1
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Fornezza S, Delvecchio VS, Harvey WT, Dishuck PC, Eichler EE, Giannuzzi G. AGAP duplicons associate with structural diversity at Chromosome 10q11.22. Genome Res 2024; 34:1487-1499. [PMID: 39322278 PMCID: PMC11534156 DOI: 10.1101/gr.279454.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
The 10q11.22 chromosomal region is a duplication-rich interval of the human genome and one of the last to be fully assembled. It carries copy number-variable genes associated with intellectual disability, bipolar disorder, and obesity. In this study, we characterized the structural diversity at this locus by analyzing 64 haploid assemblies produced by the Human Pangenome Reference Consortium. We identified 11 alternative haplotypes that differ in the copy number and/or orientation of large genomic segments, ranging from hundreds of kilobase pairs (kbp) to over one megabase pair (Mbp). We uncovered a 2.4 Mbp size difference between the shortest and longest haplotypes. Breakpoint analysis revealed that genomic instability results from nonallelic homologous recombination between segmental duplication (SD) pairs with varying similarity (94.4%-99.6%). Nonetheless, these pairs generally recombine at positions where their identity is higher (>99.6%). Recurrent inversions occur with different breakpoints within the same inverted SD pair. Inversion polymorphisms shuffle the entire SD arrangement, creating new predispositions to copy-number variations. The SD architecture is associated with a catarrhine-specific subgroup of the AGAP gene family, which likely triggered the accumulation of SDs at this locus over the past 25 million years of human evolution. Our results reveal extensive structural diversity and genomic instability at the 10q11.22 locus, and expand the general understanding of the mutational mechanisms behind SD-mediated rearrangements.
Collapse
Affiliation(s)
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
3
|
Wu L, Wei S, Pei D, Yao Y, Xiang Z, Yu E, Chen Z, Du Z, Qu S. Activation of the Akt Attenuates Ropivacaine-Induced Myelination Impairment in Spinal Cord and Sensory Dysfunction in Neonatal Rats. Mol Neurobiol 2023; 60:7009-7020. [PMID: 37523045 DOI: 10.1007/s12035-023-03498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prolonged exposure to local anesthetics (LAs) or intrathecal administration of high doses of LAs can cause spinal cord damage. Intraspinal administration of LAs is increasingly being used in children and neonates. Therefore, it is important to study LA-related spinal cord damage and the underlying mechanism in developmental models. First, neonatal Sprague-Dawley rats received three intrathecal injections of 0.5% ropivacaine, 1% ropivacaine, 2% ropivacaine or saline (90-min interval) on postnatal day 7. Electron microscopy, luxol fast blue staining and behavioral tests were performed to evaluate the spinal neurotoxicity caused by ropivacaine at different concentrations. Western blot analysis and immunostaining was performed to detect the expression changes of p-Akt, Akt, myelin gene regulatory factor (MYRF) and myelin basic protein (MBP) in the spinal cord treated with different concentrations of ropivacaine. Our results showed that 1% or 2% ropivacaine impaired myelination in the spinal cord and induced sensory dysfunction, but 0.5% ropivacaine did not. Moreover, 1% or 2% ropivacaine decreased the expression of p-Akt, MYRF and MBP in the spinal cord. Then, in order to further explore the role of these proteins in this model, the Akt-specific activator (SC79) was intraperitoneally injected 30 min before 2% ropivacaine treatment. Interestingly, SC79-mediated activation of Akt partly rescued ropivacaine-induced myelination impairments and sensory dysfunction. Overall, the results showed that ropivacaine caused spinal neurotoxicity in a dose-dependent manner in neonatal rats and that activation of the Akt partly rescued ropivacaine-induced these changes. These data provide insight into the neurotoxicity to the developing spinal cord caused by LAs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Siwei Wei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Dongjie Pei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Yiyi Yao
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Xiang
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Eryou Yu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zheng Chen
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| |
Collapse
|
4
|
Wu L, Wang F, Moncman CL, Pandey M, Clarke HA, Frazier HN, Young LE, Gentry MS, Cai W, Thibault O, Sun RC, Andres DA. RIT1 regulation of CNS lipids RIT1 deficiency Alters cerebral lipid metabolism and reduces white matter tract oligodendrocytes and conduction velocities. Heliyon 2023; 9:e20384. [PMID: 37780758 PMCID: PMC10539968 DOI: 10.1016/j.heliyon.2023.e20384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Oligodendrocytes (OLs) generate lipid-rich myelin membranes that wrap axons to enable efficient transmission of electrical impulses. Using a RIT1 knockout mouse model and in situ high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) coupled with MS-based lipidomic analysis to determine the contribution of RIT1 to lipid homeostasis. Here, we report that RIT1 loss is associated with altered lipid levels in the central nervous system (CNS), including myelin-associated lipids within the corpus callosum (CC). Perturbed lipid metabolism was correlated with reduced numbers of OLs, but increased numbers of GFAP+ glia, in the CC, but not in grey matter. This was accompanied by reduced myelin protein expression and axonal conduction deficits. Behavioral analyses revealed significant changes in voluntary locomotor activity and anxiety-like behavior in RIT1KO mice. Together, these data reveal an unexpected role for RIT1 in the regulation of cerebral lipid metabolism, which coincide with altered white matter tract oligodendrocyte levels, reduced axonal conduction velocity, and behavioral abnormalities in the CNS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Fang Wang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Mritunjay Pandey
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
| | - Hilaree N. Frazier
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, NY 11568, USA
| | - Olivier Thibault
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Douglas A. Andres
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, KY 40536, USA
- Gill Heart and Vascular Institute, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
6
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
7
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
8
|
Olig2-Targeted G-Protein-Coupled Receptor Gpr17 Regulates Oligodendrocyte Survival in Response to Lysolecithin-Induced Demyelination. J Neurosci 2017; 36:10560-10573. [PMID: 27733608 DOI: 10.1523/jneurosci.0898-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination; however, the underlying molecular mechanisms remain unclear. Here, we performed genome occupancy analysis by chromatin immunoprecipitation sequencing in oligodendrocytes in response to lysolecithin-induced injury and found that Olig2 and its downstream target Gpr17 are critical factors in regulating oligodendrocyte survival. After injury to oligodendrocytes, Olig2 was significantly upregulated and transcriptionally targeted the Gpr17 locus. Gpr17 activation inhibited oligodendrocyte survival by reducing the intracellular cAMP level and inducing expression of the pro-apoptotic gene Xaf1 The protein kinase A signaling pathway and the transcription factor c-Fos mediated the regulatory effects of Gpr17 in oligodendrocytes. We showed that Gpr17 inhibition elevated Epac1 expression and promoted oligodendrocyte differentiation. The loss of Gpr17, either globally or specifically in oligodendrocytes, led to an earlier onset of remyelination after myelin injury in mice. Similarly, pharmacological inhibition of Gpr17 with pranlukast promoted remyelination. Our findings indicate that Gpr17, an Olig2 transcriptional target, is activated after injury to oligodendrocytes and that targeted inhibition of Gpr17 promotes oligodendrocyte remyelination. SIGNIFICANCE STATEMENT Genome occupancy analysis of oligodendrocytes in response to lysolecithin-mediated demyelination injury revealed that Olig2 and its downstream target Gpr17 are part of regulatory circuitry critical for oligodendrocyte survival. Gpr17 inhibits oligodendrocyte survival through activation of Xaf1 and cell differentiation by reducing Epac1 expression. The loss of Gpr17 in mice led to precocious myelination and an earlier onset of remyelination after demyelination. Pharmacological inhibition of Gpr17 promoted remyelination, highlighting the potential for Gpr17-targeted therapeutic approaches in demyelination diseases.
Collapse
|
9
|
Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, Kvarnung M, Gerdts J, Trinh S, Cosemans N, Vives L, Lin J, Turner TN, Santen G, Ruivenkamp C, Kriek M, van Haeringen A, Aten E, Friend K, Liebelt J, Barnett C, Haan E, Shaw M, Gecz J, Anderlid BM, Nordgren A, Lindstrand A, Schwartz C, Kooy RF, Vandeweyer G, Helsmoortel C, Romano C, Alberti A, Vinci M, Avola E, Giusto S, Courchesne E, Pramparo T, Pierce K, Nalabolu S, Amaral D, Scheffer IE, Delatycki MB, Lockhart PJ, Hormozdiari F, Harich B, Castells-Nobau A, Xia K, Peeters H, Nordenskjöld M, Schenck A, Bernier RA, Eichler EE. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 2017; 49:515-526. [PMID: 28191889 PMCID: PMC5374041 DOI: 10.1038/ng.3792] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
Abstract
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
Collapse
Affiliation(s)
| | - Bo Xiong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of forensic medicine and Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michaela Fenckova
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sandy Trinh
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Nele Cosemans
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Laura Vives
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janice Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gijs Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Eric Haan
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | | | | | - Karen Pierce
- UCSD, Autism Center of Excellence, La Jolla, CA, USA
| | | | - David Amaral
- MIND Institute and the University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ingrid E. Scheffer
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Martin B. Delatycki
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
10
|
α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 2017; 114:1183-1188. [PMID: 28096359 DOI: 10.1073/pnas.1618627114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.
Collapse
|
11
|
Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Möbius W, Goebbels S, Schaeren-Wiemers N, Nave KA, Werner HB. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife 2016; 5. [PMID: 27504968 PMCID: PMC4978525 DOI: 10.7554/elife.17119] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI:http://dx.doi.org/10.7554/eLife.17119.001 Normal communication within the brain or between the brain and other parts of the body requires information to flow quickly around the nervous system. This information travels along nerve cells in the form of electrical signals. To speed up the signals, a part of the nerve cell called the axon is frequently wrapped in an electrically insulating sheath made up of a membrane structure called myelin. The myelin sheath becomes impaired as a result of disease or ageing. In order to understand what might produce these changes, Patzig et al. have used biochemical and microscopy techniques to study mice that had similar defects in their myelin sheaths. The study reveals that forming a normal myelin sheath around an axon requires a newly identified ‘scaffold’ made of a group of proteins called the septins. Combining with another protein called anillin, septins assemble into filaments in the myelin sheath. These filaments then knit together into a scaffold that grows lengthways along the myelin-wrapped axon. Without this scaffold, the myelin sheath grew defects known as outfoldings. Axons transmitted electrical signals much more slowly than normal when the septin scaffold was missing from the myelin sheath. Future studies are needed to understand the factors that control how the septin scaffold forms. This could help to reveal ways of reversing the changes that alter the myelin sheath during ageing and disease. DOI:http://dx.doi.org/10.7554/eLife.17119.002
Collapse
Affiliation(s)
- Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | | | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| |
Collapse
|
12
|
Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina. PLoS One 2016; 11:e0156033. [PMID: 27196066 PMCID: PMC4873024 DOI: 10.1371/journal.pone.0156033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 05/09/2016] [Indexed: 01/22/2023] Open
Abstract
Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in different retinal neurons may suggest a role in neuronal cell type specific fate determination and maturation. The data raises the possibility that QKI may function in retinal cell fate determination and maturation in both glia and neurons.
Collapse
|
13
|
Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 2016; 283:501-11. [PMID: 26957369 DOI: 10.1016/j.expneurol.2016.03.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed.
Collapse
|
14
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|