1
|
Xia Y, Cheng X, Nilsson T, Zhang M, Zhao G, Inuzuka T, Teng Y, Li Y, Anderson DE, Holdorf M, Liang TJ. Nucleolin binds to and regulates transcription of hepatitis B virus covalently closed circular DNA minichromosome. Proc Natl Acad Sci U S A 2023; 120:e2306390120. [PMID: 38015841 PMCID: PMC10710063 DOI: 10.1073/pnas.2306390120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major public health threat with nearly 300 million people chronically infected worldwide who are at a high risk of developing hepatocellular carcinoma. Current therapies are effective in suppressing HBV replication but rarely lead to cure. Current therapies do not affect the HBV covalently closed circular DNA (cccDNA), which serves as the template for viral transcription and replication and is highly stable in infected cells to ensure viral persistence. In this study, we aim to identify and elucidate the functional role of cccDNA-associated host factors using affinity purification and protein mass spectrometry in HBV-infected cells. Nucleolin was identified as a key cccDNA-binding protein and shown to play an important role in HBV cccDNA transcription, likely via epigenetic regulation. Targeting nucleolin to silence cccDNA transcription in infected hepatocytes may be a promising therapeutic strategy for a functional cure of HBV.
Collapse
Affiliation(s)
- Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan430071, China
| | - Xiaoming Cheng
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan430071, China
| | - Tobias Nilsson
- Department of Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA94608
| | - Min Zhang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Gaihong Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan430071, China
| | - Tadashi Inuzuka
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan430071, China
| | - Yao Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - D. Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Meghan Holdorf
- Department of Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA94608
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
2
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
3
|
Huang WH, Su WM, Wang CW, Fang YH, Jian YW, Hsu HJ, Peng CW. Momordica anti-HIV protein MAP30 abrogates the Epstein-Barr virus nuclear antigen 1 dependent functions in host cells. Heliyon 2023; 9:e21486. [PMID: 38027600 PMCID: PMC10660024 DOI: 10.1016/j.heliyon.2023.e21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/07/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Originally extracted from Momordica charantia seeds, the antiviral and anti-tumor activities of Momordica anti-HIV protein MAP30 have become well known. Although MAP30 has been reported to possess antiviral activity against several human viruses, the current understanding of the MAP30-mediated antiviral response is mainly derived from the previous research work on anti-HIV herbal medicines; the mechanistic insight of its effects on other viruses remains largely unknown. In this study, we showed that both ectopically expressed and purified recombinant MAP30 (rMAP30) impeded Epstein-Barr virus Nuclear Antigen 1 (EBNA1)-mediated transcription from the viral latent replication origin. Mechanistically, in vivo and in vitro studies revealed that MAP30 caused EBNA1 to dissociate from the cognate binding sites, which disrupted downstream EBNA1-dependent viral epigenome accumulation and cell maintenance of Epstein-Barr virus (EBV)-associated neoplastic cells. Finally, mutational analysis indicated that the N-terminal ricin A homologous domain shared by ricin-like proteins was implicated in the anti-EBV response. Our study provides evidence to support that MAP30 has a unique property to combat EBV latent infection, suggesting a potential to develop this herbal protein to be an alternative medicine for EBV associated diseases.
Collapse
Affiliation(s)
- Wei-Hang Huang
- Department of Clinical Pathology Department of Hematology & Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002 Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Min Su
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Chung-Wei Wang
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Yue-Hao Fang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Yuan-Wei Jian
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| |
Collapse
|
4
|
Liu G, Wang J, Han M, Li X, Zhou L, Dou T, Liu Y, HuangFu M, Guan X, Wang Y, Tang W, Liu Z, Li L, Ding H, Chen X. RNA-binding domain 2 of nucleolin is important for the autophagy induction of curcumol in nasopharyngeal carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154833. [PMID: 37137203 DOI: 10.1016/j.phymed.2023.154833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND & AIMS Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Pharmacognosy, 541199, PR China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi, PR China; Faculty of Basic Medicine, Guilin Medical University, No. 109, 541004 Guilin, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Mengjie HuangFu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China.
| |
Collapse
|
5
|
Jhang JF, Liu CD, Hsu YH, Chen CC, Chen HC, Jiang YH, Wu WC, Peng CW, Kuo HC. EBV infection mediated BDNF expression is associated with bladder inflammation in interstitial cystitis/bladder pain syndrome with Hunner's lesion. J Pathol 2023; 259:276-290. [PMID: 36441149 DOI: 10.1002/path.6040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both Epstein-Barr virus (EBV) latency infection genes EBNA-1 and LMP-1 and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating the coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and upregulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF to be EBV-infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. A chromatin immunoprecipitation study revealed BDNF transcription could be promoted by cooperation between EBV nuclear antigens, chromatin modifiers, and B-cell-specific transcription. Knockdown of BDNF in EBV-infected B cells resulted in the inhibition of cell proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV-infected B cells into rat bladder walls resulted in a higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV-infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV-infected B cells in HIC pathogenesis. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Der Liu
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiang-Chin Chen
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wan-Chen Wu
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021; 12:e0224321. [PMID: 34781735 PMCID: PMC8593684 DOI: 10.1128/mbio.02243-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.
Collapse
|
7
|
Guan X, Yu D, HuangFu M, Huang Z, Dou T, Liu Y, Zhou L, Li X, Wang L, Liu H, Wang J, Chen X. Curcumol inhibits EBV-positive Nasopharyngeal carcinoma migration and invasion by targeting nucleolin. Biochem Pharmacol 2021; 192:114742. [PMID: 34428442 DOI: 10.1016/j.bcp.2021.114742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/04/2023]
Abstract
Metastasis is a major cause of recurrence and death in patients with EBV-positive Nasopharyngeal carcinoma (NPC). Previous reports documented that curcumol has both anti-cancer and anti-viral effects, but there is little literature systematically addressing the mechanism of curcumol in EBV-positive tumors. Previously we found that nucelolin (NCL) is a target protein of curcumol in CNE2 cells, an EBV-negative NPC, and in this experiment, we reported a critical role for NCL in promoting migration and invasion of C666-1 cells, an EBV-positive NPC, and found that the expression of NCL determined the level of curcumol's efficacy. Mechanistically, NCL interacted with Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) to activate VEGFA/VEGFR1/PI3K/AKT signaling pathway, which in turn promoted NPC cell invasion and metastasis. Moreover, further study showed that the differential expression of NCL and curcumol intervention only had a regulatory effect on the nuclear accumulation of VEGFR1, which strengthened the anti-cancer effect of curcumol mediated through NCL. Our findings indicated that curcumol exerted anti EBV-positive NPC invasion and metastasis by downregulating EBNA1 and inhibiting VEGFA/VEGFR1/PI3K/AKT signaling by targeting NCL, which provides a novel pharmacological basis for curcumol's clinical use in treating patients with EBV-positive NPC.
Collapse
Affiliation(s)
- Xiao Guan
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Yu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Mengjie HuangFu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhiyi Huang
- Pathology Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Tong Dou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yisa Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Luwei Zhou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Lin Wang
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin 541199, China
| | - Juan Wang
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China.
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Han S, Wang X, Guan J, Wu J, Zhang Y, Li P, Liu Z, Abdullah SW, Zhang Z, Jin Y, Sun S, Guo H. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. J Virol 2021; 95:e0023821. [PMID: 33853964 PMCID: PMC8315980 DOI: 10.1128/jvi.00238-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.
Collapse
Affiliation(s)
- Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
| | - Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jinen Wu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| |
Collapse
|
9
|
|
10
|
Yan Y, Yang X, Sun X, Zhang H, Liu L, Ran R. Inhibitory effect of simiao qingwen baidu decoction on epstein-barr virus EA, VCA expression and DNA replication in vitro. Biomed Pharmacother 2020; 131:110638. [PMID: 32916537 DOI: 10.1016/j.biopha.2020.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
This article aims to investigate the role of Simiao Qingwen Baidu Decoction (traditional Chinese medicine) in Epstein-Barr virus (EBV)-induced infectious mononucleosis. Sprague Dawley rats were given Simiao Qingwen Baidu Decoction by gavage, and the medicated serum was collected. EBV-latent infected human Burkitt lymphomas Raji and EBV-transformed marmosets B lymphoblast cell B95-8 were treated with medicated serum. CCK8 assay and flow cytometry were performed to detect cell proliferation and apoptosis. Indirect immunofluorescence assay was performed to analyze EA or VCA positive expression. The copy-number of EBV-DNA and the gene expression were detected by quantitative PCR or quantitative real-time PCR. We found that the medicated serum inhibited proliferation of Raji and B95-8 cells, especially 10 %-medicated serum. The 10 %-medicated serum significantly suppressed EA expression in Raji cells and VCA expression in B95-8 cells. The expression of BZLF1, BRLF1, BMLF1 and EBNA-1 in Raji cells was significantly inhibited by 10 %-medicated serum. 10 %-medicated serum caused a decrease in the copy-number of EBV-DNA in Raji cells. In conclusion, our data imply that Simiao Qingwen Baidu Decoction represses the expression of EA and VCA, and EBV-DNA replication. Thus, our work suggests that Simiao Qingwen Baidu Decoction may play a vital role in anti-EBV.
Collapse
Affiliation(s)
- Yongbin Yan
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Xianhui Yang
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Xiaoxu Sun
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Huijuan Zhang
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Lingling Liu
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Ruiying Ran
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
11
|
Rainbow Kaposi's Sarcoma-Associated Herpesvirus Revealed Heterogenic Replication with Dynamic Gene Expression. J Virol 2020; 94:JVI.01565-19. [PMID: 31969436 PMCID: PMC7108829 DOI: 10.1128/jvi.01565-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms of Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation have been studied primarily by measuring the total or average activity of an infected cell population, which often consists of a mixture of both nonresponding and reactivating cells that in turn contain KSHVs at various stages of replication. Studies on KSHV gene regulation at the individual cell level would allow us to better understand the basis for this heterogeneity, and new preventive measures could be developed based on findings from nonresponding cells exposed to reactivation stimuli. Here, we generated a recombinant reporter virus, which we named "Rainbow-KSHV," that encodes three fluorescence-tagged KSHV proteins (mBFP2-ORF6, mCardinal-ORF52, and mCherry-LANA). Rainbow-KSHV replicated similarly to a prototype reporter-KSHV, KSHVr.219, and wild-type BAC16 virus. Live imaging revealed unsynchronized initiation of reactivation and KSHV replication with diverse kinetics between individual cells. Cell fractionation revealed temporal gene regulation, in which early lytic gene expression was terminated in late protein-expressing cells. Finally, isolation of fluorescence-positive cells from nonresponders increased dynamic ranges of downstream experiments 10-fold. Thus, this study demonstrates a tool to examine heterogenic responses of KSHV reactivation for a deeper understanding of KSHV replication.IMPORTANCE Sensitivity and resolution of molecular analysis are often compromised by the use of techniques that measure the ensemble average of large cell populations. Having a research tool to nondestructively identify the KSHV replication stage in an infected cell would not only allow us to effectively isolate cells of interest from cell populations but also enable more precise sample selection for advanced single-cell analysis. We prepared a recombinant KSHV that can report on its replication stage in host cells by differential fluorescence emission. Consistent with previous host gene expression studies, our experiments reveal the highly heterogenic nature of KSHV replication/gene expression at individual cell levels. The utilization of a newly developed reporter-KSHV and initial characterization of KSHV replication in single cells are presented.
Collapse
|
12
|
B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020; 94:JVI.02028-19. [PMID: 31941781 DOI: 10.1128/jvi.02028-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The binding of Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) to the latent replication origin (oriP) triggers multiple downstream events to support virus-induced pathogenesis and tumorigenesis. Although EBV is widely recognized as a B-lymphotropic infectious agent, little is known about how tissue-specific factors are involved in the establishment of latency. Here, we showed that EBNA1 binds B cell activator PAX5 to promote EBNA1/oriP-dependent binding and transcription. In addition to showing that short hairpin RNA (shRNA)-mediated PAX5 knockdown substantially abrogated the above EBNA1-dependent functions, two mini-EBV reporter plasmids were used to perform nonlytic nano-luciferase (nLuc) activity and chromatin immunoprecipitation (ChIP) assays to show how EBNA1 cooperates with PAX5 to activate the transcription at the oriP site. The expression plasmids of two PAX5 mutants, V26G (EBNA1 binding mutant) and P80R (which remained EBNA1 associated), were used to assess their capability to restore the defects caused by PAX5 depletion in EBNA1/oriP-mediated binding, transcription, and maintenance of the genome copy number of the mini-EBV episome reporter in BJAB cells stably expressing EBNA1 or that of the EBV genome in EBV-infected BJAB cells. Since p300 is known to be associated with PAX5, we showed that the loss of function of the P80R mutant in support of EBNA1/oriP-mediated transcription under PAX5 depletion conditions was linked to its defective binding to p300. ChIP-quantitative PCR (qPCR) confirmed that P80R indeed failed to recruit p300 to the oriP DNA. Our discovery suggests that EBV has evolved an exquisite strategy to take advantage of tissue-specific factors to enable the establishment of viral latency.IMPORTANCE Although B cells are known to be the primary target for EBV infection, there is limited knowledge regarding the mechanism that determines this preferable tissue tropism. An in-depth understanding of the potential link of tissue-specific factors with the viral genes and their functioning is key to deciphering how EBV induces persistent infection in the distinct types of host cells. In this study, a substantial protein-protein interaction mediated by the B cell-specific activator PAX5 and EBNA1 was identified as the general requirement for the binding of EBNA1 to the latent replication origin and for downstream events. Of importance, the EBNA1-PAX5-p300 network is directly linked to EBNA1-dependent transcription. These findings suggest that targeting the viral gene-associated tissue-specific factors may lead to new therapeutic strategies for EBV-associated malignancies.
Collapse
|
13
|
STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog 2020; 16:e1008447. [PMID: 32176739 PMCID: PMC7105294 DOI: 10.1371/journal.ppat.1008447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is strongly associated with several malignancies, including B-cell lymphomas and epithelial tumors. EBNA1 is a key antigen expressed in all EBV-associated tumors during latency that is required for maintenance of the EBV episome DNA and the regulation of viral gene transcription. However, the mechanism utilized by EBV to maintain latent infection at the levels of posttranslational regulation remains largely unclear. Here, we report that EBNA1 contains two SUMO-interacting motifs (SIM2 and SIM3), and mutation of SIM2, but not SIM3, dramatically disrupts the EBNA1 dimerization, while SIM3 contributes to the polySUMO2 modification of EBNA1 at lysine 477 in vitro. Proteomic and immunoprecipitation analyses further reveal that the SIM3 motif is required for the EBNA1-mediated inhibitory effects on SUMO2-modified STUB1, SUMO2-mediated degradation of USP7, and SUMO1-modified KAP1. Deletion of the EBNASIM motif leads to functional loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxic stress induces the SUMO2 modification of EBNA1, and in turn the dissociation of EBNA1 with STUB1, KAP1 and USP7 to increase the SUMO1 modification of both STUB1 and KAP1 for reactivation of lytic replication. Therefore, the EBNA1SIM motif plays an essential role in EBV latency and is a potential therapeutic target against EBV-associated cancers. The Small Ubiquitin-related modifier (SUMO) modification of proteins is a reversible post-translational regulation involved in control of gene transcription, among other functions. Epstein-Barr virus (EBV) infects most people worldwide and contributes to the development of several types of cancers due to its ability to induce cell proliferation and survival. EBNA1 is expressed in all forms of EBV-associated tumors. In this study, we found that EBNA1 contains a SUMO-interacting motif (SIM) named EBNA1SIM, which is required for EBNA1 to exert inhibitory effects on a SUMO2-modified complex (SC2) including STUB1, KAP1 and USP7. Disruption of EBNA1SIM leads to loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxia-mediated reactivation of viral lytic replication induces the EBNA1 dissociation from STUB1 in the SC2 complex. This discovery not only opens a new insight on the interplay between host and virus, but it also provides a therapeutic target specific against EBV-associated cancers.
Collapse
|
14
|
Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, Showe LC, Noma KI, Lieberman PM. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun 2020; 11:877. [PMID: 32054837 PMCID: PMC7018943 DOI: 10.1038/s41467-019-14152-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.
Collapse
MESH Headings
- Attachment Sites, Microbiological/genetics
- Attachment Sites, Microbiological/physiology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/virology
- Cell Line, Tumor
- Chromosomes, Human/genetics
- Chromosomes, Human/virology
- Epigenesis, Genetic
- Epstein-Barr Virus Nuclear Antigens/physiology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/physiology
- Humans
- Models, Biological
- Plasmids/genetics
- Virus Latency/genetics
- Virus Latency/physiology
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alessandra De Leo
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Olga Vladimirova
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Andrew Kossenkov
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Fang Lu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Louise C Showe
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA.
| |
Collapse
|
15
|
Dong D, Zhu S, Miao Q, Zhu J, Tang A, Qi R, Liu T, Yin D, Liu G. Nucleolin (NCL) inhibits the growth of peste des petits ruminants virus. J Gen Virol 2020; 101:33-43. [PMID: 31794379 PMCID: PMC7414435 DOI: 10.1099/jgv.0.001358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that is caused by peste des petits ruminants virus (PPRV). To date, the molecular mechanism of PPRV infection is still unclear. It is well known that host proteins might be involved in the pathogenesis process for many viruses. In this study, we first proved that nucleolin (NCL), a highly conserved host factor, interacts with the core domain of PPRV N protein through its C terminus and co-locates with the N protein in the nucleus of cells. To investigate the role of NCL in PPRV infection, the expression level of NCL was inhibited with small interfering RNAs of NCL, and the results showed that PPRV growth was improved. However, the proliferation of PPRV was inhibited when the expression level of NCL was improved. Further analysis indicated that the inhibitory effect of NCL on the PPRV was caused by stimulating the interferon (IFN) pathways in host cells. In summary, our results will help us to understand the mechanism of PPRV infection.
Collapse
Affiliation(s)
- Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Shiqiang Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Teng Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Dongdong Yin
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| |
Collapse
|
16
|
Xin S, Du S, Liu L, Xie Y, Zuo L, Yang J, Hu J, Yue W, Zhang J, Cao P, Zhu F, Lu J. Epstein-Barr Virus Nuclear Antigen 1 Recruits Cyclophilin A to Facilitate the Replication of Viral DNA Genome. Front Microbiol 2019; 10:2879. [PMID: 31921057 PMCID: PMC6923202 DOI: 10.3389/fmicb.2019.02879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1)-mediated DNA episomal genome replication and persistence are essential for the viral pathogenesis. Cyclophilin A (CYPA) is upregulated in EBV-associated nasopharyngeal carcinoma (NPC) with unknown roles. In the present approach, cytosolic CYPA was found to be bound with EBNA1 into the nucleus. The amino acid 376-459 of the EBNA1 domain was important for the binding. CYPA depletion attenuated and ectopic CYPA expression improved EBNA1 expression in EBV-positive cells. The loss of viral copy number was also accelerated by CYPA consumption in daughter cells during culture passages. Mechanistically, CYPA mediated the connection of EBNA1 with oriP (origin of EBV DNA replication) and subsequent oriP transcription, which is a key step for the initiation of EBV genome replication. Moreover, CYPA overexpression markedly antagonized the connection of EBNA1 to Ubiquitin-specific protease 7 (USP7), which is a strong host barrier with a role of inhibiting EBV genome replication. The PPIase activity of CYPA was required for the promotion of oriP transcription and antagonism with USP7. The results revealed a strategy that EBV recruited a host factor to counteract the host defense, thus facilitating its own latent genome replication. This study provides a new insight into EBV pathogenesis and potential virus-targeted therapeutics in EBV-associated NPC, in which CYPA is upregulated at all stages.
Collapse
Affiliation(s)
- Shuyu Xin
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shujuan Du
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lingzhi Liu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Xie
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lielian Zuo
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjin Hu
- Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenxing Yue
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Zhang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Fanxiu Zhu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
17
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
18
|
Shen CL, Huang WH, Hsu HJ, Yang JH, Peng CW. GAP31 from an ancient medicinal plant exhibits anti-viral activity through targeting to Epstein-Barr virus nuclear antigen 1. Antiviral Res 2019; 164:123-130. [PMID: 30817940 DOI: 10.1016/j.antiviral.2019.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/12/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
Since it was discovered as the first human tumor virus in 1964, Epstein-Barr Virus (EBV) is now implicated in several types of malignancies. Accordingly, certain aspects of EBV pathobiology have shown promise in anti-cancer research in developing virus-targeting methods for EBV-associated cancers. The unique role of EBV nuclear antigen 1 (EBNA1) in triggering episome-dependent functions has made it as the only latent gene to be expressed in most EBV+ neoplasms. Dimeric EBNA1 binds to the replication origin (oriP) to display its biological impact on EBV-driven cell transformation and maintenance. Hence, EBNA1/oriP has been made an ideal drug target site for anti-EBV protocol development. GAP31 protein was originally isolated from the seeds of an ancient medicinal plant Gelonium multiflorum. Although GAP31 has been shown to exhibit both anti-viral and anti-tumor activity, current understanding of the mechanistic picture underlying GAP31 functioning is not clear. Herein, we identify the EBNA1 DNA-binding domain as a core for GAP31 binding by performing affinity pulldown assays. Recombinant GAP31 (rGAP31) was shown to impair EBNA1-induced dimerization; consequently, it abrogated both EBNA1/oriP-mediated binding and transcription. Importantly, the therapeutic effects of GAP31 showed its capability to abrogate EBV-driven cell transformation and proliferation, and EBV-dependent tumorigenesis in xenograft animal models. Notably, the EBNA1 binding-mutant rGAP31R166A/R169A simply exhibits defective phenotypes in the above-mentioned studies. Our data suggest rGAP31 is a potential anti-viral drug which can be applied to the development of therapeutic strategies against EBV-related malignancies.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wei-Han Huang
- Department of Oncology and Hematology, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Jen-Hone Yang
- College of Medicine, Tzu Chi University, Department of Dermatology, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
19
|
Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, Guo W, Long C, Guo D, Sun X. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis 2018; 9:734. [PMID: 29959331 PMCID: PMC6026193 DOI: 10.1038/s41419-018-0779-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 01/19/2023]
Abstract
Epstein–Barr virus (EBV) can infect cells in latent and lytic period and cause serious disease. Epstein–Barr virus nuclear antigen 1 (EBNA1) is essential for the maintenance of the EBV DNA episome, replication and transcription. 2-phenylethynesulfonamide (PES) is a small molecular inhibitor of Heat shock protein 70 (Hsp70), which can interact with Hsp70 and disrupts its association with co-chaperones and substrate proteins of Hsp70. In our study, we found that PES could decrease the expression of EBNA1, which is independent of effects on EBNA1 transcription or proteasomal degradation pathway. The central glycine–alanine repeats domain was not required for inhibition of EBNA1 expression by PES. Also, PES could reduce the amount of intracellular EBV genomic DNA. PES inhibited proliferation and migration but induced cell cycle arrest and apoptosis of EBV positive cells. In addition, silencing of Hsp70 decreased expression of EBNA1 and the amounts of intracellular EBV genomic DNA, and PES increased this effect on a dose-dependent manner. On the contrast, over-expression of Hsp70 enhanced the expression of EBNA1 and the amounts of intracellular EBV genomic DNA, but PES inhibited this effect on a dose-dependent manner. Furthermore, Hsp70 interacted with EBNA1 but PES interfered this interaction. Our results indicate that PES suppresses replication and carcinogenicity of Epstein–Barr virus via inhibiting the molecular chaperone function of Hsp70.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lang Bu
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaqian Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Heng Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xi Zhang
- Second Clinical College of Wuhan University, Wuhan, 430071, China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Cong Long
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoping Sun
- The State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
21
|
Jain N, Zhu H, Khashab T, Ye Q, George B, Mathur R, Singh RK, Berkova Z, Wise JF, Braun FK, Wang X, Patel K, Xu-Monette ZY, Courty J, Young KH, Sehgal L, Samaniego F. Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia 2018; 32:663-674. [PMID: 28690315 PMCID: PMC5829046 DOI: 10.1038/leu.2017.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
Anthracyclines have been a cornerstone in the cure of diffuse large B-cell lymphoma (DLBCL) and other hematological cancers. The ability of anthracyclines to eliminate DLBCL depends on the presence of topoisomerase-II-alpha (TopIIA), a DNA repair enzyme complex. We identified nucleolin as a novel binding partner of TopIIA. Abrogation of nucleolin sensitized DLBCL cells to TopIIA targeting agents (doxorubicin/etoposide). Silencing nucleolin and challenging DLBCL cells with doxorubicin enhanced the phosphorylation of H2AX (γH2AX-marker of DNA damage) and allowed DNA fragmentation. Reconstitution of nucleolin expression in nucleolin-knockdown DLBCL cells prevented TopIIA targeting agent-induced apoptosis. Nucleolin binding to TopIIA was mapped to RNA-binding domain 3 of nucleolin, and this interaction was essential for blocking DNA damage and apoptosis. Nucleolin silencing decreased TopIIA decatenation activity, but enhanced formation of TopIIA-DNA cleavable complexes in the presence of etoposide. Moreover, combining nucleolin inhibitors: aptamer AS1411 or nucant N6L with doxorubicin reduced DLBCL cell survival. These findings are of clinical importance because low nucleolin levels versus high nucleolin levels in DLBCL predicted 90-month estimated survival of 70% versus 12% (P<0.0001) of patients treated with R-CHOP-based therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- DNA Damage
- DNA Topoisomerases, Type II/metabolism
- Female
- Gene Expression
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Molecular Targeted Therapy
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors
- Poly-ADP-Ribose Binding Proteins/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Nucleolin
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Haifeng Zhu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Tamer Khashab
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, Pennsylvania, USA
| | - Qing Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Ram Kumar Singh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jillian F. Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Frank K. Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Xin Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jose Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires, CNRS, Université Paris-Est, 61 avenue du général De Gaulle, 94010 Créteil, France
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| |
Collapse
|
22
|
Iarovaia OV, Ioudinkova ES, Razin SV, Vassetzky YS. Role of the Nucleolus in Rearrangements of the IGH Locus. Mol Biol 2018. [DOI: 10.1134/s0026893317050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ayoubian H, Fröhlich T, Pogodski D, Flatley A, Kremmer E, Schepers A, Feederle R, Arnold GJ, Grässer FA. Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein-Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation. J Gen Virol 2017; 98:2128-2142. [PMID: 28758620 DOI: 10.1099/jgv.0.000870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.
Collapse
Affiliation(s)
- Hiresh Ayoubian
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Dagmar Pogodski
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Friedrich A Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| |
Collapse
|
24
|
Lista MJ, Martins RP, Billant O, Contesse MA, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, Teulade-Fichou MP, Fåhraeus R, Voisset C, Blondel M. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 2017; 8:16043. [PMID: 28685753 PMCID: PMC5504353 DOI: 10.1038/ncomms16043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1, which is essential for viral genome maintenance but highly antigenic. EBV has seemingly evolved a system in which the mRNA sequence encoding the glycine-alanine repeats (GAr) of the EBNA1 protein limits its expression to the minimal level necessary for function while minimizing immune recognition. Here, we identify nucleolin (NCL) as a host factor required for this process via a direct interaction with G-quadruplexes formed in GAr-encoding mRNA sequence. Overexpression of NCL enhances GAr-based inhibition of EBNA1 protein expression, whereas its downregulation relieves the suppression of both expression and antigen presentation. Moreover, the G-quadruplex ligand PhenDC3 prevents NCL binding to EBNA1 mRNA and reverses GAr-mediated repression of EBNA1 expression and antigen presentation. Hence the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to trigger an immune response against EBV-carrying cancers.
Collapse
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Rodrigo Prado Martins
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Olivier Billant
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marie-Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Sarah Findakly
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Pierre Pochard
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Chrysoula Daskalogianni
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Claire Beauvineau
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Corinne Guetta
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Christophe Jamin
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Marie-Paule Teulade-Fichou
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Robin Fåhraeus
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| |
Collapse
|
25
|
Lago S, Tosoni E, Nadai M, Palumbo M, Richter SN. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim Biophys Acta Gen Subj 2017; 1861:1371-1381. [PMID: 27913192 PMCID: PMC5466061 DOI: 10.1016/j.bbagen.2016.11.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants. METHODS Electrophoresis mobility shift assay was used to detect NCL/G4 binding; circular dichroism to assess G4 folding, topology and stability; dimethylsulfate footprinting to detect G bases involved in G4 folding. RESULTS The purified full-length human NCL was initially tested on telomeric G4 target sequences to allow for modulation of loop, conformation, length, G-tract number, stability. G4s in promoter regions with more complex sequences were next employed. We found that NCL binding to G4s heavily relies on G4 loop length, independently of the conformation and oligonucleotide/loop sequence. Low stability G4s are preferred. When alternative G4 conformations are possible, those with longer loops are preferred upon binding to NCL, even if G-tracts need to be spared from G4 folding. CONCLUSIONS Our data provide insight into how G4s and the associated proteins may control the ON/OFF molecular switch to several pathological processes, including neurodegeneration, tumor and virus activation. Understanding these regulatory determinants is the first step towards the development of targeted therapies. GENERAL SIGNIFICANCE The indication that NCL binding preferentially stimulates and induces folding of G4s containing long loops suggests NCL ability to modify the overall structure and steric hindrance of the involved nucleic acid regions. This protein-induced modification of the G4 structure may represent a cellular mechanosensor mechanism to molecular signaling and disease pathogenesis. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Elena Tosoni
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical Sciences, University of Padua, via Marzolo 5, 35131 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
26
|
Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1414-1428. [PMID: 28007579 DOI: 10.1016/j.bbagen.2016.12.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA.
| | | | - Mohammad T Malik
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| | - Emily M Murphy
- Department of Biomedical Engineering, University of Louisville, USA
| | - Martin G O'Toole
- Department of Biomedical Engineering, University of Louisville, USA
| | - John O Trent
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| |
Collapse
|
27
|
Ribeiro J, Oliveira C, Malta M, Sousa H. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review. Future Oncol 2017; 13:567-579. [PMID: 28118740 DOI: 10.2217/fon-2016-0475] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
METHODS A systematic review of literature was conducted to identify all published reports regarding the expression of Epstein-Barr Virus (EBV) proteins/transcripts and EBV latency patterns in EBV-associated gastric carcinomas (EBVaGC). RESULTS The literature search retrieved 247 papers, of which 25 papers matched the inclusion criteria. The analysis reveals that the most frequently expressed EBV latent proteins are EBNA1 (98.1%) and LMP2A (53.8%), while LMP1 and LMP2B are present in only 10% of cases. Lytic proteins, such as BARF0 and BARF1, and other lytic transcripts are present in almost half of cases. CONCLUSION EBVaGC seems to display a unique transcription/latency pattern that does not fit the 'standard' EBV latency patterns and therefore should be further studied to better understand EBVaGC carcinogenesis.
Collapse
Affiliation(s)
- Joana Ribeiro
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Faculty of Medicine of Porto University (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal
| | - Cláudia Oliveira
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mariana Malta
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
28
|
Affinity Purification-Mass Spectroscopy Methods for Identifying Epstein-Barr Virus-Host Interactions. Methods Mol Biol 2017; 1532:79-92. [PMID: 27873268 DOI: 10.1007/978-1-4939-6655-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considerable insight into the function and mechanism of action of viral proteins has come from identifying the cellular proteins with which they interact. In recent years, mass spectrometry-based methods have emerged as the method of choice for protein interaction discovery due to their comprehensive and unbiased nature. Methods involving single affinity purifications of epitope-tagged viral proteins (AP-MS) and tandem affinity purifications of viral proteins with two purification tags (TAP tagging) have both been used to identify novel host interactions with EBV proteins. However, to date these methods have only been applied to a small number of EBV proteins. Here we provide detailed methods of AP-MS and TAP tagging approaches that can be applied to any EBV protein in order to discover its host interactions.
Collapse
|
29
|
HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol 2016; 90:5353-5367. [PMID: 27009953 PMCID: PMC4934754 DOI: 10.1128/jvi.00239-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixed-lineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependent C promoter (Cp) and Q promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt's lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation. IMPORTANCE EBV latency is associated with several human cancers. Viral latent cycle gene expression is regulated by the epigenetic control of the OriP enhancer region. Here, we show that cellular factors OCT2 and HCF1 bind OriP in association with EBNA1 to maintain elevated histone H3K4me3 and transcriptional enhancer function. HCF1 is known as a transcriptional coactivator of herpes simplex virus (HSV) immediate early (IE) transcription, suggesting that OriP enhancer shares aspects of HSV IE transcription control.
Collapse
|
30
|
Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, Chen YL, Chen HC, Hsu HJ, Liou JW, Kieff E, Peng CW. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proc Natl Acad Sci U S A 2016; 113:2229-34. [PMID: 26858444 PMCID: PMC4776490 DOI: 10.1073/pnas.1525444113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Jun Liang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Liangru Ke
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Ya-Lin Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hong-Chi Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Biochemical Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Elliott Kieff
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan;
| |
Collapse
|
31
|
Harter MR, Liu CD, Shen CL, Gonzalez-Hurtado E, Zhang ZM, Xu M, Martinez E, Peng CW, Song J. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2. PLoS Pathog 2016; 12:e1005414. [PMID: 26845565 PMCID: PMC4742278 DOI: 10.1371/journal.ppat.1005414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. Since the discovery of Epstein-Barr virus (EBV) 50 years ago, the etiologic links between EBV and a variety of human cancers have gained wide recognition. It is estimated that >90% of the worldwide population carry this virus, which causes over 200,000 cancers across the world every year. One of the key proteins in driving immortalization of EBV-infected B cells is Epstein-Barr virus nuclear antigen 2 (EBNA2), which regulates the expression of many cellular and viral genes. However, the molecular mechanism underlying the interactions between EBNA2 and cellular transcriptional regulators remains enigmatic. Here, we determined the crystal structure of the coiled-coil and MYND tandem domains of BS69/ZMYND11, a candidate tumor suppressor, in complex with an EBNA2 peptide containing a PXLXP motif. We found that the coiled-coil and MYND domains of BS69 cooperate in binding to EBNA2. We also showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-associated B cells. Ectopic BS69 coiled-coil-MYND dual domain is recruited to viral target promoters through interaction with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Together, this study identifies the BS69 C-terminal domains as an inhibitor of EBNA2.
Collapse
Affiliation(s)
- Matthew R. Harter
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Elsie Gonzalez-Hurtado
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Muyu Xu
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- MARC U-STAR Program, University of California, Riverside, Riverside, California, United States of America
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- * E-mail: (CWP); (JS)
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (CWP); (JS)
| |
Collapse
|
32
|
Tang Y, Lu S, Gan X, Liu F, Zhang Y, Luo C, Pan Y, Hong L, Gan R. Expression of LMP and EBNA genes in Epstein-Barr virus-associated lymphomas in Hu-PBL/SCID mice. Oncol Rep 2015; 35:905-11. [PMID: 26548532 DOI: 10.3892/or.2015.4401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
Abstract
Transplantation of peripheral blood lymphocytes (PBLs) from healthy humans with latent Epstein-Barr virus (EBV) infection into severe combined immunodeficiency (SCID) mice results in development of EBV-associated human B-cell lymphoma. However, the expression of EBV genes in relation to lymphoma development has not been reported. We investigated latent membrane protein (LMP) and EBV nuclear antigen (EBNA) gene expression in PBLs from EBV-positive blood donors and induced-lymphoma cells from SCID mice to elucidate the functions and effects of the EBV genome in the occurrence and development of lymphoma. PBLs were isolated from 9 healthy blood donors and transplanted into SCID mice. Gene expression levels of LMP-1, LMP-2A, and LMP-2B and EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C and EBNA-LP were monitored by real-time quantitative-polymerase chain reaction (qRT-PCR) in cells from nine EBV-induced lymphomas and in matched lymphocytes from healthy subjects. LMP-1, EBNA-1 and EBNA-2 protein levels were detected by western blotting. As a result, LMP-1, LMP-2A and LMP-2B mRNA levels were upregulated 256-, 38- and 331-fold, respectively, in the EBV-induced lymphoma cells compared with the controls, while EBNA-1 and EBNA-3A mRNA levels were upregulated 1157- and 1154-fold, respectively. EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP mRNAs were detected in lymphoma cells, but not in lymphocytes from EBV-positive blood donors. LMP-1 and EBNA-2 proteins were not expressed in lymphocytes from EBV-positive blood donors, according to western blotting. Weak EBNA-1 expression was observed in lymphocytes from blood donors with latent EBV infection, while LMP-1, EBNA-1 and EBNA-2 protein levels were significantly upregulated in EBV-induced lymphoma cells, consistent with mRNA expression levels detected by qRT-PCR. In conclusion, LMP-1, LMP-2A, LMP-2B, EBNA-1 and EBNA-3A were upregulated in EBV-induced lymphoma cells, while EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP were absent in lymphocytes from humans with latent EBV infection, but were positively expressed in EBV-induced lymphoma cells.
Collapse
Affiliation(s)
- Yunlian Tang
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suli Lu
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoning Gan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Liu
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chunyan Luo
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuxia Pan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Hong
- College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ruliang Gan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
33
|
Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, Palù G, Fabris D, Richter SN. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 2015; 43:8884-97. [PMID: 26354862 PMCID: PMC4605322 DOI: 10.1093/nar/gkv897] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 01/26/2023] Open
Abstract
Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy.
Collapse
Affiliation(s)
- Elena Tosoni
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Elena Butovskaya
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Dan Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
34
|
Lista MJ, Voisset C, Contesse M, Friocourt G, Daskalogianni C, Bihel F, Fåhraeus R, Blondel M. The long‐lasting love affair between the budding yeast
Saccharomyces cerevisiae
and the Epstein‐Barr virus. Biotechnol J 2015; 10:1670-81. [DOI: 10.1002/biot.201500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marie‐Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Chrysoula Daskalogianni
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Illkirch, France
| | - Robin Fåhraeus
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
35
|
Rawlinson SM, Moseley GW. The nucleolar interface of
RNA
viruses. Cell Microbiol 2015; 17:1108-20. [DOI: 10.1111/cmi.12465] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Stephen M. Rawlinson
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| | - Gregory W. Moseley
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| |
Collapse
|
36
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|