1
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
2
|
Amiri F, Akinpelu AA, Keith WC, Hemmati F, Vaghasiya RS, Bowen D, Waliagha RS, Wang C, Chen P, Mitra AK, Li Y, Mistriotis P. Confinement controls the directional cell responses to fluid forces. Cell Rep 2024; 43:114692. [PMID: 39207902 PMCID: PMC11495937 DOI: 10.1016/j.celrep.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Our understanding of how fluid forces influence cell migration in confining environments remains limited. By integrating microfluidics with live-cell imaging, we demonstrate that cells in tightly-but not moderately-confined spaces reverse direction and move upstream upon exposure to fluid forces. This fluid force-induced directional change occurs less frequently when cells display diminished mechanosensitivity, experience elevated hydraulic resistance, or sense a chemical gradient. Cell reversal requires actin polymerization to the new cell front, as shown mathematically and experimentally. Actin polymerization is necessary for the fluid force-induced activation of NHE1, which cooperates with calcium to induce upstream migration. Calcium levels increase downstream, mirroring the subcellular distribution of myosin IIA, whose activation enhances upstream migration. Reduced lamin A/C levels promote downstream migration of metastatic tumor cells by preventing cell polarity establishment and intracellular calcium rise. This mechanism could allow cancer cells to evade high-pressure environments, such as the primary tumor.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ayuba A Akinpelu
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - William C Keith
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ravi S Vaghasiya
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Dylan Bowen
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; UAB O'Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA
| | | |
Collapse
|
3
|
Hall CK, Barr OM, Delamare A, Burkholder A, Tsai A, Tian Y, Felix E Ellett, Li BM, Tanzi RE, Jorfi M. Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues. CELL REPORTS METHODS 2024; 4:100846. [PMID: 39241776 PMCID: PMC11440068 DOI: 10.1016/j.crmeth.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.
Collapse
Affiliation(s)
- Clare K Hall
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Olivia M Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Antoine Delamare
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alex Burkholder
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Felix E Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brent M Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
5
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
6
|
Kim S, Lee SK, Son A, Lee J, Kim HG. A Comparative Inflammation-on-a-Chip with a Complete 3D Interface: Pharmacological Applications in COPD-Induced Neutrophil Migration. Adv Healthc Mater 2023; 12:e2301673. [PMID: 37505448 PMCID: PMC11469264 DOI: 10.1002/adhm.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.
Collapse
Affiliation(s)
- Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Ahryeong Son
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Jong‐Hwan Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Hong Gi Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| |
Collapse
|
7
|
Hasannejad F, Montazeri L, Mano JF, Bonakdar S, Fazilat A. Regulation of cell fate by cell imprinting approach in vitro. BIOIMPACTS : BI 2023; 14:29945. [PMID: 38938752 PMCID: PMC11199935 DOI: 10.34172/bi.2023.29945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-based technologies are widely utilized in various domains such as drug evaluation, toxicity assessment, vaccine and biopharmaceutical development, reproductive technology, and regenerative medicine. It has been demonstrated that pre-adsorption of extracellular matrix (ECM) proteins including collagen, laminin and fibronectin provide more degrees of support for cell adhesion. The purpose of cell imprinting is to imitate the natural topography of cell membranes by gels or polymers to create a reliable environment for the regulation of cell function. The results of recent studies show that cell imprinting is a tool to guide the behavior of cultured cells by controlling their adhesive interactions with surfaces. Therefore, in this review we aim to compare different cell cultures with the imprinting method and discuss different cell imprinting applications in regenerative medicine, personalized medicine, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Farkhonde Hasannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Fazilat
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Schrope JH, Huttenlocher A. The cell's dilemma: resolving directional decisions. Trends Immunol 2023; 44:324-325. [PMID: 37029072 PMCID: PMC10567577 DOI: 10.1016/j.it.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
How neutrophils make decisions about polarity and migration path in complex tissue environments in situ remains unclear. Hadjitheodorou et al. describe how an internal mechanical regulator might help cells resolve the dilemma of two competing cell fronts.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anna Huttenlocher
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Hadjitheodorou A, Bell GRR, Ellett F, Irimia D, Tibshirani R, Collins SR, Theriot JA. Leading edge competition promotes context-dependent responses to receptor inputs to resolve directional dilemmas in neutrophil migration. Cell Syst 2023; 14:196-209.e6. [PMID: 36827986 PMCID: PMC10150694 DOI: 10.1016/j.cels.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/02/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Maintaining persistent migration in complex environments is critical for neutrophils to reach infection sites. Neutrophils avoid getting trapped, even when obstacles split their front into multiple leading edges. How they re-establish polarity to move productively while incorporating receptor inputs under such conditions remains unclear. Here, we challenge chemotaxing HL60 neutrophil-like cells with symmetric bifurcating microfluidic channels to probe cell-intrinsic processes during the resolution of competing fronts. Using supervised statistical learning, we demonstrate that cells commit to one leading edge late in the process, rather than amplifying structural asymmetries or early fluctuations. Using optogenetic tools, we show that receptor inputs only bias the decision similarly late, once mechanical stretching begins to weaken each front. Finally, a retracting edge commits to retraction, with ROCK limiting sensitivity to receptor inputs until the retraction completes. Collectively, our results suggest that cell edges locally adopt highly stable protrusion/retraction programs that are modulated by mechanical feedback.
Collapse
Affiliation(s)
- Amalia Hadjitheodorou
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Tibshirani
- Department of Statistics and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Sadjadi Z, Vesperini D, Laurent AM, Barnefske L, Terriac E, Lautenschläger F, Rieger H. Ameboid cell migration through regular arrays of micropillars under confinement. Biophys J 2022; 121:4615-4623. [PMID: 36303426 PMCID: PMC9748361 DOI: 10.1016/j.bpj.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Migrating cells often encounter a wide variety of topographic features-including the presence of obstacles-when navigating through crowded biological environments. Unraveling the impact of topography and crowding on the dynamics of cells is key to better understand many essential physiological processes such as the immune response. We study the impact of geometrical cues on ameboid migration of HL-60 cells differentiated into neutrophils. A microfluidic device is designed to track the cells in confining geometries between two parallel plates with distance h, in which identical micropillars are arranged in regular pillar forests with pillar spacing e. We observe that the cells are temporarily captured near pillars, with a mean contact time that is independent of h and e. By decreasing the vertical confinement h, we find that the cell velocity is not affected, while the persistence reduces; thus, cells are able to preserve their velocity when highly squeezed but lose the ability to control their direction of motion. At a given h, we show that by decreasing the pillar spacing e in the weak lateral confinement regime, the mean escape time of cells from effective local traps between neighboring pillars grows. This effect, together with the increase of cell-pillar contact frequency, leads to the reduction of diffusion constant D. By disentangling the contributions of these two effects on D in numerical simulations, we verify that the impact of cell-pillar contacts on cell diffusivity is more pronounced at smaller pillar spacing.
Collapse
Affiliation(s)
- Zeinab Sadjadi
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Doriane Vesperini
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Annalena M Laurent
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Lena Barnefske
- Leibniz-Institute for New Materials, Saarbrücken, Germany
| | - Emmanuel Terriac
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Franziska Lautenschläger
- Centre for Biophysics, Saarland University, Saarbrücken, Germany; Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany; Leibniz-Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
12
|
Keratocytes migrate against flow with a roly-poly-like mechanism. Proc Natl Acad Sci U S A 2022; 119:e2210379119. [PMID: 36409912 PMCID: PMC9889884 DOI: 10.1073/pnas.2210379119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While cell migration can be directed by various mechanical cues such as force, deformation, stiffness, or flow, the associated mechanisms and functions may remain elusive. Single cell migration against flow, repeatedly reported with leukocytes, is arguably considered as active and mediated by integrin mechanotransduction, or passive and determined by a mechanical bias. Here, we reveal a phenotype of flow mechanotaxis with fish epithelial keratocytes that orient upstream or downstream at shear stresses around tens of dyn cm-2. We show that each cell has an intrinsic orientation that results from the mechanical interaction of flow with its morphology. The bulbous trailing edge of a keratocyte generates a hydrodynamical torque under flow that stabilizes an upstream orientation, just as the heavy lower edge of a roly-poly toy generates a gravitational torque that stabilizes an upright position. In turn, the wide and flat leading edge of keratocytes destabilizes upstream orientation, allowing the existence of two distinct phenotypes. To formalize these observations, we propose a simple mechanical model that considers keratocyte morphology as a hemisphere preceded by a wide thin sheet. Our findings show that this model can recapitulate the phase diagram of single cell orientation under flow without adjustable parameters. From a larger perspective, this passive mechanism of keratocytes flow mechanotaxis implies a potential absence of physiological function and evolution-driven process.
Collapse
|
13
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Choudhury MI, Benson MA, Sun SX. Trans-epithelial fluid flow and mechanics of epithelial morphogenesis. Semin Cell Dev Biol 2022; 131:146-159. [PMID: 35659163 DOI: 10.1016/j.semcdb.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Active fluid transport across epithelial monolayers is emerging as a major driving force of tissue morphogenesis in a variety of healthy and diseased systems, as well as during embryonic development. Cells use directional transport of ions and osmotic gradients to drive fluid flow across the cell surface, in the process also building up fluid pressure. The basic physics of this process is described by the osmotic engine model, which also underlies actin-independent cell migration. Recently, the trans-epithelial fluid flux and the hydraulic pressure gradient have been explicitly measured for a variety of cellular and tissue model systems across various species. For the kidney, it was shown that tubular epithelial cells behave as active mechanical fluid pumps: the trans-epithelial fluid flux depends on the hydraulic pressure difference across the epithelial layer. When a stall pressure is reached, the fluid flux vanishes. Hydraulic forces generated from active fluid pumping are important in tissue morphogenesis and homeostasis, and could also underlie multiple morphogenic events seen in other developmental contexts. In this review, we highlight findings that examined the role of trans-epithelial fluid flux and hydraulic pressure gradient in driving tissue-scale morphogenesis. We also review organ pathophysiology due to impaired fluid pumping and the loss of hydraulic pressure sensing at the cellular scale. Finally, we draw an analogy between cellular fluidic pumps and a connected network of water pumps in a city. The dynamics of fluid transport in an active and adaptive network is determined globally at the systemic level, and transport in such a network is best when each pump is operating at its optimal efficiency.
Collapse
Affiliation(s)
- Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Morgan A Benson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
15
|
Maekawa M, Natsume R, Arita M. Functional significance of ion channels during macropinosome resolution in immune cells. Front Physiol 2022; 13:1037758. [DOI: 10.3389/fphys.2022.1037758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Macropinocytosis is a unique type of endocytosis accompanied by membrane ruffle formation. Closure of membrane ruffles leads to the uptake of large volumes of fluid phase and, subsequently, the formation of large vacuoles termed macropinosomes. Immune cells, such as dendritic cells, T cells, and macrophages, endocytose the surrounding amino acids and pathogens via macropinocytosis either constitutively or in a stimulus-dependent fashion. This process is critical for cell migration, mammalian target of rapamycin complex 1 (mTORC1) activation, and antigen presentation. Large vacuoles are fragmented into tubules and smaller vesicles during the progression and maturation of macropinosomes in immune cells. This process is called “macropinosome resolution” and requires osmotically driven shrinkage of macropinosomes, which is controlled by ion channels present in them. The crenation of membranes on shrunken macropinosomes is recognized by curvature-sensing proteins and results in intracellular membrane trafficking. In this mini review, we highlight the recent progress in research on macropinosome resolution in macrophages, with a focus on ion channels (TPC1/2 for Na+ and TMEM206 for Cl−) that is required for macropinosome resolution. We also discuss the potential contribution of membrane lipids to this process.
Collapse
|
16
|
Muljadi M, Fu YC, Cheng CM. Understanding the Cell's Response to Chemical Signals: Utilisation of Microfluidic Technology in Studies of Cellular and Dictyostelium discoideum Chemotaxis. MICROMACHINES 2022; 13:1737. [PMID: 36296089 PMCID: PMC9611482 DOI: 10.3390/mi13101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.
Collapse
Affiliation(s)
- Michael Muljadi
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
17
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
18
|
Yao L, Li Y. Effective Force Generation During Mammalian Cell Migration Under Different Molecular and Physical Mechanisms. Front Cell Dev Biol 2022; 10:903234. [PMID: 35663404 PMCID: PMC9160717 DOI: 10.3389/fcell.2022.903234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
We have developed much understanding of actin-driven cell migration and the forces that propel cell motility. However, fewer studies focused on estimating the effective forces generated by migrating cells. Since cells in vivo are exposed to complex physical environments with various barriers, understanding the forces generated by cells will provide insights into how cells manage to navigate challenging environments. In this work, we use theoretical models to discuss actin-driven and water-driven cell migration and the effect of cell shapes on force generation. The results show that the effective force generated by actin-driven cell migration is proportional to the rate of actin polymerization and the strength of focal adhesion; the energy source comes from the actin polymerization against the actin network pressure. The effective force generated by water-driven cell migration is proportional to the rate of active solute flux and the coefficient of external hydraulic resistance; the energy sources come from active solute pumping against the solute concentration gradient. The model further predicts that the actin network distribution is mechanosensitive and the presence of globular actin helps to establish a biphasic cell velocity in the strength of focal adhesion. The cell velocity and effective force generation also depend on the cell shape through the intracellular actin flow field.
Collapse
Affiliation(s)
- Lingxing Yao
- Department of Mathematics, University of Akron, Akron, OH, United States
| | - Yizeng Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
- *Correspondence: Yizeng Li,
| |
Collapse
|
19
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
20
|
Abstract
Phagocytes play critical roles in the maintenance of organismal homeostasis and immunity. Central to their role is their ability to take up and process exogenous material via the related processes of phagocytosis and macropinocytosis. The mechanisms and functions underlying macropinocytosis have remained severely understudied relative to phagocytosis. In recent years, however, there has been a renaissance in macropinocytosis research. Phagocytes can engage in various forms of macropinocytosis including an "induced" form and a "constitutive" form. This chapter, however, will focus on constitutive macropinocytosis and its role in the maintenance of immunity. Functions previously attributed to macropinocytosis, including antigen presentation and immune surveillance, will be revisited in light of recent revelations and emerging concepts will be highlighted.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Ellett F, Marand AL, Irimia D. Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood. J Leukoc Biol 2022; 111:1175-1184. [PMID: 35100458 DOI: 10.1002/jlb.3ma0122-378rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022] Open
Abstract
Following injury and infection, neutrophils are guided to the affected site by chemoattractants released from injured tissues and invading microbes. During this process (chemotaxis), neutrophils must integrate multiple chemical signals, while also responding to physical constraints and prioritizing their directional decisions to generate an efficient immune response. In some clinical conditions, human neutrophils appear to lose the ability to chemotax efficiently, which may contribute both directly and indirectly to disease pathology. Here, a range of microfluidic designs is utilized to test the sensitivity of chemotaxing neutrophils to various perturbations, including binary decision-making in the context of channels with different chemoattractant gradients, hydraulic resistance, and angle of approach. Neutrophil migration in long narrow channels and planar environments is measured. Conditions in which neutrophils are significantly more likely to choose paths with the steepest chemoattractant gradient and the most direct approach angle, and find that migration efficiency across planar chambers is inversely correlated with chamber diameter. By sequential measurement of neutrophil binary decision-making to different chemoattractant gradients, or chemotactic index in sequential planar environments, data supporting a model of biased random walk for neutrophil chemotaxis are presented.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anika L Marand
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Juste-Lanas Y, Guerrero PE, Camacho-Gomez D, Hervas-Raluy S, García-Aznar JM, Gómez-Benito MJ. Confined Cell Migration and Asymmetric Hydraulic Environments to Evaluate The Metastatic Potential of Cancer Cells. J Biomech Eng 2021; 144:1129080. [PMID: 34864878 DOI: 10.1115/1.4053143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to microenvironments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.
Collapse
Affiliation(s)
- Yago Juste-Lanas
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Pedro E Guerrero
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Daniel Camacho-Gomez
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - J M García-Aznar
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
23
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
24
|
Gupta S, Patteson AE, Schwarz JM. The role of vimentin-nuclear interactions in persistent cell motility through confined spaces. NEW JOURNAL OF PHYSICS 2021; 23:093042. [PMID: 35530563 PMCID: PMC9075336 DOI: 10.1088/1367-2630/ac2550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
25
|
Lennon-Duménil AM, Moreau HD. Barotaxis: How cells live and move under pressure. Curr Opin Cell Biol 2021; 72:131-136. [PMID: 34438279 DOI: 10.1016/j.ceb.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Cell migration is an essential process that controls many physiological functions ranging from development to immunity. In vivo, cells are guided by a combination of physical and chemical cues. Chemokines have been the center of attention for years, but the role of physical properties of tissues has been under-investigated, despite the fact that these properties can be drastically modified in pathology. Here, we discuss the role of one important tissue physical property, hydraulic resistance, in cell guidance, a phenomenon referred to as barotaxis, and describe the underlying physical principles and molecular mechanisms. Finally, we speculate on the putative role of barotaxis in physiological processes involving immune and cancer cells.
Collapse
Affiliation(s)
| | - Hélène D Moreau
- Institut Curie, PSL Research University, INSERM U932, F-75005 Paris, France.
| |
Collapse
|
26
|
Le Maout E, Lo Vecchio S, Kumar Korla P, Jinn-Chyuan Sheu J, Riveline D. Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement. Biophys J 2021; 119:1301-1308. [PMID: 33027610 DOI: 10.1016/j.bpj.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Cell motility is essential in a variety of biological phenomena ranging from early development to organ homeostasis and diseases. This phenomenon has mainly been studied and characterized on flat surfaces in vitro, whereas such conditions are rarely observed in vivo. Recently, cell motion in three-dimensional microfabricated channels was reported to be possible, and it was shown that confined cells push on walls. However, rules setting cell directions in this context have not yet been characterized. Here, we show by using assays that ratchetaxis operates in three-dimensional ratchets in fibroblasts and epithelial cancerous cells. Open ratchets rectify cell motion, whereas closed ratchets impose direct cell migration along channels set by the cell orientation at the channel entry point. We also show that nuclei are pressed in constriction zones through mechanisms involving dynamic asymmetries of focal contacts, stress fibers, and intermediate filaments. Interestingly, cells do not pass these constricting zones when they contain a defective keratin fusion protein implicated in squamous cancer. By combining ratchetaxis with chemical gradients, we finally report that cells are sensitive to local asymmetries in confinement and that topological and chemical cues may be encoded differently by cells. Overall, our ratchet channels could mimic small blood vessels in which cells such as circulating tumor cells are confined; cells can probe local asymmetries that determine their entry into tissues and their subsequent direction. Our results shed light on invasion mechanisms in cancer.
Collapse
Affiliation(s)
- Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Aoun L, Nègre P, Gonsales C, Seveau de Noray V, Brustlein S, Biarnes-Pelicot M, Valignat MP, Theodoly O. Leukocyte transmigration and longitudinal forward-thrusting force in a microfluidic Transwell device. Biophys J 2021; 120:2205-2221. [PMID: 33838136 DOI: 10.1016/j.bpj.2021.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Transmigration of leukocytes across blood vessels walls is a critical step of the immune response. Transwell assays examine transmigration properties in vitro by counting cells passages through a membrane; however, the difficulty of in situ imaging hampers a clear disentanglement of the roles of adhesion, chemokinesis, and chemotaxis. We used here microfluidic Transwells to image the cells' transition from 2D migration on a surface to 3D migration in a confining microchannel and measure cells longitudinal forward-thrusting force in microchannels. Primary human effector T lymphocytes adhering with integrins LFA-1 (αLβ2) had a marked propensity to transmigrate in Transwells without chemotactic cue. Both adhesion and contractility were important to overcome the critical step of nucleus penetration but were remarkably dispensable for 3D migration in smooth microchannels deprived of topographic features. Transmigration in smooth channels was qualitatively consistent with a propulsion by treadmilling of cell envelope and squeezing of cell trailing edge. Stalling conditions of 3D migration were then assessed by imposing pressure drops across microchannels. Without specific adhesion, the cells slid backward with subnanonewton forces, showing that 3D migration under stress is strongly limited by a lack of adhesion and friction with channels. With specific LFA-1 mediated adhesion, stalling occurred at around 3 and 6 nN in 2 × 4 and 4 × 4 μm2 channels, respectively, supporting that stalling of adherent cells was under pressure control rather than force control. The stall pressure of 4 mbar is consistent with the pressure of actin filament polymerization that mediates lamellipod growth. The arrest of adherent cells under stress therefore seems controlled by the compression of the cell leading edge, which perturbs cells front-rear polarization and triggers adhesion failure or polarization reversal. Although stalling assays in microfluidic Transwells do not mimic in vivo transmigration, they provide a powerful tool to scrutinize 2D and 3D migration, barotaxis, and chemotaxis.
Collapse
Affiliation(s)
- Laurene Aoun
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Paulin Nègre
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Cristina Gonsales
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Sophie Brustlein
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Marie-Pierre Valignat
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Olivier Theodoly
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
28
|
Zhao R, Cui S, Ge Z, Zhang Y, Bera K, Zhu L, Sun SX, Konstantopoulos K. Hydraulic resistance induces cell phenotypic transition in confinement. SCIENCE ADVANCES 2021; 7:7/17/eabg4934. [PMID: 33893091 PMCID: PMC8064631 DOI: 10.1126/sciadv.abg4934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Cells penetrating into confinement undergo mesenchymal-to-amoeboid transition. The topographical features of the microenvironment expose cells to different hydraulic resistance levels. How cells respond to hydraulic resistance is unknown. We show that the cell phenotype shifts from amoeboid to mesenchymal upon increasing resistance. By combining automated morphological tracking and wavelet analysis along with fluorescence recovery after photobleaching (FRAP), we found an oscillatory phenotypic transition that cycles from blebbing to short, medium, and long actin network formation, and back to blebbing. Elevated hydraulic resistance promotes focal adhesion maturation and long actin filaments, thereby reducing the period required for amoeboid-to-mesenchymal transition. The period becomes independent of resistance upon blocking the mechanosensor TRPM7. Mathematical modeling links intracellular calcium oscillations with actomyosin turnover and force generation and recapitulates experimental data. We identify hydraulic resistance as a critical physical cue controlling cell phenotype and present an approach for connecting fluorescent signal fluctuations to morphological oscillations.
Collapse
Affiliation(s)
- Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siqi Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhuoxu Ge
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lily Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
30
|
De Chiara F, Ferret-Miñana A, Ramón-Azcón J. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines 2021; 9:248. [PMID: 33801289 PMCID: PMC7999375 DOI: 10.3390/biomedicines9030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD's pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.
Collapse
Affiliation(s)
- Francesco De Chiara
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
31
|
Bodor DL, Pönisch W, Endres RG, Paluch EK. Of Cell Shapes and Motion: The Physical Basis of Animal Cell Migration. Dev Cell 2020; 52:550-562. [PMID: 32155438 DOI: 10.1016/j.devcel.2020.02.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Motile cells have developed a variety of migration modes relying on diverse traction-force-generation mechanisms. Before the behavior of intracellular components could be easily imaged, cell movements were mostly classified by different types of cellular shape dynamics. Indeed, even though some types of cells move without any significant change in shape, most cell propulsion mechanisms rely on global or local deformations of the cell surface. In this review, focusing mostly on metazoan cells, we discuss how different types of local and global shape changes underlie distinct migration modes. We then discuss mechanical differences between force-generation mechanisms and finish by speculating on how they may have evolved.
Collapse
Affiliation(s)
- Dani L Bodor
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | - Wolfram Pönisch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Robert G Endres
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London SW7 2AZ, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
32
|
Li Y, Konstantopoulos K, Zhao R, Mori Y, Sun SX. The importance of water and hydraulic pressure in cell dynamics. J Cell Sci 2020; 133:133/20/jcs240341. [PMID: 33087485 DOI: 10.1242/jcs.240341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All mammalian cells live in the aqueous medium, yet for many cell biologists, water is a passive arena in which proteins are the leading players that carry out essential biological functions. Recent studies, as well as decades of previous work, have accumulated evidence to show that this is not the complete picture. Active fluxes of water and solutes of water can play essential roles during cell shape changes, cell motility and tissue function, and can generate significant mechanical forces. Moreover, the extracellular resistance to water flow, known as the hydraulic resistance, and external hydraulic pressures are important mechanical modulators of cell polarization and motility. For the cell to maintain a consistent chemical environment in the cytoplasm, there must exist an intricate molecular system that actively controls the cell water content as well as the cytoplasmic ionic content. This system is difficult to study and poorly understood, but ramifications of which may impact all aspects of cell biology from growth to metabolism to development. In this Review, we describe how mammalian cells maintain the cytoplasmic water content and how water flows across the cell surface to drive cell movement. The roles of mechanical forces and hydraulic pressure during water movement are explored.
Collapse
Affiliation(s)
- Yizeng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, Kennesaw State University. Marietta, GA 30060, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yoichiro Mori
- Department of Mathematics and Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA .,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
33
|
Analysis of barotactic and chemotactic guidance cues on directional decision-making of Dictyostelium discoideum cells in confined environments. Proc Natl Acad Sci U S A 2020; 117:25553-25559. [PMID: 32999070 DOI: 10.1073/pnas.2000686117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neutrophils and dendritic cells when migrating in confined environments have been shown to actuate a directional choice toward paths of least hydraulic resistance (barotaxis), in some cases overriding chemotactic responses. Here, we investigate whether this barotactic response is conserved in the more primitive model organism Dictyostelium discoideum using a microfluidic chip design. This design allowed us to monitor the behavior of single cells via live imaging when confronted with bifurcating microchannels, presenting different combinations of hydraulic and chemical stimuli. Under the conditions employed we find no evidence in support of a barotactic response; the cells base their directional choices on the chemotactic cues. When the cells are confronted by a microchannel bifurcation, they often split their leading edge and start moving into both channels, before a decision is made to move into one and retract from the other channel. Analysis of this decision-making process has shown that cells in steeper nonhydrolyzable adenosine- 3', 5'- cyclic monophosphorothioate, Sp- isomer (cAMPS) gradients move faster and split more readily. Furthermore, there exists a highly significant strong correlation between the velocity of the pseudopod moving up the cAMPS gradient to the total velocity of the pseudopods moving up and down the gradient over a large range of velocities. This suggests a role for a critical cortical tension gradient in the directional decision-making process.
Collapse
|
34
|
Campbell EJ, Bagchi P. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion. Biomech Model Mechanobiol 2020; 20:167-191. [PMID: 32772275 DOI: 10.1007/s10237-020-01376-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
Abstract
Amoeboid cells often migrate using pseudopods, which are membrane protrusions that grow, bifurcate, and retract dynamically, resulting in a net cell displacement. Many cells within the human body, such as immune cells, epithelial cells, and even metastatic cancer cells, can migrate using the amoeboid phenotype. Amoeboid motility is a complex and multiscale process, where cell deformation, biochemistry, and cytosolic and extracellular fluid motions are coupled. Furthermore, the extracellular matrix (ECM) provides a confined, complex, and heterogeneous environment for the cells to navigate through. Amoeboid cells can migrate without significantly remodeling the ECM using weak or no adhesion, instead utilizing their deformability and the microstructure of the ECM to gain enough traction. While a large volume of work exists on cell motility on 2D substrates, amoeboid motility is 3D in nature. Despite recent progress in modeling cellular motility in 3D, there is a lack of systematic evaluations of the role of ECM microstructure, cell deformability, and adhesion on 3D motility. To fill this knowledge gap, here we present a multiscale, multiphysics modeling study of amoeboid motility through 3D-idealized ECM. The model is a coupled fluid‒structure and coarse-grain biochemistry interaction model that accounts for large deformation of cells, pseudopod dynamics, cytoplasmic and extracellular fluid motion, stochastic dynamics of cell-ECM adhesion, and microstructural (pore-scale) geometric details of the ECM. The key finding of the study is that cell deformation and matrix porosity strongly influence amoeboid motility, while weak adhesion and microscale structural details of the ECM have secondary but subtle effects.
Collapse
Affiliation(s)
- Eric J Campbell
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Prosenjit Bagchi
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
De la Fuente IM, López JI. Cell Motility and Cancer. Cancers (Basel) 2020; 12:E2177. [PMID: 32764365 PMCID: PMC7464129 DOI: 10.3390/cancers12082177] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an essential systemic behavior, tightly regulated, of all living cells endowed with directional motility that is involved in the major developmental stages of all complex organisms such as morphogenesis, embryogenesis, organogenesis, adult tissue remodeling, wound healing, immunological cell activities, angiogenesis, tissue repair, cell differentiation, tissue regeneration as well as in a myriad of pathological conditions. However, how cells efficiently regulate their locomotion movements is still unclear. Since migration is also a crucial issue in cancer development, the goal of this narrative is to show the connection between basic findings in cell locomotion of unicellular eukaryotic organisms and the regulatory mechanisms of cell migration necessary for tumor invasion and metastases. More specifically, the review focuses on three main issues, (i) the regulation of the locomotion system in unicellular eukaryotic organisms and human cells, (ii) how the nucleus does not significantly affect the migratory trajectories of cells in two-dimension (2D) surfaces and (iii) the conditioned behavior detected in single cells as a primitive form of learning and adaptation to different contexts during cell migration. New findings in the control of cell motility both in unicellular organisms and mammalian cells open up a new framework in the understanding of the complex processes involved in systemic cellular locomotion and adaptation of a wide spectrum of diseases with high impact in the society such as cancer.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
36
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
37
|
Membrane dynamics in cell migration. Essays Biochem 2020; 63:469-482. [PMID: 31350382 DOI: 10.1042/ebc20190014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
Migration of cells is required in multiple tissue-level processes, such as in inflammation or cancer metastasis. Endocytosis is an extremely regulated cellular process by which cells uptake extracellular molecules or internalise cell surface receptors. While the role of endocytosis of focal adhesions (FA) and plasma membrane (PM) turnover at the leading edge of migratory cells is wide known, the contribution of endocytic proteins per se in migration has been frequently disregarded. In this review, we describe the novel functions of the most well-known endocytic proteins in cancer cell migration, focusing on clathrin, caveolin, flotillins and GRAF1. In addition, we highlight the relevance of the macropinocytic pathway in amoeboid-like cell migration.
Collapse
|
38
|
Chemotaxing neutrophils enter alternate branches at capillary bifurcations. Nat Commun 2020; 11:2385. [PMID: 32404937 PMCID: PMC7220926 DOI: 10.1038/s41467-020-15476-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Upon tissue injury or microbial invasion, a large number of neutrophils converge from blood to the sites of injury or infection in a short time. The migration through a limited number of paths through tissues and capillary networks seems efficient and 'traffic jams' are generally avoided. However, the mechanisms that guide efficient trafficking of large numbers of neutrophils through capillary networks are not well understood. Here we show that pairs of neutrophils arriving closely one after another at capillary bifurcations migrate to alternating branches in vivo and in vitro. Perturbation of chemoattractant gradients and the increased hydraulic resistance induced by the first neutrophil in one branch biases the migration of the following neutrophil towards the other branch. These mechanisms guide neutrophils to efficiently navigate through capillary networks and outline the effect of inter-neutrophil interactions during migration on overall lymphocyte trafficking patterns in confined environments.
Collapse
|
39
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
40
|
Moreau HD, Lennon-Duménil AM, Pierobon P. “If you please… draw me a cell”. Insights from immune cells. J Cell Sci 2020; 133:133/5/jcs244806. [DOI: 10.1242/jcs.244806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane–cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.
Collapse
Affiliation(s)
- Hélène D. Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Ana-Maria Lennon-Duménil
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| |
Collapse
|
41
|
Godeau AL, Delanoë-Ayari H, Riveline D. Generation of fluorescent cell-derived-matrix to study 3D cell migration. Methods Cell Biol 2020; 156:185-203. [PMID: 32222219 DOI: 10.1016/bs.mcb.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cell migration is involved in key phenomena in biology, ranging from development to cancer. Fibroblasts move between organs in 3D polymeric networks. So far, motile cells were mainly tracked in vitro on Petri dishes or on coverslips, i.e., 2D flat surfaces, which made the extrapolation to 3D physiological environments difficult. We therefore prepared 3D Cell Derived Matrices (CDM) with specific characteristics with the goal of extracting the main readouts required to measure and characterize cell motion: cell specific matrix deformation through the tracking of fluorescent fibronectin within CDM, focal contacts as the cell anchor and acto-myosin cytoskeleton which applies cellular forces. We report our method for generating this assay of physiological-like gel with relevant readouts together with its potential impact in explaining cell motility in vivo.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
42
|
Yang J, Duan X, Fraser AK, Choudhury MI, Ewald AJ, Li R, Sun SX. Microscale pressure measurements based on an immiscible fluid/fluid interface. Sci Rep 2019; 9:20044. [PMID: 31882951 PMCID: PMC6934680 DOI: 10.1038/s41598-019-56573-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
A method of microscale pressure measurement based on immiscible fluid/fluid interface is proposed. This method utilizes observed curvature changes in a fluid/fluid interface, and can accurately report hydraulic pressure in fluids at length scales of 10 microns. The method is especially suited for measuring fluid pressure in micro-scale biological samples. Using this method, we probe fluid pressure build up in epithelial domes, murine mammary gland organoids embedded in hydrogel, and lumen pressure in the developing mouse embryo. Results reveal that the pressure developed across epithelial barriers is on the order of 100~300 Pa, and is modulated by ion channel activity.
Collapse
Affiliation(s)
- Jing Yang
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.,School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xing Duan
- Center for Cell Dynamics, Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew K Fraser
- Center for Cell Dynamics, Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.,Institute of NanoBioTechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew J Ewald
- Center for Cell Dynamics, Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA. .,Institute of NanoBioTechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
43
|
Cao Y, Ghabache E, Miao Y, Niman C, Hakozaki H, Reck-Peterson SL, Devreotes PN, Rappel WJ. A minimal computational model for three-dimensional cell migration. J R Soc Interface 2019; 16:20190619. [PMID: 31847757 DOI: 10.1098/rsif.2019.0619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During migration, eukaryotic cells can continuously change their three-dimensional morphology, resulting in a highly dynamic and complex process. Further complicating this process is the observation that the same cell type can rapidly switch between different modes of migration. Modelling this complexity necessitates models that are able to track deforming membranes and that can capture the intracellular dynamics responsible for changes in migration modes. Here we develop an efficient three-dimensional computational model for cell migration, which couples cell mechanics to a simple intracellular activator-inhibitor signalling system. We compare the computational results to quantitative experiments using the social amoeba Dictyostelium discoideum. The model can reproduce the observed migration modes generated by varying either mechanical or biochemical model parameters and suggests a coupling between the substrate and the biomechanics of the cell.
Collapse
Affiliation(s)
- Yuansheng Cao
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elisabeth Ghabache
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuchuan Miao
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cassandra Niman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiroyuki Hakozaki
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Trinh MK, Wayland MT, Prabakaran S. Behavioural analysis of single-cell aneural ciliate, Stentor roeseli, using machine learning approaches. J R Soc Interface 2019; 16:20190410. [PMID: 31795860 PMCID: PMC6936043 DOI: 10.1098/rsif.2019.0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/11/2019] [Indexed: 11/12/2022] Open
Abstract
There is still a significant gap between our understanding of neural circuits and the behaviours they compute-i.e. the computations performed by these neural networks (Carandini 2012 Nat. Neurosci.15, 507-509. (doi:10.1038/nn.3043)). Cellular decision-making processes, learning, behaviour and memory formation-all that have been only associated with animals with neural systems-have also been observed in many unicellular aneural organisms, namely Physarum, Paramecium and Stentor (Tang & Marshall2018 Curr. Biol.28, R1180-R1184. (doi:10.1016/j.cub.2018.09.015)). As these are fully functioning organisms, yet being unicellular, there is a much better chance to elucidate the detailed mechanisms underlying these learning processes in these organisms without the complications of highly interconnected neural circuits. An intriguing learning behaviour observed in Stentor roeseli (Jennings 1902 Am. J. Physiol. Legacy Content8, 23-60. (doi:10.1152/ajplegacy.1902.8.1.23)) when stimulated with carmine has left scientists puzzled for more than a century. So far, none of the existing learning paradigm can fully encapsulate this particular series of five characteristic avoidance reactions. Although we were able to observe all responses described in the literature and in a previous study (Dexter et al. 2019), they do not conform to any particular learning model. We then investigated whether models inferred from machine learning approaches, including decision tree, random forest and feed-forward artificial neural networks could infer and predict the behaviour of S. roeseli. Our results showed that an artificial neural network with multiple 'computational' neurons is inefficient at modelling the single-celled ciliate's avoidance reactions. This has highlighted the complexity of behaviours in aneural organisms. Additionally, this report will also discuss the significance of elucidating molecular details underlying learning and decision-making processes in these unicellular organisms, which could offer valuable insights that are applicable to higher animals.
Collapse
Affiliation(s)
- Mi Kieu Trinh
- Trinity College, University of Cambridge, Cambridge CB2 1TQ, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Matthew T. Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Sudhakaran Prabakaran
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
- St Edmund's College, University of Cambridge, Cambridge CB3 0BN, UK
| |
Collapse
|
45
|
Li Y, Sun SX. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance. Biophys J 2019; 114:2965-2973. [PMID: 29925032 DOI: 10.1016/j.bpj.2018.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a water-based mechanism in confined geometries.
Collapse
Affiliation(s)
- Yizeng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
46
|
Zhao R, Afthinos A, Zhu T, Mistriotis P, Li Y, Serra SA, Zhang Y, Yankaskas CL, He S, Valverde MA, Sun SX, Konstantopoulos K. Cell sensing and decision-making in confinement: The role of TRPM7 in a tug of war between hydraulic pressure and cross-sectional area. SCIENCE ADVANCES 2019; 5:eaaw7243. [PMID: 31355337 PMCID: PMC6656542 DOI: 10.1126/sciadv.aaw7243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/19/2019] [Indexed: 05/15/2023]
Abstract
How cells sense hydraulic pressure and make directional choices in confinement remains elusive. Using trifurcating Ψ-like microchannels of different hydraulic resistances and cross-sectional areas, we discovered that the TRPM7 ion channel is the critical mechanosensor, which directs decision-making of blebbing cells toward channels of lower hydraulic resistance irrespective of their cross-sectional areas. Hydraulic pressure-mediated TRPM7 activation triggers calcium influx and supports a thicker cortical actin meshwork containing an elevated density of myosin-IIA. Cortical actomyosin shields cells against external forces and preferentially directs cell entrance in low resistance channels. Inhibition of TRPM7 function or actomyosin contractility renders cells unable to sense different resistances and alters the decision-making pattern to cross-sectional area-based partition. Cell distribution in microchannels is captured by a mathematical model based on the maximum entropy principle using cortical actin as a key variable. This study demonstrates the unique role of TRPM7 in controlling decision-making and navigating migration in complex microenvironments.
Collapse
Affiliation(s)
- Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tian Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yizeng Li
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Selma A. Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher L. Yankaskas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shuyu He
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
- Corresponding author.
| |
Collapse
|
47
|
Noselli G, Beran A, Arroyo M, DeSimone A. Swimming Euglena respond to confinement with a behavioral change enabling effective crawling. NATURE PHYSICS 2019; 15:496-502. [PMID: 31110555 PMCID: PMC6522345 DOI: 10.1038/s41567-019-0425-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large amplitude peristaltic body deformations. This remarkable behavior has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena gracilis in environments of controlled crowding and geometry, we show that this behavior is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modeling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells.
Collapse
Affiliation(s)
- Giovanni Noselli
- SISSA–International School for Advanced Studies, 34136 Trieste, Italy
| | - Alfred Beran
- OGS–Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, 34151 Trieste, Italy
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Antonio DeSimone
- SISSA–International School for Advanced Studies, 34136 Trieste, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
48
|
Doolin MT, Ornstein TS, Stroka KM. Nuclear Deformation in Response to Mechanical Confinement is Cell Type Dependent. Cells 2019; 8:cells8050427. [PMID: 31072066 PMCID: PMC6563141 DOI: 10.3390/cells8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanosensing of the mechanical microenvironment by cells regulates cell phenotype and function. The nucleus is critical in mechanosensing, as it transmits external forces from the cellular microenvironment to the nuclear envelope housing chromatin. This study aims to elucidate how mechanical confinement affects nuclear deformation within several cell types, and to determine the role of cytoskeletal elements in controlling nuclear deformation. Human cancer cells (MDA-MB-231), human mesenchymal stem cells (MSCs), and mouse fibroblasts (L929) were seeded within polydimethylsiloxane (PDMS) microfluidic devices containing microchannels of varying cross-sectional areas, and nuclear morphology and volume were quantified via image processing of fluorescent cell nuclei. We found that the nuclear major axis length remained fairly constant with increasing confinement in MSCs and MDA-MB-231 cells, but increased with increasing confinement in L929 cells. Nuclear volume of L929 cells and MSCs decreased in the most confining channels. However, L929 nuclei were much more isotropic in unconfined channels than MSC nuclei. When microtubule polymerization or myosin II contractility was inhibited, nuclear deformation was altered only in MSCs in wide channels. This work informs our understanding of nuclear mechanics in physiologically relevant spaces, and suggests diverging roles of the cytoskeleton in regulating nuclear deformation in different cell types.
Collapse
Affiliation(s)
- Mary T Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Thea S Ornstein
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Biophysics Program, University of Maryland, College Park, MD 20742, USA.
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
49
|
Um E, Oh JM, Park J, Song T, Kim TE, Choi Y, Shin C, Kolygina D, Jeon JH, Grzybowski BA, Cho YK. Immature dendritic cells navigate microscopic mazes to find tumor cells. LAB ON A CHIP 2019; 19:1665-1675. [PMID: 30931468 DOI: 10.1039/c9lc00150f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells with high sentinel ability to scan their neighborhood and to initiate an adaptive immune response. Whereas chemotactic migration of mature DCs (mDCs) towards lymph nodes is relatively well documented, the migratory behavior of immature DCs (imDCs) in tumor microenvironments is still poorly understood. Here, microfluidic systems of various geometries, including mazes, are used to investigate how the physical and chemical microenvironment influences the migration pattern of imDCs. Under proper degree of confinement, the imDCs are preferentially recruited towards cancer vs. normal cells, accompanied by increased cell speed and persistence. Furthermore, a systematic screen of cytokines, reveals that Gas6 is a major chemokine responsible for the chemotactic preference. These results and the accompanying theoretical model suggest that imDC migration in complex tissue environments is tuned by a proper balance between the strength of the chemical gradients and the degree of spatial confinement.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration. Dev Cell 2019; 49:171-188.e5. [PMID: 30982662 DOI: 10.1016/j.devcel.2019.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/28/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
The migration of immune cells can be guided by physical cues imposed by the environment, such as geometry, rigidity, or hydraulic resistance (HR). Neutrophils preferentially follow paths of least HR in vitro, a phenomenon known as barotaxis. The mechanisms and physiological relevance of barotaxis remain unclear. We show that barotaxis results from the amplification of a small force imbalance by the actomyosin cytoskeleton, resulting in biased directional choices. In immature dendritic cells (DCs), actomyosin is recruited to the cell front to build macropinosomes. These cells are therefore insensitive to HR, as macropinocytosis allows fluid transport across these cells. This may enhance their space exploration capacity in vivo. Conversely, mature DCs down-regulate macropinocytosis and are thus barotactic. Modeling suggests that HR may help guide these cells to lymph nodes where they initiate immune responses. Hence, DCs can either overcome or capitalize on the physical obstacles they encounter, helping their immune-surveillance function.
Collapse
|