is technically challenging due to the low frequencies of these cells that exist in the circulating blood. Here, we describe a flow cytometry method to identify and isolate dengue envelope-specific memory B cells using a labeled dengue envelope protein. We enumerated dengue-envelope specific memory B cells from a cohort of dengue seropositive donors using this direct flow cytometry assay. A more established and conventional assay, the cultured B ELISPOT, was used as a benchmark comparator. Furthermore, we were able to confirm the single-sorted memory B-cell specificity by culturing B cells and differentiating them into plasma cells using cell lines expressing CD40L. The culture supernatants were assayed for antigen binding and the ability of the antibodies to neutralize the cognate dengue virus. Moreover, we successfully isolated the heavy and light Ig sequences and expressed them as full-length recombinant antibodies to reproduce the activity seen in culture supernatants. Mapping of these antibodies revealed a novel epitope for dengue 2 virus serotype. In conclusion, we established a reproducible methodology to enumerate antigen-specific memory B cells and assay their encoded antibodies for functional characterization.
Collapse
Affiliation(s)
- Kara S Cox
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Aimin Tang
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Zhifeng Chen
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Melanie S Horton
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Hao Yan
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Xin-Min Wang
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Sheri A Dubey
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Daniel J DiStefano
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | | | | | | | - Danilo R Casimiro
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| | - Kalpit A Vora
- a Department of Infectious Diseases and Vaccines-West Point ; PA; Merck Research Laboratories; Merck & Co.; Inc. Kenilworth ; NJ ; USA
| |
Collapse
|
27
|
Suphatrakul A, Yasanga T, Keelapang P, Sriburi R, Roytrakul T, Pulmanausahakul R, Utaipat U, Kawilapan Y, Puttikhunt C, Kasinrerk W, Yoksan S, Auewarakul P, Malasit P, Charoensri N, Sittisombut N. Generation and preclinical immunogenicity study of dengue type 2 virus-like particles derived from stably transfected mosquito cells. Vaccine 2015; 33:5613-5622. [PMID: 26382602 DOI: 10.1016/j.vaccine.2015.08.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/02/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Recent phase IIb/III trials of a tetravalent live attenuated vaccine candidate revealed a need for improvement in the stimulation of protective immunity against diseases caused by dengue type 2 virus (DENV-2). Our attempts to develop particulate antigens for possibly supplementing live attenuated virus preparation involve generation and purification of recombinant DENV-2 virus-like particles (VLPs) derived from stably (prM+E)-expressing mosquito cells. Two VLP preparations generated with either negligible or enhanced prM cleavage exhibited different proportions of spherical particles and tubular particles of variable lengths. In BALB/c mice, VLPs were moderately immunogenic, requiring adjuvants for the induction of strong virus neutralizing antibody responses. VLPs with enhanced prM cleavage induced higher levels of neutralizing antibody than those without, but the stimulatory activity of both VLPs was similar in the presence of adjuvants. Comparison of EDIII-binding antibodies in mice following two adjuvanted doses of these VLPs revealed subtle differences in the stimulation of anti-EDIII binding antibodies. In cynomolgus macaques, VLPs with enhanced prM cleavage augmented strongly neutralizing antibody and EDIII-binding antibody responses in live attenuated virus-primed recipients, suggesting that these DENV-2 VLPs may be useful as the boosting antigen in prime-boost immunization. As the levels of neutralizing antibody induced in macaques with the prime-boost immunization were comparable to those infected with wild type virus, this virus-prime VLP-boost regimen may provide an immunization platform in which a need for robust neutralizing antibody response in the protection against DENV-2-associated illnesses could be tested.
Collapse
Affiliation(s)
- Amporn Suphatrakul
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thaneeya Roytrakul
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Utaiwan Utaipat
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yanee Kawilapan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prasert Auewarakul
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nicha Charoensri
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Nopporn Sittisombut
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
28
|
Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies. J Virol 2015; 89:7348-62. [PMID: 25972550 DOI: 10.1128/jvi.00273-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The four serotypes of dengue virus (DENV) cause the most important and rapidly emerging arboviral diseases in humans. The recent phase 2b and 3 studies of a tetravalent dengue vaccine reported a moderate efficacy despite the presence of neutralizing antibodies, highlighting the need for a better understanding of neutralizing antibodies in polyclonal human sera. Certain type-specific (TS) antibodies were recently discovered to account for the monotypic neutralizing activity and protection after primary DENV infection. The nature of neutralizing antibodies after secondary DENV infection remains largely unknown. In this study, we examined sera from 10 vaccinees with well-documented exposure to first and second DENV serotypes through heterotypic immunization with live-attenuated vaccines. Higher serum IgG avidities to both exposed and nonexposed serotypes were found after secondary immunization than after primary immunization. Using a two-step depletion protocol to remove different anti-envelope antibodies, including group-reactive (GR) and complex-reactive (CR) antibodies separately, we found GR and CR antibodies together contributed to more than 50% of neutralizing activities against multiple serotypes after secondary immunization. Similar findings were demonstrated in patients after secondary infection. Anti-envelope antibodies recognizing previously exposed serotypes consisted of a large proportion of GR antibodies, CR antibodies, and a small proportion of TS antibodies, whereas those recognizing nonexposed serotypes consisted of GRand CR antibodies. These findings have implications for sequential heterotypic immunization or primary immunization of DENV-primed individuals as alternative strategies for DENV vaccination. The complexity of neutralizing antibodies after secondary infection provides new insights into the difficulty of their application as surrogates of protection. IMPORTANCE The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Despite the presence of neutralizing antibodies, a moderate efficacy was recently reported in phase 2b and 3 trials of a dengue vaccine; a better understanding of neutralizing antibodies in polyclonal human sera is urgently needed.We studied vaccinees who received heterotypic immunization of live-attenuated vaccines, as they were known to have received the first and second DENV serotype exposures.We found anti-envelope antibodies consist of group-reactive (GR), complex-reactive (CR), and type-specific (TS) antibodies, and that both GR and CR antibodies contribute significantly to multitypic neutralizing activities after secondary DENV immunization. These findings have implications for alternative strategies for DENV vaccination. Certain TS antibodies were recently discovered to contribute to the monotypic neutralizing activity and protection after primary DENV infection; our findings of the complexity of neutralizing activities after secondary immunization/infection provide new insights for neutralizing antibodies as surrogates of protection.
Collapse
|
29
|
A broadly neutralizing human monoclonal antibody is effective against H7N9. Proc Natl Acad Sci U S A 2015; 112:10890-5. [PMID: 26283346 DOI: 10.1073/pnas.1502374112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (-24 h) or double-dose (-12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (-12 h) combined with oseltamivir at 50 mg/kg (-12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains.
Collapse
|
30
|
Poggianella M, Slon Campos JL, Chan KR, Tan HC, Bestagno M, Ooi EE, Burrone OR. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes. PLoS Negl Trop Dis 2015. [PMID: 26218926 PMCID: PMC4517776 DOI: 10.1371/journal.pntd.0003947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well. Dengue disease is a mosquito-borne viral infection caused by Dengue virus (DENV), one of the most important human pathogens worldwide. DENV infection produces a systemic disease with a broad symptomatic spectrum ranging from mild febrile illness (Dengue Fever, DF) to severe haemorrhagic manifestations (Dengue Haemorrhagic fever and Dengue Shock Syndrome, DHF and DSS respectively). To date there is no vaccine available to prevent dengue disease. We show here a strategy of immunisation, tested in mice, that elicits a strong immune response against the four different DENV serotypes. The novelties presented in our work open the way to the development of an efficient vaccine accessible to developing countries.
Collapse
Affiliation(s)
- Monica Poggianella
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - José L. Slon Campos
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail:
| |
Collapse
|
31
|
Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, Khomandiak S, Khomadiak S, Ashbrook AW, Kahle KM, Fong RH, Swayne S, Doranz BJ, McGee CE, Heise MT, Pal P, Brien JD, Austin SK, Diamond MS, Dermody TS, Crowe JE. Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host Microbe 2015; 18:86-95. [PMID: 26159721 PMCID: PMC4501771 DOI: 10.1016/j.chom.2015.06.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- Chemoprevention/methods
- Chikungunya Fever/therapy
- Chikungunya virus/immunology
- Chikungunya virus/physiology
- Disease Models, Animal
- Humans
- Immunization, Passive/methods
- Inhibitory Concentration 50
- Mice
- Protein Binding
- Survival Analysis
- Treatment Outcome
- Viral Envelope Proteins/immunology
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Laurie A Silva
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie M Fox
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Solomiia Khomadiak
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Alison W Ashbrook
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | - Charles E McGee
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Pankaj Pal
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D Brien
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S Kyle Austin
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence S Dermody
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Rodenhuis-Zybert IA, da Silva Voorham JM, Torres S, van de Pol D, Smit JM. Antibodies against immature virions are not a discriminating factor for dengue disease severity. PLoS Negl Trop Dis 2015; 9:e0003564. [PMID: 25760350 PMCID: PMC4356584 DOI: 10.1371/journal.pntd.0003564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/24/2015] [Indexed: 01/18/2023] Open
Abstract
Humoral immunity plays an important role in controlling dengue virus (DENV) infection. Antibodies (Abs) developed during primary infection protect against subsequent infection with the same dengue serotype, but can enhance disease following secondary infection with a heterologous serotype. A DENV virion has two surface proteins, envelope protein E and (pre)-membrane protein (pr)M, and inefficient cleavage of the prM protein during maturation of progeny virions leads to the secretion of immature and partially immature particles. Interestingly, we and others found that historically regarded non-infectious prM-containing DENV particles can become highly infectious in the presence of E- and prM-Abs. Accordingly, we hypothesized that these virions contribute to the exacerbation of disease during secondary infection. Here, we tested this hypothesis and investigated the ability of acute sera of 30 DENV2-infected patients with different grades of disease severity, to bind, neutralize and/or enhance immature DENV2. We found that a significant fraction of serum Abs bind to the prM protein and to immature virions, but we observed no significant difference between the disease severity groups. Furthermore, functional analysis of the Abs did not underscore any specific correlation between the neutralizing/enhancing activity towards immature DENV2 and the development of more severe disease. Based on our analysis of acute sera, we conclude that Abs binding to immature virions are not a discriminating factor in dengue pathogenesis. The four serotypes of the mosquito-borne dengue virus (DENV) cause an estimated 390 million human infections per annum. Symptomatic infection can manifest itself as a self-limiting febrile illness, dengue fever (DF), or as more severe and potentially life-threatening dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Severe disease development is usually associated with the presence of pre-existing Abs that enhance DENV infection rather than neutralize it. Antibody-dependent enhancement of infection is believed to contribute to high viral loads that prelude the development of severe disease. Indeed, Abs binding to the DENV surface glycoproteins E and prM are known to enhance infection. Here, we studied the role of prM Abs and prM-containing immature virions in the pathogenesis of severe disease. We analyzed the ability of acute sera of DF, DHF and DSS patients to bind, neutralize and/or enhance immature DENV infection. We found that a significant fraction of Abs bind to prM protein of DENV2; however, there was no difference between the disease severity groups. Moreover, we did not observed any specific correlation between the neutralizing/enhancing activity towards immature DENV2 and disease presentation. Based on these data we inferred that prM Abs and immature virions are not a discriminating factor in dengue pathogenesis. These findings are important for the understanding of dengue pathogenesis and the development of new vaccines.
Collapse
Affiliation(s)
- Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Júlia M. da Silva Voorham
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Silvia Torres
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Denise van de Pol
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Immunogenicity and efficacy of flagellin-envelope fusion dengue vaccines in mice and monkeys. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:516-25. [PMID: 25761459 DOI: 10.1128/cvi.00770-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The envelope (E) protein of flaviviruses includes three domains, EI, EII, and EIII, and is the major protective antigen. Because EIII is rich in type-specific and subcomplex-specific neutralizing epitopes and is easy to express, it is particularly attractive as a recombinant vaccine antigen. VaxInnate has developed a vaccine platform that genetically links vaccine antigens to bacterial flagellin, a Toll-like receptor 5 ligand. Here we report that tetravalent dengue vaccines (TDVs) consisting of four constructs, each containing two copies of EIII fused to flagellin (R3.2x format), elicited robust and long-lived neutralizing antibodies (geometric mean titers of 200 to 3,000), as measured with a 50% focus reduction neutralization test (FRNT50). In an immunogenicity study, rhesus macaques (n = 2) immunized subcutaneously with 10 μg or 90 μg of TDV three or four times, at 4- to 6-week intervals, developed neutralizing antibodies to four dengue virus (DENV) serotypes (mean post-dose 3 FRNT50 titers of 102 to 601). In an efficacy study, rhesus macaques (n = 4) were immunized intramuscularly with 16 μg or 48 μg of TDV or a placebo control three times, at 1-month intervals. The animals that received 48-μg doses of TDV developed neutralizing antibodies against the four serotypes (geometric mean titers of 49 to 258) and exhibited reduced viremia after DENV-2 challenge, with a group mean viremia duration of 1.25 days and 2 of 4 animals being completely protected, compared to the placebo-treated animals, which all developed viremia, with a mean duration of 4 days. In conclusion, flagellin-EIII fusion vaccines are immunogenic and partially protective in a nonhuman primate model.
Collapse
|
35
|
Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Sci Rep 2015; 5:7878. [PMID: 25597595 PMCID: PMC4297979 DOI: 10.1038/srep07878] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/15/2014] [Indexed: 12/02/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) has been recognized as an important global public health issue, which is predominantly caused by enterovirus 71 (EV-A71) and coxsackievirus A16 (CVA16). There is no available vaccine against HFMD. An ideal HFMD vaccine should be bivalent against both EV-A71 and CVA16. Here, a novel strategy to produce bivalent HFMD vaccine based on chimeric EV-A71 virus-like particles (ChiEV-A71 VLPs) was proposed and illustrated. The neutralizing epitope SP70 within the capsid protein VP1 of EV-A71 was replaced with that of CVA16 in ChiEV-A71 VLPs. Structural modeling revealed that the replaced CVA16-SP70 epitope is well exposed on the surface of ChiEV-A71 VLPs. These VLPs produced in Saccharomyces cerevisiae exhibited similarity in both protein composition and morphology as naive EV-A71 VLPs. Immunization with ChiEV-A71 VLPs in mice elicited robust Th1/Th2 dependent immune responses against EV-A71 and CVA16. Furthermore, passive immunization with anti-ChiEV-A71 VLPs sera conferred full protection against lethal challenge of both EV-A71 and CVA16 infection in neonatal mice. These results suggested that this chimeric vaccine, ChiEV-A71 might have the potential to be further developed as a bivalent HFMD vaccine in the near future. Such chimeric enterovirus VLPs provide an alternative platform for bivalent HFMD vaccine development.
Collapse
|
36
|
van Dodewaard CA, Richards SL. Trends in Dengue Cases Imported into the United States from Pan America 2001-2012. ENVIRONMENTAL HEALTH INSIGHTS 2015; 9:33-40. [PMID: 26766913 PMCID: PMC4706086 DOI: 10.4137/ehi.s32833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/07/2023]
Abstract
The objective of this study was to improve risk assessments of travel on dengue (DEN) virus (DENV) distribution. We investigated the exposure risk of US citizens traveling to DEN-endemic Pan American countries. The number of DEN cases reported in 51 Pan American countries from 2001 to 2012 was compared to the population of the same countries. The number of US travelers visiting the Pan American countries was categorized by region, and travel-related DEN infections were analyzed. US residents visiting the Dominican Republic exhibited the highest traveler-related DEN incidence. Brazil showed the most DEN cases in its residents (>1 million reported cases in 2010). The number of DEN cases continues to rise as does international travel and the geographic range of potential DENV vectors. DENV risk assessments may be improved by analyzing the possible routes of entry. Underreporting remains an issue for calculating DENV transmission risk by country and region.
Collapse
|
37
|
Pierson TC, Diamond MS. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:141-66. [PMID: 25595803 DOI: 10.1016/bs.pmbts.2014.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The humoral response contributes to the protection against viral pathogens. Although antibodies have the potential to inhibit viral infections via several mechanisms, an ability to neutralize viruses directly may be particularly important. Neutralizing antibody titers are commonly used as predictors of protection from infection, especially in the context of vaccine responses and immunity. Despite the simplicity of the concept, how antibody binding results in virus inactivation is incompletely understood despite decades of research. Flaviviruses have been an attractive system in which to seek a structural and quantitative understanding of how antibody interactions with virions modulate infection because of the contribution of antibodies to both protection and pathogenesis. This review will present a stoichiometric model of antibody-mediated neutralization of flaviviruses and discuss how these concepts can inform the development of vaccines and antibody-based therapeutics.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
38
|
Usme-Ciro JA, Méndez JA, Laiton KD, Páez A. The relevance of dengue virus genotypes surveillance at country level before vaccine approval. Hum Vaccin Immunother 2014; 10:2674-8. [PMID: 25483495 PMCID: PMC4975057 DOI: 10.4161/hv.29563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dengue is a major threat for public health in tropical and subtropical countries around the world. In the absence of a licensed vaccine and effective antiviral therapies, control measures have been based on education activities and vector elimination. Current efforts for developing a vaccine are both promising and troubling. At the advent of the introduction of a tetravalent dengue vaccine, molecular surveillance of the circulating genotypes in different geographical regions has gained considerable importance. A growing body of in vitro, preclinical, and clinical phase studies suggest that vaccine conferred protection in a geographical area could depends on the coincidence of the dengue virus genotypes included in the vaccine and those circulating. In this review we present the state-of-the-art in this field, highlighting the need of deeper knowledge on neutralizing immune response for making decisions about future vaccine approval and the potential need for different vaccine composition for regional administration.
Collapse
Key Words
- ADE, antibody-dependent enhancement
- DC-SIGN, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin
- DENV, dengue viruses
- E, envelope protein
- Hsp70, heat shock protein 70
- Hsp90, heat shock protein 90
- M, membrane protein
- MRCA, more recent common ancestor
- NS1, non-structural protein 1
- UTR, untranslated region
- dengue virus
- genotypes
- neutralizing antibodies
- ssRNA+, single-stranded positive-sense RNA viruses
- surveillance
- vaccines
Collapse
Affiliation(s)
- José A Usme-Ciro
- a Grupo de Virología; Subdirección Red Nacional de Laboratorios ; Dirección de Redes en Salud Pública; Instituto Nacional de Salud ; Bogotá DC , Colombia
| | | | | | | |
Collapse
|
39
|
Smith SA, de Alwis AR, Kose N, Jadi RS, de Silva AM, Crowe JE. Isolation of dengue virus-specific memory B cells with live virus antigen from human subjects following natural infection reveals the presence of diverse novel functional groups of antibody clones. J Virol 2014; 88:12233-41. [PMID: 25100837 PMCID: PMC4248927 DOI: 10.1128/jvi.00247-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/25/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. IMPORTANCE Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit dengue virus strains of other serotypes. We used a focused screening strategy to discover a large number of rare potently inhibiting antibodies, and we mapped the regions on the virus that were recognized by such antibodies. Our studies revealed that humans have the potential to generate very potent antibodies directed to diverse regions of the dengue virus surface protein. These studies provide important new information about protection from dengue virus infection that will be useful in the design and testing of new experimental dengue vaccines for humans.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - A Ruklanthi de Alwis
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Ramesh S Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Buddhari D, Aldstadt J, Endy TP, Srikiatkhachorn A, Thaisomboonsuk B, Klungthong C, Nisalak A, Khuntirat B, Jarman RG, Fernandez S, Thomas SJ, Scott TW, Rothman AL, Yoon IK. Dengue virus neutralizing antibody levels associated with protection from infection in thai cluster studies. PLoS Negl Trop Dis 2014; 8:e3230. [PMID: 25329173 PMCID: PMC4199527 DOI: 10.1371/journal.pntd.0003230] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Long-term homologous and temporary heterologous protection from dengue virus (DENV) infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs) have not been clearly associated with protection from infection. Methodology/Principal Findings Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004–2007), cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009–2012), clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age ≥6 months were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been “susceptible” on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered “non-susceptible.” Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT). Seventeen “susceptible” (six DENV-1, five DENV-2, and six DENV-4), and 32 “non-susceptible” (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4) subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC) curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate “susceptible” from “non-susceptible” subjects. Conclusions/Significance PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts. Dengue is caused by four different dengue virus serotypes (DENV-1, -2, -3, -4). Infection induces long-term protection against the same serotype, but only short-term protection, and possible enhancement, from different serotypes. DENV neutralizing antibody titers (NTs) are thought to mediate protection or modify disease. Association of NTs with protection from infection has not, however, been clearly demonstrated. We analyzed data from two geographic clusters studies conducted in Kamphaeng Phet, Thailand, in which DENV NTs just before virus exposure were compared between DENV-infected “susceptible” and non-infected “non-susceptible” subjects. NTs appeared to be associated with protection against DENV-1, -2, and -4, but at different NT cutoff levels, with the cutoff for DENV-2 appearing to be the highest. These findings are relevant for ongoing efforts to investigate dengue epidemiology and develop dengue vaccine candidates.
Collapse
Affiliation(s)
- Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail:
| | - Jared Aldstadt
- Department of Geography, University at Buffalo, Buffalo, New York, United States of America
| | - Timothy P. Endy
- Department of Infectious Diseases, State University of New York at Syracuse, Syracuse, New York, United States of America
| | - Anon Srikiatkhachorn
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Benjawan Khuntirat
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stephen J. Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California at Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan L. Rothman
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
41
|
de Alwis R, Williams KL, Schmid MA, Lai CY, Patel B, Smith SA, Crowe JE, Wang WK, Harris E, de Silva AM. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog 2014; 10:e1004386. [PMID: 25275316 PMCID: PMC4183589 DOI: 10.1371/journal.ppat.1004386] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue. The mosquito-borne dengue viruses (DENV) are responsible for approximately 390 million new infections worldwide each year, and an estimated 100 million of these infections lead to clinical disease. The presence of four different serotypes of DENV allows the same individual to experience more than one DENV infection. Secondary DENV infections with a different serotype are more likely to cause severe dengue disease than primary infections. One of the explanations for the greater risk of severe disease during secondary DENV infections is the phenomenon called antibody-dependent enhancement (ADE), where pre-existing DENV-specific antibodies enable entry of DENV into target host cells, and thereby enhance infection and disease. At the moment, the epitopes targeted by enhancing antibodies following a DENV infection are unclear. In the present study, we use novel techniques to fractionate human serum antibodies and test their ability to enhance DENV infection both in vitro (K562 cells) and in vivo (in a mouse model of lethal antibody-enhanced dengue disease). We found that antibodies binding both the envelope and prM proteins on the DENV virion play an important role in ADE of DENV by human immune sera. Our findings about DENV-enhancing antibodies in human immune sera are relevant to developing safe vaccines.
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine L. Williams
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael A. Schmid
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Bhumi Patel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott A. Smith
- Departments of Medicine, Pediatrics, Pathology, Microbiology and Immunology, and The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Departments of Medicine, Pediatrics, Pathology, Microbiology and Immunology, and The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (EH); (AMdS)
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (EH); (AMdS)
| |
Collapse
|
42
|
Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J Virol 2014; 88:13845-57. [PMID: 25253341 DOI: 10.1128/jvi.02086-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines.
Collapse
|
43
|
Widman DG, Baric RS. Dengue virus envelope protein domain I/II hinge: a key target for dengue virus vaccine design? Expert Rev Vaccines 2014; 14:5-8. [DOI: 10.1586/14760584.2015.961431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Sariol CA, White LJ. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front Immunol 2014; 5:452. [PMID: 25309540 PMCID: PMC4174039 DOI: 10.3389/fimmu.2014.00452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Dengue is considered the most important emerging, human arboviruses, with worldwide distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or specific anti-viral drugs. The development of a dengue vaccine faces unique challenges. The four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype does not protect against infection with other serotypes, and actually may enhance severity of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack of an animal model that adequately recapitulates the clinical manifestations of a dengue infection in humans. In spite of this limitation, non-human primates (NHP) are considered the best available animal model to evaluate dengue vaccine candidates due to their genetic relatedness to humans and their ability to develop a viremia upon infection and a robust immune response similar to that in humans. Therefore, most dengue vaccines candidates are tested in primates before going into clinical trials. In this article, we present a comprehensive review of published studies on dengue vaccine evaluations using the NHP model, and discuss critical parameters affecting the usefulness of the model. In the light of recent clinical data, we assess the ability of the NHP model to predict immunological parameters of vaccine performances in humans and discuss parameters that should be further examined as potential correlates of protection. Finally, we propose some guidelines toward a more standardized use of the model to maximize its usefulness and to better compare the performance of vaccine candidates from different research groups.
Collapse
Affiliation(s)
- Carlos A Sariol
- Department of Microbiology and Medical Zoology, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA ; Department of Internal Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA
| | - Laura J White
- Global Vaccine Incorporation , Research Triangle Park, NC , USA
| |
Collapse
|
45
|
Davidson E, Doranz BJ. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 2014; 143:13-20. [PMID: 24854488 DOI: 10.1111/imm.12323] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs.
Collapse
|
46
|
Kotaki T, Yamanaka A, Mulyatno KC, Churrotin S, Labiqah A, Sucipto TH, Soegijanto S, Kameoka M, Konishi E. Continuous dengue type 1 virus genotype shifts followed by co-circulation, clade shifts and subsequent disappearance in Surabaya, Indonesia, 2008-2013. INFECTION GENETICS AND EVOLUTION 2014; 28:48-54. [PMID: 25219342 DOI: 10.1016/j.meegid.2014.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
Four serotypes of dengue virus (DENV-1 to DENV-4) and their genotypes are distributed in tropical and subtropical regions. Indonesia has been recently suggested as the origin of some dengue virus genotypes. In Surabaya, the second biggest city of Indonesia, we previously reported a shift of the predominantly circulating serotype from DENV-2 to DENV-1 in November 2008, followed by a genotype shift of DENV-1 from genotype IV (GIV) to genotype I (GI) in September 2009, based on nucleotide sequences in the envelope protein coding region. Since then, GI strains had predominantly circulated until December 2010. In this report, we investigated further DENV-1 transitions in Surabaya during 2011-2013 in order to comprehend dengue dynamics during 2008-2013 in more detail. From January 2011 through December 2011, only GIV strains were isolated, indicating that a genotype shift again took place from GI to GIV. In January 2012, GI and GIV strains started co-circulating, which continued until June 2013. To further investigate this phenomenon, analysis was performed at a clade level. GI and GIV strains isolated in Surabaya formed four and three distinct clades, respectively. Concomitant with co-circulation, new clade strains appeared in both genotypes. In contrast, some previously circulating clades were not isolated during co-circulation, indicating clade shifts. Among our Surabaya isolates, nucleotide and amino acid differences in the E region were, respectively, 1.0-2.3% and 0.2-1.0% for GI isolates and 2.0-6.3% and 0.0-1.8% for GIV isolates. Several characteristic amino acid substitutions in the envelope ectodomain were observed in some clades. After July 2013, DENV-1 strains were not isolated and were replaced with DENV-2. This study showed that continuous shifts of more than one genotype resulted in their co-circulation and subsequent disappearance and suggested the relevance of clade replacement to genotype co-circulation and disappearance in Surabaya.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia; Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia; BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan(1).
| | - Kris Cahyo Mulyatno
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia.
| | - Siti Churrotin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia.
| | - Amaliah Labiqah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia.
| | - Teguh Hari Sucipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia.
| | - Soegeng Soegijanto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, JI, Mulyorejo, Surabaya 60115, Indonesia.
| | - Masanori Kameoka
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan.
| | - Eiji Konishi
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan(1).
| |
Collapse
|
47
|
Toh YX, Gan V, Balakrishnan T, Zuest R, Poidinger M, Wilson S, Appanna R, Thein TL, Ong AKY, Ng LC, Leo YS, Fink K. Dengue serotype cross-reactive, anti-e protein antibodies confound specific immune memory for 1 year after infection. Front Immunol 2014; 5:388. [PMID: 25177321 PMCID: PMC4132268 DOI: 10.3389/fimmu.2014.00388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Dengue virus has four serotypes and is endemic globally in tropical countries. Neither a specific treatment nor an approved vaccine is available, and correlates of protection are not established. The standard neutralization assay cannot differentiate between serotype-specific and serotype cross-reactive antibodies in patients early after infection, leading to an overestimation of the long-term serotype-specific protection of an antibody response. It is known that the cross-reactive response in patients is temporary but few studies have assessed kinetics and potential changes in serum antibody specificity over time. To better define the specificity of polyclonal antibodies during disease and after recovery, longitudinal samples from patients with primary or secondary DENV-2 infection were collected over a period of 1 year. We found that serotype cross-reactive antibodies peaked 3 weeks after infection and subsided within 1 year. Since secondary patients rapidly produced antibodies specific for the virus envelope (E) protein, an E-specific ELISA was superior compared to a virus particle-specific ELISA to identify patients with secondary infections. Dengue infection triggered a massive activation and mobilization of both naïve and memory B cells possibly from lymphoid organs into the blood, providing an explanation for the surge of circulating plasmablasts and the increase in cross-reactive E protein-specific antibodies.
Collapse
Affiliation(s)
- Ying Xiu Toh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Victor Gan
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore
| | - Thavamalar Balakrishnan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Roland Zuest
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Solomonraj Wilson
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Ramapraba Appanna
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Tun Linn Thein
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore
| | - Adrian Kheng-Yeow Ong
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency , Singapore , Singapore
| | - Yee Sin Leo
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore , Singapore
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| |
Collapse
|
48
|
Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. Antibody response to dengue virus. Microbes Infect 2014; 16:711-20. [PMID: 25124542 DOI: 10.1016/j.micinf.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, 20892 MD, USA
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales #800, Col. Lomas de Virreyes, 11000, Mexico
| | - Benito Gutiérrez-Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
49
|
George SL. Prospects for a dengue vaccine: progress and pitfalls. MISSOURI MEDICINE 2014; 111:337-342. [PMID: 25211865 PMCID: PMC6179479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dengue virus is now the world's most common arboviral infection and has spread to the continental United States. The Aedes mosquito which transmits dengue is prevalent throughout Missouri, so clinicians should be familiar with dengue. While there are no licensed vaccines, five are in human trials including two tested at the Saint Louis University Center for Vaccine Development. Our deepening understanding of the correlates of protective immunity to dengue improves near-term prospects for a vaccine.
Collapse
|
50
|
Cassetti MC, Halstead SB. Consultation on dengue vaccines: progress in understanding protection, 26-28 June 2013, Rockville, Maryland. Vaccine 2014; 32:3115-21. [PMID: 24768502 DOI: 10.1016/j.vaccine.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
There is an unmet need for a dengue vaccine to further prevent the spread of this disease and contain the growing pandemic. To this end several vaccine companies and academic groups are actively pursuing the development of a tetravalent vaccine to prevent dengue. In the last few years progress has been made in this area, including the first results of a vaccine efficacy trial and improved understanding of the immune responses to the infection. Despite this progress, development of dengue vaccines faces important challenges including the need for a vaccine that induces balanced immune responses against all dengue strains and an incomplete understanding of the mechanism(s) of protection against infection and disease. This is a summary of a Consultation on dengue vaccines held in June 26-28, 2013 by the National Institute of Allergy and Infectious Diseases (part of the US National Institutes of Health) and the Dengue Vaccine Initiative (part of the International Vaccine Institute). The primary goal of this consultation was to review the progress in dengue vaccine development, evaluate the known mechanism of protection of dengue vaccines and discuss avenues for future research.
Collapse
Affiliation(s)
- M Cristina Cassetti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott B Halstead
- Dengue Vaccine Initiative, International Vaccine Institute, Seoul, South Korea.
| |
Collapse
|