1
|
Becker NA, Peters JP, Lewis E, Daby CL, Clark K, Maher LJ. Engineered transcription activator-like effector dimer proteins confer DNA loop-dependent gene repression comparable to Lac repressor. Nucleic Acids Res 2024; 52:9996-10004. [PMID: 39077947 PMCID: PMC11381355 DOI: 10.1093/nar/gkae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications. Previous TALEDs with inducible non-covalent dimerization showed detectable, but limited, DNA loop-based repression due to the repressor protein dimerization equilibrium. Here, we show robust DNA loop-dependent bacterial promoter repression by covalent TALEDs and verify that DNA looping dramatically enhances promoter repression in E. coli. We characterize repression using a thermodynamic model that quantitates this favorable contribution of DNA looping. This analysis unequivocally and quantitatively demonstrates that optimized TALED proteins can drive loop-dependent promoter repression in E. coli comparable to the natural LacI repressor system. This work elucidates key design principles that set the stage for wide application of TALED-dependent DNA loop-based repression of target genes.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth Lewis
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Camden L Daby
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Karl Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Qian J, Collette D, Finzi L, Dunlap D. Detecting DNA Loops Using Tethered Particle Motion. Methods Mol Biol 2024; 2694:451-466. [PMID: 37824017 PMCID: PMC10906717 DOI: 10.1007/978-1-0716-3377-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The range of motion of a micron-sized bead tethered by a single polymer provides a dynamic readout of the effective length of the polymer. The excursions of the bead may reflect the intrinsic flexibility and/or topology of the polymer as well as changes due to the action activity of ligands that bind the polymer. This is a simple yet powerful experimental approach to investigate such interactions between DNA and proteins as demonstrated by experiments with the lac repressor. This protein forms a stable, tetrameric oligomer with two binding sites and can produce a loop of DNA between recognition sites separated along the length of a DNA molecule.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Dylan Collette
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA, USA
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Abstract
DNA looping has emerged as a central paradigm of transcriptional regulation, as it is shared across many living systems. One core property of DNA looping-based regulation is its ability to greatly enhance repression or activation of genes with only a few copies of transcriptional regulators. However, this property based on a small number of proteins raises the question of the robustness of such a mechanism with respect to the large intracellular perturbations taking place during growth and division of the cell. Here we address the issue of sensitivity to variations of intracellular parameters of gene regulation by DNA looping. We use the lac system as a prototype to experimentally identify the key features of the robustness of DNA looping in growing Escherichia coli cells. Surprisingly, we observe time intervals of tight repression spanning across division events, which can sometimes exceed 10 generations. Remarkably, the distribution of such long time intervals exhibits memoryless statistics that is mostly insensitive to repressor concentration, cell division events, and the number of distinct loops accessible to the system. By contrast, gene regulation becomes highly sensitive to these perturbations when DNA looping is absent. Using stochastic simulations, we propose that the observed robustness to division emerges from the competition between fast, multiple rebinding events of repressors and slow initiation rate of the RNA polymerase. We argue that fast rebinding events are a direct consequence of DNA looping that ensures robust gene repression across a range of intracellular perturbations.
Collapse
|
5
|
Hammond LR, Sacco MD, Khan SJ, Spanoudis C, Hough-Neidig A, Chen Y, Eswara PJ. GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0141322. [PMID: 35647874 PMCID: PMC9241681 DOI: 10.1128/spectrum.01413-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in noncanonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated spontaneous suppressors that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization, we identified several residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the WTA export protein TarG. We also identified a region in GpsB that is crucial for this interaction. Analysis of TarG localization in S. aureus suggests that WTA machinery is part of the divisome complex. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration. IMPORTANCE Cytokinesis in bacteria involves an intricate orchestration of several key cell division proteins and other factors involved in building a robust cell envelope. Presence of teichoic acids is a signature characteristic of the Gram-positive cell wall. By characterizing the role of Staphylococcus aureus GpsB, an essential cell division protein in this organism, we have uncovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export complex. We also show that this function of GpsB may be conserved in other GpsB homologs as GpsB and the WTA exporter complex follow similar localization patterns. It has been suggested that WTA acts as a molecular signal to control the activity of autolytic enzymes, especially during the separation of conjoined daughter cells. Thus, our results reveal that GpsB, in addition to playing a role in cell division, may also help coordinate WTA biogenesis.
Collapse
Affiliation(s)
- Lauren R. Hammond
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Michael D. Sacco
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sebastian J. Khan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Abigail Hough-Neidig
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Starr CH, Bryant Z, Spakowitz AJ. Coarse-grained modeling reveals the impact of supercoiling and loop length in DNA looping kinetics. Biophys J 2022; 121:1949-1962. [PMID: 35421389 PMCID: PMC9199097 DOI: 10.1016/j.bpj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Measurements of protein-mediated DNA looping reveal that in vivo conditions favor the formation of loops shorter than those that occur in vitro, yet the precise physical mechanisms underlying this shift remain unclear. To understand the extent to which in vivo supercoiling may explain these shifts, we develop a theoretical model based on coarse-grained molecular simulation and analytical transition state theory, enabling us to map out looping energetics and kinetics as a function of two key biophysical parameters: superhelical density and loop length. We show that loops on the scale of a persistence length respond to supercoiling over a much wider range of superhelical densities and to a larger extent than longer loops. This effect arises from a tendency for loops to be centered on the plectonemic end region, which bends progressively more tightly with superhelical density. This trend reveals a mechanism by which supercoiling favors shorter loop lengths. In addition, our model predicts a complex kinetic response to supercoiling for a given loop length, governed by a competition between an enhanced rate of looping due to torsional buckling and a reduction in looping rate due to chain straightening as the plectoneme tightens at higher superhelical densities. Together, these effects lead to a flattening of the kinetic response to supercoiling within the physiological range for all but the shortest loops. Using experimental estimates for in vivo superhelical densities, we discuss our model's ability to explain available looping data, highlighting both the importance of supercoiling as a regulatory force in genetics and the additional complexities of looping phenomena in vivo.
Collapse
Affiliation(s)
- Charles H Starr
- Biophysics Program, Stanford University, Stanford, California
| | - Zev Bryant
- Biophysics Program, Stanford University, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California
| | - Andrew J Spakowitz
- Biophysics Program, Stanford University, Stanford, California; Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
7
|
Xu W, Yan Y, Artsimovitch I, Dunlap D, Finzi L. Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops. Nucleic Acids Res 2022; 50:2826-2835. [PMID: 35188572 PMCID: PMC8934669 DOI: 10.1093/nar/gkac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.
Collapse
Affiliation(s)
- Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Yan Y, Xu W, Kumar S, Zhang A, Leng F, Dunlap D, Finzi L. Negative DNA supercoiling makes protein-mediated looping deterministic and ergodic within the bacterial doubling time. Nucleic Acids Res 2021; 49:11550-11559. [PMID: 34723343 PMCID: PMC8599721 DOI: 10.1093/nar/gkab946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Protein-mediated DNA looping is fundamental to gene regulation and such loops occur stochastically in purified systems. Additional proteins increase the probability of looping, but these probabilities maintain a broad distribution. For example, the probability of lac repressor-mediated looping in individual molecules ranged 0–100%, and individual molecules exhibited representative behavior only in observations lasting an hour or more. Titrating with HU protein progressively compacted the DNA without narrowing the 0–100% distribution. Increased negative supercoiling produced an ensemble of molecules in which all individual molecules more closely resembled the average. Furthermore, in only 12 min of observation, well within the doubling time of the bacterium, most molecules exhibited the looping probability of the ensemble. DNA supercoiling, an inherent feature of all genomes, appears to impose time-constrained, emergent behavior on otherwise random molecular activity.
Collapse
Affiliation(s)
- Yan Yan
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Sandip Kumar
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Alexander Zhang
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Hao N, Chen Q, Dodd IB, Shearwin KE. The pIT5 Plasmid Series, an Improved Toolkit for Repeated Genome Integration in E. coli. ACS Synth Biol 2021; 10:1633-1639. [PMID: 34190535 DOI: 10.1021/acssynbio.1c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new set of tools for inserting DNA into the bacterial chromosome. The system uses site-specific recombination reactions carried out by bacteriophage integrases to integrate plasmids at up to eight phage attachment sites in E. coli MG1655. The introduction of mutant loxP sites in the integrating plasmids allows repeated removal of antibiotic resistance genes and other plasmid sequences without danger of inducing chromosomal rearrangements. The protocol for Cre-mediated antibiotic resistance gene removal is greatly simplified by introducing the Cre plasmid by phage infection. Finally, we have also developed a set of four independently inducible expression modules with tight control and high dynamic range which can be inserted at specific chromosomal locations.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Qinqin Chen
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Hao N, Sullivan AE, Shearwin KE, Dodd IB. The loopometer: a quantitative in vivo assay for DNA-looping proteins. Nucleic Acids Res 2021; 49:e39. [PMID: 33511418 PMCID: PMC8053113 DOI: 10.1093/nar/gkaa1284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this ‘loopometer’ assay to measure DNA looping for a variety of bacterial and phage proteins.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Adrienne E Sullivan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Xu W, Dunlap D, Finzi L. Energetics of twisted DNA topologies. Biophys J 2021; 120:3242-3252. [PMID: 33974883 DOI: 10.1016/j.bpj.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Our goal is to review the main theoretical models used to calculate free energy changes associated with common, torsion-induced conformational changes in DNA and provide the resulting equations hoping to facilitate quantitative analysis of both in vitro and in vivo studies. This review begins with a summary of work regarding the energy change of the negative supercoiling-induced B- to L-DNA transition, followed by a discussion of the energetics associated with the transition to Z-form DNA. Finally, it describes the energy changes associated with the formation of DNA curls and plectonemes, which can regulate DNA-protein interactions and promote cross talk between distant DNA elements, respectively. The salient formulas and parameters for each scenario are summarized in table format to facilitate comparison and provide a concise, user-friendly resource.
Collapse
Affiliation(s)
- Wenxuan Xu
- Emory University, Department of Physics, Atlanta, Georgia
| | - David Dunlap
- Emory University, Department of Physics, Atlanta, Georgia
| | - Laura Finzi
- Emory University, Department of Physics, Atlanta, Georgia.
| |
Collapse
|
12
|
Abstract
Cancers and developmental disorders are associated with alterations in the 3D genome architecture in space and time (the fourth dimension). Mammalian 3D genome organization is complex and dynamic and plays an essential role in regulating gene expression and cellular function. To study the causal relationship between genome function and its spatio-temporal organization in the nucleus, new technologies for engineering and manipulating the 3D organization of the genome have been developed. In particular, CRISPR-Cas technologies allow programmable manipulation at specific genomic loci, enabling unparalleled opportunities in this emerging field of 3D genome engineering. We review advances in mammalian 3D genome engineering with a focus on recent manipulative technologies using CRISPR-Cas and related technologies.
Collapse
|
13
|
Murchland IM, Ahlgren-Berg A, Pietsch JMJ, Isabel A, Dodd IB, Shearwin KE. Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186. Nucleic Acids Res 2020; 48:12030-12041. [PMID: 33211866 PMCID: PMC7708051 DOI: 10.1093/nar/gkaa1065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.
Collapse
Affiliation(s)
- Iain M Murchland
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexandra Ahlgren-Berg
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Julian M J Pietsch
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alejandra Isabel
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Kirkpatrick RL, Lewis K, Langan RA, Lajoie MJ, Boyken SE, Eakman M, Baker D, Zalatan JG. Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch. ACS Synth Biol 2020; 9:2316-2323. [PMID: 32816470 PMCID: PMC7976376 DOI: 10.1021/acssynbio.0c00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Colocalization triggers a conformational change in the switch from an inactive closed state to an active open state with an exposed functional peptide. We prototype the system in yeast and demonstrate that DNA binding triggers activation of the switch, recruitment of a transcription factor, and expression of a downstream reporter gene. This DNA-triggered Co-LOCKR switch provides a platform to engineer sophisticated functions that should only be executed at a specific target site within the genome, with potential applications in a wide range of synthetic systems including epigenetic regulation, imaging, and genetic logic circuits.
Collapse
Affiliation(s)
- Robin L. Kirkpatrick
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, 98195, United States
| | - Kieran Lewis
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Robert A. Langan
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, 98195, United States
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Marc J. Lajoie
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Scott E. Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Madeleine Eakman
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, United States
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
15
|
Hao N, Shearwin KE, Dodd IB. Positive and Negative Control of Enhancer-Promoter Interactions by Other DNA Loops Generates Specificity and Tunability. Cell Rep 2020; 26:2419-2433.e3. [PMID: 30811991 DOI: 10.1016/j.celrep.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Enhancers are ubiquitous and critical gene-regulatory elements. However, quantitative understanding of the role of DNA looping in the regulation of enhancer action and specificity is limited. We used the Escherichia coli NtrC enhancer-σ54 promoter system as an in vivo model, finding that NtrC activation is highly sensitive to the enhancer-promoter (E-P) distance in the 300-6,000 bp range. DNA loops formed by Lac repressor were able to strongly regulate enhancer action either positively or negatively, recapitulating promoter targeting and insulation. A single LacI loop combining targeting and insulation produced a strong shift in specificity for enhancer choice between two σ54 promoters. A combined kinetic-thermodynamic model was used to quantify the effect of DNA-looping interactions on promoter activity and revealed that sensitivity to E-P distance and to control by other loops is itself dependent on enhancer and promoter parameters that may be subject to regulation.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia; CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
16
|
Mechanisms of Interplay between Transcription Factors and the 3D Genome. Mol Cell 2019; 76:306-319. [PMID: 31521504 DOI: 10.1016/j.molcel.2019.08.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.
Collapse
|
17
|
Yan Y, Leng F, Finzi L, Dunlap D. Protein-mediated looping of DNA under tension requires supercoiling. Nucleic Acids Res 2019; 46:2370-2379. [PMID: 29365152 PMCID: PMC5861448 DOI: 10.1093/nar/gky021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Satiaputra J, Sternicki LM, Hayes AJ, Pukala TL, Booker GW, Shearwin KE, Polyak SW. Native mass spectrometry identifies an alternative DNA-binding pathway for BirA from Staphylococcus aureus. Sci Rep 2019; 9:2767. [PMID: 30808984 PMCID: PMC6391492 DOI: 10.1038/s41598-019-39398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
An adequate supply of biotin is vital for the survival and pathogenesis of Staphylococcus aureus. The key protein responsible for maintaining biotin homeostasis in bacteria is the biotin retention protein A (BirA, also known as biotin protein ligase). BirA is a bi-functional protein that serves both as a ligase to catalyse the biotinylation of important metabolic enzymes, as well as a transcriptional repressor that regulates biotin biosynthesis, biotin transport and fatty acid elongation. The mechanism of BirA regulated transcription has been extensively characterized in Escherichia coli, but less so in other bacteria. Biotin-induced homodimerization of E. coli BirA (EcBirA) is a necessary prerequisite for stable DNA binding and transcriptional repression. Here, we employ a combination of native mass spectrometry, in vivo gene expression assays, site-directed mutagenesis and electrophoretic mobility shift assays to elucidate the DNA binding pathway for S. aureus BirA (SaBirA). We identify a mechanism that differs from that of EcBirA, wherein SaBirA is competent to bind DNA as a monomer both in the presence and absence of biotin and/or MgATP, allowing homodimerization on the DNA. Bioinformatic analysis demonstrated the SaBirA sequence used here is highly conserved amongst other S. aureus strains, implying this DNA-binding mechanism is widely employed.
Collapse
Affiliation(s)
- Jiulia Satiaputra
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Harry Perkins Institute of Medical Research, Shenton Park, Western Australia, 6008, Australia
| | - Louise M Sternicki
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Andrew J Hayes
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith E Shearwin
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
19
|
Hou J, Zeng W, Zong Y, Chen Z, Miao C, Wang B, Lou C. Engineering the Ultrasensitive Transcription Factors by Fusing a Modular Oligomerization Domain. ACS Synth Biol 2018; 7:1188-1194. [PMID: 29733626 DOI: 10.1021/acssynbio.7b00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dimerization and high-order oligomerization of transcription factors has endowed them with cooperative regulatory capabilities that play important roles in many cellular functions. However, such advanced regulatory capabilities have not been fully exploited in synthetic biology and genetic engineering. Here, we engineered a C-terminally fused oligomerization domain to improve the cooperativity of transcription factors. First, we found that two of three designed oligomerization domains significantly increased the cooperativity and ultrasensitivity of a transcription factor for the regulated promoter. Then, seven additional transcription factors were used to assess the modularity of the oligomerization domains, and their ultrasensitivity was generally improved, as assessed by their Hill coefficients. Moreover, we also demonstrated that the allosteric capability of the ligand-responsive domain remained intact when fusing with the designed oligomerization domain. As an example application, we showed that the engineered ultrasensitive transcription factor could be used to significantly improve the performance of a "stripe-forming" gene circuit. We envision that the oligomerization modules engineered in this study could act as a powerful tool to rapidly tune the underlying response profiles of synthetic gene circuits and metabolic pathway controllers.
Collapse
Affiliation(s)
- Junran Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Weiqian Zeng
- Institute of Molecular Precision Medicine, The Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Zehua Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Chensi Miao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, U.K
- Centre for Synthetic and System Biology, University of Edinburgh, Edinburgh, EH9 3FF, U.K
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
- College of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
20
|
Kovari DT, Yan Y, Finzi L, Dunlap D. Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors. Methods Mol Biol 2018; 1665:317-340. [PMID: 28940077 DOI: 10.1007/978-1-4939-7271-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tethered Particle Motion (TPM) is a versatile in vitro technique for monitoring the conformations a linear macromolecule, such as DNA, can exhibit. The technique involves monitoring the diffusive motion of a particle anchored to a fixed point via the macromolecule of interest, which acts as a tether. In this chapter, we provide an overview of TPM, review the fundamental principles that determine the accuracy with which effective tether lengths can be used to distinguish different tether conformations, present software tools that assist in capturing and analyzing TPM data, and provide a protocol which uses TPM to characterize lac repressor-induced DNA looping. Critical to any TPM assay is the understanding of the timescale over which the diffusive motion of the particle must be observed to accurately distinguish tether conformations. Approximating the tether as a Hookean spring, we show how to estimate the diffusion timescale and discuss how it relates to the confidence with which tether conformations can be distinguished. Applying those estimates to a lac repressor titration assay, we describe how to perform a TPM experiment. We also provide graphically driven software which can be used to speed up data collection and analysis. Lastly, we detail how TPM data from the titration assay can be used to calculate relevant molecular descriptors such as the J factor for DNA looping and lac repressor-operator dissociation constants. While the included protocol is geared toward studying DNA looping, the technique, fundamental principles, and analytical methods are more general and can be adapted to a wide variety of molecular systems.
Collapse
Affiliation(s)
- Daniel T Kovari
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Hao N, Shearwin KE, Dodd IB. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 2017; 8:1628. [PMID: 29158476 PMCID: PMC5696343 DOI: 10.1038/s41467-017-01873-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
DNA looping is a ubiquitous and critical feature of gene regulation. Although DNA looping can be efficiently detected, tools to readily manipulate DNA looping are limited. Here we develop CRISPR-based DNA looping reagents for creation of programmable DNA loops. Cleavage-defective Cas9 proteins of different specificity are linked by heterodimerization or translational fusion to create bivalent complexes able to link two separate DNA regions. After model-directed optimization, the reagents are validated using a quantitative DNA looping assay in E. coli. Looping efficiency is ~15% for a 4.7 kb loop, but is significantly improved by loop multiplexing with additional guides. Bivalent dCas9 complexes are also used to activate endogenous norVW genes by rewiring chromosomal DNA to bring distal enhancer elements to the gene promoters. Such reagents should allow manipulation of DNA looping in a variety of cell types, aiding understanding of endogenous loops and enabling creation of new regulatory connections. DNA loops are a ubiquitious feature of gene regulation across the kingdoms of life. Here the authors design a Cas9-based dimerization system for inducing DNA loops in E. coli, allowing activation and rewiring of gene expression.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Keith E Shearwin
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
22
|
Hacker WC, Li S, Elcock AH. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 2017. [PMID: 28645155 PMCID: PMC5570083 DOI: 10.1093/nar/gkx541] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of ‘fractal globules,’ and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome.
Collapse
Affiliation(s)
- William C Hacker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Shuxiang Li
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Hao N, Sneppen K, Shearwin KE, Dodd IB. Efficient chromosomal-scale DNA looping in Escherichia coli using multiple DNA-looping elements. Nucleic Acids Res 2017; 45:5074-5085. [PMID: 28160597 PMCID: PMC5435920 DOI: 10.1093/nar/gkx069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 11/15/2022] Open
Abstract
Genes are frequently regulated by interactions between proteins that bind to the DNA near the gene and proteins that bind to DNA sites located far away, with the intervening DNA looped out. But it is not understood how efficient looping can occur when the sites are very far apart. We develop a simple theoretical framework that relates looping efficiency to the energetic cost and benefit of looping, allowing prediction of the efficiency of single or multiple nested loops at different distances. Measurements of absolute loop efficiencies for Lac repressor and λ CI using gene expression reporters in Escherichia coli cells show that, as predicted by the model, long-range DNA looping between a pair of sites can be strongly enhanced by the use of nested DNA loops or by the use of additional protein-binding sequences. A combination of these approaches was able to generate efficient DNA looping at a 200 kb distance.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Cellular Biology, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø 2100, Denmark
| | - Keith E Shearwin
- Department of Molecular and Cellular Biology, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Cellular Biology, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| |
Collapse
|
24
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
25
|
Vörös Z, Yan Y, Kovari DT, Finzi L, Dunlap D. Proteins mediating DNA loops effectively block transcription. Protein Sci 2017; 26:1427-1438. [PMID: 28295806 PMCID: PMC5477534 DOI: 10.1002/pro.3156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop‐mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription.
Collapse
Affiliation(s)
- Zsuzsanna Vörös
- Department of Physics, Emory University, Atlanta, Georgia, 30322
| | - Yan Yan
- Department of Physics, Emory University, Atlanta, Georgia, 30322
| | - Daniel T Kovari
- Department of Physics, Emory University, Atlanta, Georgia, 30322
| | - Laura Finzi
- Department of Physics, Emory University, Atlanta, Georgia, 30322
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
26
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Igarashi C, Murata A, Itoh Y, Subekti DRG, Takahashi S, Kamagata K. DNA Garden: A Simple Method for Producing Arrays of Stretchable DNA for Single-Molecule Fluorescence Imaging of DNA-Binding Proteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chihiro Igarashi
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Agato Murata
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Yuji Itoh
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Dwiky Rendra Graha Subekti
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Satoshi Takahashi
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Kiyoto Kamagata
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| |
Collapse
|
28
|
Cui L, Shearwin KE. Clonetegration Using OSIP Plasmids: One-Step DNA Assembly and Site-Specific Genomic Integration in Bacteria. Methods Mol Biol 2017; 1472:139-155. [PMID: 27671938 DOI: 10.1007/978-1-4939-6343-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clonetegration is a method for site-specific insertion of DNA into prokaryotic chromosomes, based on bacteriophage integrases. The method combines DNA cloning/assembly and chromosomal integration into a single step, providing a simple and rapid strategy for inserting DNA sequences into bacterial chromosomes.
Collapse
Affiliation(s)
- Lun Cui
- Synthetic Biology Group, Institute Pasteur, Paris, 75015, France
| | - Keith E Shearwin
- Department of Molecular and Cellular Biology, School of Biological Science, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
29
|
Munro PD, Ackers GK, Shearwin KE. Aspects of protein-DNA interactions: a review of quantitative thermodynamic theory for modelling synthetic circuits utilising LacI and CI repressors, IPTG and the reporter gene lacZ. Biophys Rev 2016; 8:331-345. [PMID: 28510022 DOI: 10.1007/s12551-016-0231-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
Protein-DNA interactions are central to the control of gene expression across all forms of life. The development of approaches to rigorously model such interactions has often been hindered both by a lack of quantitative binding data and by the difficulty in accounting for parameters relevant to the intracellular situation, such as DNA looping and thermodynamic non-ideality. Here, we review these considerations by developing a thermodynamically based mathematical model that attempts to simulate the functioning of an Escherichia coli expression system incorporating two of the best characterised prokaryotic DNA binding proteins, Lac repressor and lambda CI repressor. The key aim was to reproduce experimentally observed reporter gene activities arising from the expression of either wild-type CI repressor or one of three positive-control CI mutants. The model considers the role of several potentially important, but sometimes neglected, biochemical features, including DNA looping, macromolecular crowding and non-specific binding, and allowed us to obtain association constants for the binding of CI and its variants to a specific operator sequence.
Collapse
Affiliation(s)
- Peter D Munro
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,, 2/159 Hardgrave Rd., West End, Brisbane, QLD 4101, Australia.
| | - Gary K Ackers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Keith E Shearwin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
30
|
Mogil LS, Becker NA, Maher LJ. Supercoiling Effects on Short-Range DNA Looping in E. coli. PLoS One 2016; 11:e0165306. [PMID: 27783696 PMCID: PMC5081198 DOI: 10.1371/journal.pone.0165306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
DNA-protein loops can be essential for gene regulation. The Escherichia coli lactose (lac) operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6-8 DNA turns) repression loops in E. coli. The natural negative superhelicity of E. coli DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different E. coli strains characterized by different levels of global supercoiling: wild type, gyrase mutant (gyrB226), and topoisomerase mutant (ΔtopA10). DNA looping in each strain was measured by assaying repression of the endogenous lac operon, and repression of ten reporter constructs with DNA loop sizes between 70-85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria.
Collapse
MESH Headings
- DNA Gyrase/genetics
- DNA Gyrase/metabolism
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Electrophoresis, Agar Gel
- Escherichia coli/genetics
- Genes, Reporter
- Lac Operon/genetics
- Mutation
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Lauren S. Mogil
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- Biochemistry and Molecular Biology track, Mayo Graduate School, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- * E-mail:
| |
Collapse
|
31
|
Jeong J, Le TT, Kim HD. Single-molecule fluorescence studies on DNA looping. Methods 2016; 105:34-43. [PMID: 27064000 PMCID: PMC4967024 DOI: 10.1016/j.ymeth.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| |
Collapse
|
32
|
Lepage T, Képès F, Junier I. Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations. Biophys J 2016; 109:135-43. [PMID: 26153710 DOI: 10.1016/j.bpj.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022] Open
Abstract
Supercoiled DNA polymer models for which the torsional energy depends on the total twist of molecules (Tw) are a priori well suited for thermodynamic analysis of long molecules. So far, nevertheless, the exact determination of Tw in these models has been based on a computation of the writhe of the molecules (Wr) by exploiting the conservation of the linking number, Lk=Tw+Wr, which reflects topological constraints coming from the helical nature of DNA. Because Wr is equal to the number of times the main axis of a DNA molecule winds around itself, current Monte Carlo algorithms have a quadratic time complexity, O(L(2)), with respect to the contour length (L) of the molecules. Here, we present an efficient method to compute Tw exactly, leading in principle to algorithms with a linear complexity, which in practice is O(L(1.2)). Specifically, we use a discrete wormlike chain that includes the explicit double-helix structure of DNA and where the linking number is conserved by continuously preventing the generation of twist between any two consecutive cylinders of the discretized chain. As an application, we show that long (up to 21 kbp) linear molecules stretched by mechanical forces akin to magnetic tweezers contain, in the buckling regime, multiple and branched plectonemes that often coexist with curls and helices, and whose length and number are in good agreement with experiments. By attaching the ends of the molecules to a reservoir of twists with which these can exchange helix turns, we also show how to compute the torques in these models. As an example, we report values that are in good agreement with experiments and that concern the longest molecules that have been studied so far (16 kbp).
Collapse
Affiliation(s)
- Thibaut Lepage
- Institute of Systems and Synthetic Biology, Genopole, CNRS, University of Évry, Évry, France; Laboratoire Adaptation et Pathogénie des Micro-organismes-UMR 5163, Université Grenoble 1, CNRS, Grenoble, France
| | - François Képès
- Institute of Systems and Synthetic Biology, Genopole, CNRS, University of Évry, Évry, France; Department of BioEngineering, Imperial College London, London, United Kingdom
| | - Ivan Junier
- Laboratoire Adaptation et Pathogénie des Micro-organismes-UMR 5163, Université Grenoble 1, CNRS, Grenoble, France; Centre for Genomic Regulation (CRG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
33
|
Real sequence effects on the search dynamics of transcription factors on DNA. Sci Rep 2015; 5:10072. [PMID: 26154484 PMCID: PMC5507490 DOI: 10.1038/srep10072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.
Collapse
|
34
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
Shin J, Cherstvy AG, Metzler R. Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size. SOFT MATTER 2015; 11:472-88. [PMID: 25413029 DOI: 10.1039/c4sm02007c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.
Collapse
Affiliation(s)
- Jaeoh Shin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
36
|
Amouyal M. From adjacent activation in Escherichia coli and DNA cyclization to eukaryotic enhancers: the elements of a puzzle. Front Genet 2014; 5:371. [PMID: 25404937 PMCID: PMC4217526 DOI: 10.3389/fgene.2014.00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/04/2014] [Indexed: 11/13/2022] Open
Abstract
Deoxyribonucleic acid cyclization, Escherichia coli lac repressor binding to two spaced lac operators and repression enhancement can be successfully used for a better understanding of the conditions required for interaction between eukaryotic enhancers and the machinery of transcription initiation. Chronologically, the DNA looping model has first accounted for the properties initially defining enhancers, i.e., independence of action with distance or orientation with respect to the start of transcription. It has also predicted enhancer activity or its disruption at short distance (site orientation, alignment between promoter and enhancer sites), with high-order complexes of protein, or with transcription factor concentrations close or different from the wild-type situation. In another step, histones have been introduced into the model to further adapt it to eukaryotes. They in fact favor DNA cyclization in vitro. The resulting DNA compaction might explain the difference counted in base pairs in the distance of action between eukaryotic transcription enhancers and prokaryotic repression enhancers. The lac looping system provides a potential tool for analysis of this discrepancy and of chromatin state directly in situ. Furthermore, as predicted by the model, the contribution of operators O2 and O3 to repression of the lac operon clearly depends on the lac repressor level in the cell and is prevented in strains overproducing lac repressor. By extension, gene regulation especially that linked to cell fate, should also depend on transcription factor levels, providing a potential tool for cellular therapy. In parallel, a new function of the O1–O3 loop completes the picture of lac repression. The O1–O3 loop would at the same time ensure high efficiency of repression, inducibility through the low-affinity sites and limitation of the level of repressor through self-repression of the lac repressor. Last, the DNA looping model can be successfully adapted to the enhancer auxiliary elements known as insulators.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à Distance, Centre National de la Recherche Scientifique Paris, France
| |
Collapse
|
37
|
Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells. Proc Natl Acad Sci U S A 2014; 111:E4449-57. [PMID: 25288735 DOI: 10.1073/pnas.1410764111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops--that aid or inhibit enhancer-promoter contact--are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other's formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other's formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions.
Collapse
|
38
|
Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles. Nat Protoc 2014; 9:2206-23. [PMID: 25144271 DOI: 10.1038/nprot.2014.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes ~4 weeks.
Collapse
|
39
|
Hao N, Krishna S, Ahlgren-Berg A, Cutts EE, Shearwin KE, Dodd IB. Road rules for traffic on DNA-systematic analysis of transcriptional roadblocking in vivo. Nucleic Acids Res 2014; 42:8861-72. [PMID: 25034688 PMCID: PMC4132739 DOI: 10.1093/nar/gku627] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genomic DNA is bound by many proteins that could potentially impede elongation of RNA polymerase (RNAP), but the factors determining the magnitude of transcriptional roadblocking in vivo are poorly understood. Through systematic experiments and modeling, we analyse how roadblocking by the lac repressor (LacI) in Escherichia coli cells is controlled by promoter firing rate, the concentration and affinity of the roadblocker protein, the transcription-coupled repair protein Mfd, and promoter–roadblock spacing. Increased readthrough of the roadblock at higher RNAP fluxes requires active dislodgement of LacI by multiple RNAPs. However, this RNAP cooperation effect occurs only for strong promoters because roadblock-paused RNAP is quickly terminated by Mfd. The results are most consistent with a single RNAP also sometimes dislodging LacI, though we cannot exclude the possibility that a single RNAP reads through by waiting for spontaneous LacI dissociation. Reducing the occupancy of the roadblock site by increasing the LacI off-rate (weakening the operator) increased dislodgement strongly, giving a stronger effect on readthrough than decreasing the LacI on-rate (decreasing LacI concentration). Thus, protein binding kinetics can be tuned to maintain site occupation while reducing detrimental roadblocking.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560065, India
| | - Alexandra Ahlgren-Berg
- School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Erin E Cutts
- School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Biton YY, Kumar S, Dunlap D, Swigon D. Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results. PLoS One 2014; 9:e92475. [PMID: 24800809 PMCID: PMC4011716 DOI: 10.1371/journal.pone.0092475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/23/2014] [Indexed: 11/30/2022] Open
Abstract
Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.
Collapse
Affiliation(s)
- Yoav Y. Biton
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Sandip Kumar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Dunlap
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|