1
|
Snider PL, Sierra Potchanant EA, Sun Z, Edwards DM, Chan KK, Matias C, Awata J, Sheth A, Pride PM, Payne RM, Rubart M, Brault JJ, Chin MT, Nalepa G, Conway SJ. A Barth Syndrome Patient-Derived D75H Point Mutation in TAFAZZIN Drives Progressive Cardiomyopathy in Mice. Int J Mol Sci 2024; 25:8201. [PMID: 39125771 PMCID: PMC11311365 DOI: 10.3390/ijms25158201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.
Collapse
Affiliation(s)
- Paige L. Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Elizabeth A. Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Donna M. Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Ka-Kui Chan
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Catalina Matias
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Aditya Sheth
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - P. Melanie Pride
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - R. Mark Payne
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Michael Rubart
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| |
Collapse
|
2
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
5
|
Holter MC, Hewitt LT, Nishimura KJ, Knowles SJ, Bjorklund GR, Shah S, Fry NR, Rees KP, Gupta TA, Daniels CW, Li G, Marsh S, Treiman DM, Olive MF, Anderson TR, Sanabria F, Snider WD, Newbern JM. Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cereb Cortex 2021; 31:3064-3081. [PMID: 33570093 DOI: 10.1093/cercor/bhaa413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.
Collapse
Affiliation(s)
- Michael C Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lauren T Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Kenji J Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Sara J Knowles
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Shiv Shah
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Noah R Fry
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.,Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Guohui Li
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Steven Marsh
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | - Trent R Anderson
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
6
|
Wang J, Fan Y, Cai X, Gao Z, Yu Z, Wei B, Tang Y, Hu L, Liu WT, Gu Y. Uric acid preconditioning alleviated doxorubicin induced JNK activation and Cx43 phosphorylation associated cardiotoxicity via activation of AMPK-SHP2 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1570. [PMID: 33437769 PMCID: PMC7791217 DOI: 10.21037/atm-20-3105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Doxorubicin is an anthracycline antibiotic, which is effective for treating various malignancies such as leukemias and lymphomas. However, its serious cumulative dose-dependent cardiotoxicity limits its clinical application. Previous studies have shown that doxorubicin-associated cardiotoxicity is closely related to adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). Uric acid is known to exert a strong antioxidant function and moderate protection on the nerves. However, its cardioprotective properties have not been established. This study aimed to investigate the potential effect of uric acid preconditioning on doxorubicin-induced cardiotoxicity and the involvement of AMPK signaling in this process. Methods An acute cardiotoxicity model of doxorubicin was established by intraperitoneal injection of a single dose of doxorubicin (20 mg/kg) in mice. Uric acid (62.5, 125, and 250 mg/kg) was intragastrically administered to mice one day before doxorubicin treatment and then continuously administered every 24 h for 8 consecutive days. The mortality rate and weight of the mice were recorded every day. Electrocardiograms (ECG) and serum biochemicals were detected with an ECG instrument and enzyme-linked immunosorbent assay kit (Elisa) respectively. A real-time cell analyzer (RTCA) was used to investigate the cytotoxicity of doxorubicin in vitro. Cell signaling was assayed by western blotting. Results Uric acid (125 mg/kg) preconditioning increased the survival rate and body weight of doxorubicin-treated mice. Uric acid also effectively alleviated prolongation of the doxorubicin-induced QT interval, slowed heart rate, and reduced the plasma levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK) in plasma in mice. Moreover, uric acid strongly activated AMPK and Src homology 2 domain-containing protein tyrosine phosphatase (SHP2), inhibiting doxorubicin-induced expression phosphorylated-c-Jun N-terminal kinases (JNK) and phosphorylated-connexin 43 (Cx43) in vitro and in vivo and effectively reversing the doxorubicin-induced decreased viability of H9C2 myocardial cells in vitro. Conclusions We demonstrated that uric acid preconditioning alleviated doxorubicin-induced cardiotoxicity through the AMPK-SHP2-JNK-Cx43 signaling pathway.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yixin Fan
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Cai
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Gao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyi Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wei
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yanhong Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
8
|
Snider PL, Snider E, Simmons O, Lilly B, Conway SJ. Analysis of Uncharacterized mKiaa1211 Expression during Mouse Development and Cardiovascular Morphogenesis. J Cardiovasc Dev Dis 2019; 6:jcdd6020024. [PMID: 31234534 PMCID: PMC6617212 DOI: 10.3390/jcdd6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Mammalian Kiaa1211 and Kiaa1211-like are a homologous pair of uncharacterized, highly conserved genes cloned from fetal and adult brain cDNA libraries. Herein we map the in utero spatiotemporal expression of mKiaa1211 and mKiaa1211L mRNA and their expression patterns in postnatal testis, skin, gastrointestinal, and adipose progenitor tissues. Significantly, mKiaa1211 is present throughout the early stages of mouse heart development, particularly in the second heart field (SHF) lineage as it differentiates from mesenchymal cells into cardiomyocytes. We also show that mKiaa1211 is expressed within several early neuronal tissues destined to give rise to central, peripheral, and sympathetic nervous system structures. Expression profiling revealed that the paralog mKiaa1211L is not expressed during the normal developmental process and that mKiaa1211 expression was noticeably absent from most adult terminally differentiated tissues. Finally, we confirm that a previously uncharacterized CRISPR/CAS-generated mKiaa1211 mouse mutant allele is hypomorphic.
Collapse
Affiliation(s)
- Paige L Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Elizabeth Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Biosciences, Indiana University, Bloomington, IN 47405, USA.
| | - Olga Simmons
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Brenda Lilly
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
10
|
Zhu Y, Shen J, Sun T, Jiang H, Xu K, Samuthrat T, Xie Y, Weng Y, Li Y, Xie Q, Zhan R. Loss of Shp2 within radial glia is associated with cerebral cortical dysplasia, glial defects of cerebellum and impaired sensory‑motor development in newborn mice. Mol Med Rep 2017; 17:3170-3177. [PMID: 29257282 DOI: 10.3892/mmr.2017.8236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Radial glia are key neural progenitors involved in the development of the central nervous system. Tyrosine-protein phosphatase non‑receptor type 11 (Shp2) is a widely expressed intracellular enzyme with multiple cellular functions. Previous studies have revealed the critical role of Shp2 in a variety of neural cell types; however, further investigation into the function of Shp2 within radial glia is required. In the present study, a conditional knockout mouse was generated using a human glial fibrillary acidic protein (hGFAP)‑Cre driver, in which the Shp2 genes were deleted within radial glia. Loss of Shp2 within radial glia was associated with developmental retardation, postnatal lethality, reduced brain size and thinner cerebral cortices in newborn mice. Deletion of Shp2 also led to an increase in gliogenesis, a reduction in neural genesis and extracellular signal‑regulated kinase signaling within the cerebral cortex. Furthermore, glial cell defects within the cerebellum of Shp2 mutants were observed, with abnormal granular cell retention and glial cell alignment in the external granular layer. In addition, Shp2 mutants exhibited impaired sensory‑motor development. The results of the present study suggested that Shp2 may have an important role within radial glia, and regulate cerebral cortical and cerebellar development in newborn mice.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Tianfu Sun
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Thiti Samuthrat
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research and Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yongda Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiangmin Xie
- Zhejiang Respiratory Drugs Research Laboratory of China Food and Drug Administration, Laboratory Animal Center of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Garg A, Bansal M, Gotoh N, Feng GS, Zhong J, Wang F, Kariminejad A, Brooks S, Zhang X. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis. PLoS Genet 2017; 13:e1007047. [PMID: 29028795 PMCID: PMC5656309 DOI: 10.1371/journal.pgen.1007047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development. The dry eye disease caused by lacrimal gland dysgenesis is one of the most common ocular ailments. In this study, we show that Shp2 mediates the sequential use of FGF signaling in lacrimal gland development. Our study identifies Alx4 as a novel target of Shp2 signaling and a causal gene for lacrimal gland aplasia in humans. Given this result, there may also be a potential role for Alx4 in guiding pluripotent stem cells to produce lacrimal gland tissue. Finally, our data reveals an Alx4-Fgf10 regulatory unit broadly conserved in the diverse array of terrestrial animals from humans to reptiles, but not in aquatic animals such as amphibians and fish, which sheds light on how the lacrimal gland arose as an evolutionary innovation of terrestrial animals to adapt to their newfound exposure to an airy environment.
Collapse
Affiliation(s)
- Ankur Garg
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mukesh Bansal
- PsychoGenics Inc., Tarrytown, NY, United States of America
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa city, Japan
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jian Zhong
- Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY, United States of America
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States of America
| | | | - Steven Brooks
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Southard-Smith EM. Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 2017; 429:356-369. [PMID: 28449850 PMCID: PMC5572097 DOI: 10.1016/j.ydbio.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - V Ashley Cantrell
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.
| |
Collapse
|
13
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
14
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|