1
|
Amniouel S, Yalamanchili K, Sankararaman S, Jafri MS. Evaluating Ovarian Cancer Chemotherapy Response Using Gene Expression Data and Machine Learning. BIOMEDINFORMATICS 2024; 4:1396-1424. [PMID: 39149564 PMCID: PMC11326537 DOI: 10.3390/biomedinformatics4020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological cancer in the United States. Among the different types of OC, serous ovarian cancer (SOC) stands out as the most prevalent. Transcriptomics techniques generate extensive gene expression data, yet only a few of these genes are relevant to clinical diagnosis. Methods Methods for feature selection (FS) address the challenges of high dimensionality in extensive datasets. This study proposes a computational framework that applies FS techniques to identify genes highly associated with platinum-based chemotherapy response on SOC patients. Using SOC datasets from the Gene Expression Omnibus (GEO) database, LASSO and varSelRF FS methods were employed. Machine learning classification algorithms such as random forest (RF) and support vector machine (SVM) were also used to evaluate the performance of the models. Results The proposed framework has identified biomarkers panels with 9 and 10 genes that are highly correlated with platinum-paclitaxel and platinum-only response in SOC patients, respectively. The predictive models have been trained using the identified gene signatures and accuracy of above 90% was achieved. Conclusions In this study, we propose that applying multiple feature selection methods not only effectively reduces the number of identified biomarkers, enhancing their biological relevance, but also corroborates the efficacy of drug response prediction models in cancer treatment.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
| | - Keertana Yalamanchili
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Sreenidhi Sankararaman
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- Department of Biomedical Engineering, The John Hopkins University, Baltimore, MD 21218, USA
| | - Mohsin Saleet Jafri
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Onuma T, Asare-Werehene M, Fujita Y, Yoshida Y, Tsang BK. Plasma Gelsolin Inhibits Natural Killer Cell Function and Confers Chemoresistance in Epithelial Ovarian Cancer. Cells 2024; 13:905. [PMID: 38891037 PMCID: PMC11171658 DOI: 10.3390/cells13110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Plasma gelsolin (pGSN) overexpression in ovarian cancer (OVCA) disarms immune function, contributing to chemoresistance. The aim of this study was to investigate the immunoregulatory effects of pGSN expression on natural killer (NK) cell function in OVCA. OVCA tissues from primary surgeries underwent immunofluorescent staining of pGSN and the activated NK cell marker natural cytotoxicity triggering receptor 1 to analyze the prognostic impact of pGSN expression and activated NK cell infiltration. The immunoregulatory effects of pGSN on NK cells were assessed using apoptosis assay, cytokine secretion, immune checkpoint-receptor expression, and phosphorylation of STAT3. In OVCA tissue analyses, activated NK cell infiltration provided survival advantages to patients. However, high pGSN expression attenuated the survival benefits of activated NK cell infiltration. In the in vitro experiment, pGSN in OVCA cells induced NK cell death through cell-to-cell contact. pGSN increased T-cell immunoglobulin and mucin-domain-containing-3 expression (TIM-3) on activated NK cells. Further, it decreased interferon-γ production in activated TIM-3+ NK cells, attenuating their anti-tumor effects. Thus, increased pGSN expression suppresses the anti-tumor functions of NK cells. The study provides insights into why immunotherapy is rarely effective in patients with OVCA and suggests novel treatment strategies.
Collapse
Affiliation(s)
- Toshimichi Onuma
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Meshach Asare-Werehene
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yuko Fujita
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
3
|
Gao D, Jiang T, Liu Y. Gelsolin knockdown confers radiosensitivity to glioblastoma cells. Cancer Med 2024; 13:e7286. [PMID: 38803199 PMCID: PMC11130581 DOI: 10.1002/cam4.7286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Radiotherapy (RT) is a cornerstone of the glioblastoma (GBM) treatment. However, the resistance of tumour cells to radiation results in early recurrence. The mechanisms underlying GBM radioresistance remain unclear. Screening for differentially expressed genes (DEGs) related to radiation might be a potential solution to this problem. METHOD RT-associated DEGs were screened based on the RNA sequencing of 15 paired primary and recurrent GBMs. The mRNA and protein expression of candidate genes were validated in RNA sequencing of The Chinese Genome Atlas (CGGA) dataset and 18 cases of GBM samples. The relationship between the candidate gene and radiation was confirmed in irradiated GBM cells. The association of candidate gene with clinical characteristics and survival was investigated in the CGGA and TCGA dataset. Biological function and pathway analysis were explored by gene ontology analysis. The association of the candidate gene with radiosensitivity was verified using cell counting Kit-8, comet, and colony formation assays in vitro and subcutaneous tumour xenograft experiments in vivo. RESULTS Gelsolin (GSN) was selected for further study. GSN expression was significant elevated in recurrent GBM and up-regulated in irradiated GBM cell lines. High expression of GSN was enriched in malignant phenotype of glioma. Moreover, high expression of GSN was associated with poor prognosis. Further investigation demonstrated that GSN-knockdown (GSN-KD) combined with RT significantly inhibited cell proliferation and enhanced radiosensitivity in vivo and in vitro. Mechanistically, GSN-KD could lead to more serious DNA damage and promotes apoptosis after RT. CONCLUSION Radiation induced up-regulated of GSN. GSN-KD could enhance the radiosensitivity of GBM.
Collapse
Affiliation(s)
- Dezhi Gao
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Gamma‐Knife Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanwei Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Radiation Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Zhang H, Ma S, Wang Y, Chen X, Li Y, Wang M, Xu Y. Development of an obesity-related multi-gene prognostic model incorporating clinical characteristics in luminal breast cancer. iScience 2024; 27:109133. [PMID: 38384850 PMCID: PMC10879711 DOI: 10.1016/j.isci.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Despite adjuvant chemotherapy and endocrine therapy in luminal breast cancer (LBC), relapses are common. Addressing this, we aim to develop a prognostic model to refine adjuvant therapy strategies, particularly for patients at high recurrence risk. Notably, obesity profoundly affects the tumor microenvironment (TME) of LBC. However, it is unclear whether obesity-related biological features can effectively screen high-risk patients. Utilizing weighted gene coexpression network analysis (WGCNA) on RNA sequencing (RNAseq) data, we identified seven obese LBC genes (OLGs) closely associated with patient prognosis. Subsequently, we developed a luminal obesity-gene clinical prognostic index (LOG-CPI), combining a 7-gene signature, TNM staging, and age. Its predictive efficacy was confirmed across validation datasets and a clinical cohort (5-year accuracy = 0.828, 0.760, 0.751, and 0.792, respectively). LOG-CPI emerges as a promising predictor for clinical prognosis and treatment response, helping distinguish molecular and immunological features in LBC patients and guiding clinical practice by identifying varying prognoses.
Collapse
Affiliation(s)
- Hengjun Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shuai Ma
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People's Hospital), Shenyang, China
| | - Yusong Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiuyun Chen
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yumeng Li
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
5
|
Manzoor HB, Asare-Werehene M, Pereira SD, Satyamoorthy K, Tsang BK. The regulation of plasma gelsolin by DNA methylation in ovarian cancer chemo-resistance. J Ovarian Res 2024; 17:15. [PMID: 38216951 PMCID: PMC10785480 DOI: 10.1186/s13048-023-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.
Collapse
Affiliation(s)
- Hafiza Bushra Manzoor
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara University, Manjushree Block, Manjushree Nagar Sattur, Dharwad, Karnataka, 580 009, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
6
|
Alsofyani AA, Nedjadi T. Gelsolin, an Actin-Binding Protein: Bioinformatic Analysis and Functional Significance in Urothelial Bladder Carcinoma. Int J Mol Sci 2023; 24:15763. [PMID: 37958747 PMCID: PMC10647509 DOI: 10.3390/ijms242115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 11/15/2023] Open
Abstract
The involvement of the actin-regulatory protein, gelsolin (GSN), in neoplastic transformation has been reported in different cancers including bladder cancer. However, the exact mechanism by which GSN influences bladder cancer development is not well understood. Here, we sought to reveal the functional significance of GSN in bladder cancer by undertaking a comprehensive bioinformatic analysis of TCGA datasets and through the assessment of multiple biological functions. GSN expression was knocked down in bladder cancer cell lines with two siRNA isoforms targeting GSN. Proliferation, migration, cell cycle and apoptosis assays were carried out. GSN expression, enrichment analysis, protein-protein interaction and immune infiltration analysis were verified through online TCGA tools. The data indicated that GSN expression is associated with bladder cancer proliferation, migration and enhanced cell apoptosis through regulation of NF-κB expression. GSN expression correlated with various inflammatory cells and may influence the immunity of the tumor microenvironment. Computational analysis identified several interacting partners which are associated with cancer progression and patient outcome. The present results demonstrate that GSN plays an important role in bladder cancer pathogenesis and may serve as a potential biomarker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| |
Collapse
|
7
|
Asare-Werehene M, Hunter RA, Gerber E, Reunov A, Brine I, Chang CY, Chang CC, Shieh DB, Burger D, Anis H, Tsang BK. The Application of an Extracellular Vesicle-Based Biosensor in Early Diagnosis and Prediction of Chemoresponsiveness in Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15092566. [PMID: 37174032 PMCID: PMC10177169 DOI: 10.3390/cancers15092566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Ovarian cancer (OVCA) is the most fatal gynecological cancer with late diagnosis and plasma gelsolin (pGSN)-mediated chemoresistance representing the main obstacles to treatment success. Since there is no reliable approach to diagnosing patients at an early stage as well as predicting chemoresponsiveness, there is an urgent need to develop a diagnostic platform for such purposes. Small extracellular vesicles (sEVs) are attractive biomarkers given their potential accuracy for targeting tumor sites. METHODS We have developed a novel biosensor which utilizes cysteine-functionalized gold nanoparticles that simultaneously bind to cisplatin (CDDP) and plasma/cell-derived EVs, affording us the advantage of predicting OVCA chemoresponsiveness, and early diagnosis using surface-enhanced Raman spectroscopy. RESULTS We found that pGSN regulates cortactin (CTTN) content resulting in the formation of nuclear- and cytoplasmic-dense granules facilitating the secretion of sEVs carrying CDDP; a strategy used by resistant cells to survive CDDP action. The clinical utility of the biosensor was tested and subsequently revealed that the sEV/CA125 ratio outperformed CA125 and sEV individually in predicting early stage, chemoresistance, residual disease, tumor recurrence, and patient survival. CONCLUSION These findings highlight pGSN as a potential therapeutic target and provide a potential diagnostic platform to detect OVCA earlier and predict chemoresistance; an intervention that will positively impact patient-survival outcomes.
Collapse
Affiliation(s)
- Meshach Asare-Werehene
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Robert A Hunter
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emma Gerber
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Arkadiy Reunov
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, NS B2G 2W5, Canada
| | - Isaiah Brine
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Physics, Academia Sinica, Taipei 10529, Taiwan
| | - Dar-Bin Shieh
- Institute of Basic Medical Science, Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
- Advanced Optoelectronic Technology Center and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Hanan Anis
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Benjamin K Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
8
|
Arentz G, Mittal P, Klingler-Hoffmann M, Condina MR, Ricciardelli C, Lokman NA, Kaur G, Oehler MK, Hoffmann P. Label-Free Quantification Mass Spectrometry Identifies Protein Markers of Chemotherapy Response in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15072172. [PMID: 37046833 PMCID: PMC10093294 DOI: 10.3390/cancers15072172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Eighty percent of ovarian cancer patients initially respond to chemotherapy, but the majority eventually experience a relapse and die from the disease with acquired chemoresistance. In addition, 20% of patients do not respond to treatment at all, as their disease is intrinsically chemotherapy resistant. Data-independent acquisition nano-flow liquid chromatography-mass spectrometry (DIA LC-MS) identified the three protein markers: gelsolin (GSN), calmodulin (CALM1), and thioredoxin (TXN), to be elevated in high-grade serous ovarian cancer (HGSOC) tissues from patients that responded to chemotherapy compared to those who did not; the differential expression of the three protein markers was confirmed by immunohistochemistry. Analysis of the online GENT2 database showed that mRNA levels of GSN, CALM1, and TXN were decreased in HGSOC compared to fallopian tube epithelium. Elevated levels of GSN and TXN mRNA expression correlated with increased overall and progression-free survival, respectively, in a Kaplan-Meier analysis of a large online repository of HGSOC patient data. Importantly, differential expression of the three protein markers was further confirmed when comparing parental OVCAR-5 cells to carboplatin-resistant OVCAR-5 cells using DIA LC-MS analysis. Our findings suggest that GSN, CALM1, and TXN may be useful biomarkers for predicting chemotherapy response and understanding the mechanisms of chemotherapy resistance. Proteomic data are available via ProteomeXchange with identifier PXD033785.
Collapse
Affiliation(s)
- Georgia Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Parul Mittal
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | | | - Mark R Condina
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Peter Hoffmann
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
9
|
D’Arca D, Severi L, Ferrari S, Dozza L, Marverti G, Magni F, Chinello C, Pagani L, Tagliazucchi L, Villani M, d’Addese G, Piga I, Conteduca V, Rossi L, Gurioli G, De Giorgi U, Losi L, Costi MP. Serum Mass Spectrometry Proteomics and Protein Set Identification in Response to FOLFOX-4 in Drug-Resistant Ovarian Carcinoma. Cancers (Basel) 2023; 15:cancers15020412. [PMID: 36672361 PMCID: PMC9856519 DOI: 10.3390/cancers15020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer is a highly lethal gynecological malignancy. Drug resistance rapidly occurs, and different therapeutic approaches are needed. So far, no biomarkers have been discovered to predict early response to therapies in the case of multi-treated ovarian cancer patients. The aim of our investigation was to identify a protein panel and the molecular pathways involved in chemotherapy response through a combination of studying proteomics and network enrichment analysis by considering a subset of samples from a clinical setting. Differential mass spectrometry studies were performed on 14 serum samples from patients with heavily pretreated platinum-resistant ovarian cancer who received the FOLFOX-4 regimen as a salvage therapy. The serum was analyzed at baseline time (T0) before FOLFOX-4 treatment, and before the second cycle of treatment (T1), with the aim of understanding if it was possible, after a first treatment cycle, to detect significant proteome changes that could be associated with patients responses to therapy. A total of 291 shared expressed proteins was identified and 12 proteins were finally selected between patients who attained partial response or no-response to chemotherapy when both response to therapy and time dependence (T0, T1) were considered in the statistical analysis. The protein panel included APOL1, GSN, GFI1, LCATL, MNA, LYVE1, ROR1, SHBG, SOD3, TEC, VPS18, and ZNF573. Using a bioinformatics network enrichment approach and metanalysis study, relationships between serum and cellular proteins were identified. An analysis of protein networks was conducted and identified at least three biological processes with functional and therapeutic significance in ovarian cancer, including lipoproteins metabolic process, structural component modulation in relation to cellular apoptosis and autophagy, and cellular oxidative stress response. Five proteins were almost independent from the network (LYVE1, ROR1, TEC, GFI1, and ZNF573). All proteins were associated with response to drug-resistant ovarian cancer resistant and were mechanistically connected to the pathways associated with cancer arrest. These results can be the basis for extending a biomarker discovery process to a clinical trial, as an early predictive tool of chemo-response to FOLFOX-4 of heavily treated ovarian cancer patients and for supporting the oncologist to continue or to interrupt the therapy.
Collapse
Affiliation(s)
- Domenico D’Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Leda Severi
- Department Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Department Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Luca Dozza
- Seràgnoli Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20126 Vedano al Lambro, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20126 Vedano al Lambro, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20126 Vedano al Lambro, Italy
| | - Lorenzo Tagliazucchi
- Department Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine (CEM) Doctorate School, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Marco Villani
- Department of Physics, Informatics and Mathematics, Modena and Reggio Emilia University, Via Campi 213/A, 41125 Modena, Italy
| | - Gianluca d’Addese
- Department of Physics, Informatics and Mathematics, Modena and Reggio Emilia University, Via Campi 213/A, 41125 Modena, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20126 Vedano al Lambro, Italy
| | - Vincenza Conteduca
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), 47014 Meldola, Italy
| | - Lorena Rossi
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), 47014 Meldola, Italy
| | - Giorgia Gurioli
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), 47014 Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), 47014 Meldola, Italy
| | - Lorena Losi
- Department Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Correspondence: (L.L.); (M.P.C.)
| | - Maria Paola Costi
- Department Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Correspondence: (L.L.); (M.P.C.)
| |
Collapse
|
10
|
Wang Y, Bi X, Luo Z, Wang H, Ismtula D, Guo C. Gelsolin: A comprehensive pan-cancer analysis of potential prognosis, diagnostic, and immune biomarkers. Front Genet 2023; 14:1093163. [PMID: 37035750 PMCID: PMC10076574 DOI: 10.3389/fgene.2023.1093163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Gelsolin (GSN), a calcium-regulated actin-binding protein, is out of balance in various cancers. It can mediate cytoskeletal remodeling and regulate epithelial-mesenchymal conversion (EMT), but the studies on GSN function in pan-cancer are limited. Methods: We studied the transcription level, prognostic impact, diagnostic value, genetic, epigenetic modification, methylation level and immune significance of GSN in pan-cancer to fully comprehend the function of GSN in various malignancies based on multiple databases like The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Results: Pan-cancer research showed that GSN was downregulated in most tumors and expressed differently in immunological and molecular subtypes of many cancers. GSN had varying impacts on the prognosis of various tumor types. However, all had moderate to high diagnostic efficiency, and serum GSN had good diagnostic value in breast cancer patients (AUC = 0.947). Moreover, GSN was a distinguishing prognosis factor for some specific cancer types. The GSN protein was hypophosphorylated, and its promoter was hypermethylated in most cancers. GSN was linked to the infiltration level of several immunity cells and was essential in anti-tumor immune cell infiltration. KEGG and GSEA analyses showed that GSN was vital in the functions and proteoglycans processes in cancer, chemokine signaling pathway and other immune-related pathways, DNA methylation and cell cycle. Discussion: In conclusion, GSN possesses the ability to be a predictive, diagnostic, and immune indicator in pan-cancer.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Urumqi, China
| | - Zhiwen Luo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiyan Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilimulati Ismtula
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Dilimulati Ismtula, ; Chenming Guo,
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Dilimulati Ismtula, ; Chenming Guo,
| |
Collapse
|
11
|
Onuma T, Asare-Werehene M, Yoshida Y, Tsang BK. Exosomal Plasma Gelsolin Is an Immunosuppressive Mediator in the Ovarian Tumor Microenvironment and a Determinant of Chemoresistance. Cells 2022; 11:cells11203305. [PMID: 36291171 PMCID: PMC9600545 DOI: 10.3390/cells11203305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Ovarian Cancer (OVCA) is the most fatal gynecologic cancer and has a 5-year survival rate less than 45%. This is mainly due to late diagnosis and drug resistance. Overexpression of plasma gelsolin (pGSN) is key contributing factor to OVCA chemoresistance and immunosuppression. Gelsolin (GSN) is a multifunctional protein that regulates the activity of actin filaments by cleavage, capping, and nucleation. Generally, it plays an important role in cytoskeletal remodeling. GSN has three isoforms: cytosolic GSN, plasma GSN (pGSN), and gelsolin-3. Exosomes containing pGSN are released and contribute to the progression of OVCA. This review describes how pGSN overexpression inhibits chemotherapy-induced apoptosis and triggers positive feedback loops of pGSN expression. It also describes the mechanisms by which exosomal pGSN promotes apoptosis and dysfunction in tumor-killing immune cells. A discussion on the potential of pGSN as a prognostic, diagnostic, and therapeutic marker is also presented herein.
Collapse
Affiliation(s)
- Toshimichi Onuma
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & the Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan
| | - Meshach Asare-Werehene
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & the Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan
- Correspondence: (Y.Y.); (B.K.T.)
| | - Benjamin K. Tsang
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & the Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Correspondence: (Y.Y.); (B.K.T.)
| |
Collapse
|
12
|
Hsieh CH, Wang YC. Emerging roles of plasma gelsolin in tumorigenesis and modulating the tumor microenvironment. Kaohsiung J Med Sci 2022; 38:819-825. [PMID: 35942641 DOI: 10.1002/kjm2.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The protein expression of gelsolin, an actin scavenger controlling cytoskeletal remodeling, cell morphology, differentiation, movement, and apoptosis, has been found to be significantly decreased in several pathological conditions including neurodegenerative diseases, inflammatory disorders, and cancers. Its extracellular isoform, called plasma gelsolin (pGSN), is one of the most abundant plasma proteins in the circulation, and has emerged as a novel diagnostic biomarker for early disease detection. Current evidence reveals that gelsolin can function as either an oncoprotein or a tumor suppressor depending on the carcinoma type. Interestingly, recent studies have shown that pGSN is also involved in immunomodulation, revealing the multifunctional roles of pGSN in tumor progression. In this review, we discuss the current knowledge focusing on the roles of gelsolin in inflammation and wound healing, cancers, and tumor microenvironment. Future prospects of pGSN related studies and clinical application are also addressed.
Collapse
Affiliation(s)
- Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022; 14:1652. [PMID: 35406424 PMCID: PMC8997157 DOI: 10.3390/cancers14071652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.
Collapse
Affiliation(s)
- Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Hin Chong Leong
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Arpita Datta
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
14
|
Chantada-Vázquez MDP, Conde-Amboage M, Graña-López L, Vázquez-Estévez S, Bravo SB, Núñez C. Circulating Proteins Associated with Response and Resistance to Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14041087. [PMID: 35205837 PMCID: PMC8870308 DOI: 10.3390/cancers14041087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The goal of this study was to find circulating proteins that can be easily sampled and incorporated into a clinical setting to improve predictive treatment response in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy. We looked for potential biomarkers in serum, which we identified using two proteomics techniques: qualitative LC-MS/MS and a quantitative assay that assessed protein expression between responders and non-responders HER2-positive breast cancer patients to neoadjuvant chemotherapy. Abstract Despite the increasing use of neoadjuvant chemotherapy (NAC) in HER2-positive breast cancer (BC) patients, the clinical problem of predicting individual treatment response remains unanswered. Furthermore, the use of ineffective chemotherapeutic regimens should be avoided. Serum biomarker levels are being studied more and more for their ability to predict therapy response and aid in the development of personalized treatment regimens. This study aims to identify effective protein networks and biomarkers to predict response to NAC in HER2-positive BC patients through an exhaustive large-scale LC-MS/MS-based qualitative and quantitative proteomic profiling of serum samples from responders and non-responders. Serum samples from HER2-positive BC patients were collected before NAC and were processed by three methods (with and without nanoparticles). The qualitative analysis revealed differences in the proteomic profiles between responders and non-responders, mainly in proteins implicated in the complement and coagulation cascades and apolipoproteins. Qualitative analysis confirmed that three proteins (AFM, SERPINA1, APOD) were correlated with NAC resistance. In this study, we show that serum biomarker profiles can predict treatment response and outcome in the neoadjuvant setting. If these findings are further developed, they will be of significant clinical utility in the design of treatment regimens for individual BC patients.
Collapse
Affiliation(s)
- María del Pilar Chantada-Vázquez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Mercedes Conde-Amboage
- Models of Optimization Decision, Statistics and Applications Research Group (MODESTYA), Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CITMAga, 15782 Santiago de Compostela, Spain
| | - Lucía Graña-López
- Breast Pathology Group, Lucus Augusti University Hospital (HULA)-IDIS, Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Radiology Department, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: (S.B.B.); (C.N.)
| | - Cristina Núñez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence: (S.B.B.); (C.N.)
| |
Collapse
|
15
|
Asare-Werehene M, Tsuyoshi H, Zhang H, Salehi R, Chang CY, Carmona E, Librach CL, Mes-Masson AM, Chang CC, Burger D, Yoshida Y, Tsang BK. Plasma Gelsolin Confers Chemoresistance in Ovarian Cancer by Resetting the Relative Abundance and Function of Macrophage Subtypes. Cancers (Basel) 2022; 14:cancers14041039. [PMID: 35205790 PMCID: PMC8870487 DOI: 10.3390/cancers14041039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ovarian cancer is one of the deadliest female cancers with very poor survival, primarily due to late diagnosis, recurrence and chemoresistance. Although the over-expression of plasma gelsolin (pGSN) protects ovarian cancer cells from chemotherapy-induced death, its immunological role in the tumor microenvironment is less explored. Here, we demonstrate that pGSN over-expression downregulates the anti-tumor functions of M1 macrophages, an effect that contributes to chemoresistance and poor patient survival. This study demonstrates the novel inhibitory role of pGSN on tumor-infiltrated M1 macrophages and also offers new insights in maximizing the effectiveness of immunotherapy for ovarian cancer patients. Abstract Ovarian cancer (OVCA) is the most lethal gynaecological cancer with a 5-year survival rate less than 50%. Despite new therapeutic strategies, such as immune checkpoint blockers (ICBs), tumor recurrence and drug resistance remain key obstacles in achieving long-term therapeutic success. Therefore, there is an urgent need to understand the cellular mechanisms of immune dysregulation in chemoresistant OVCA in order to harness the host’s immune system to improve survival. The over-expression of plasma gelsolin (pGSN) mRNA is associated with a poorer prognosis in OVCA patients; however, its immuno-modulatory role has not been elucidated. In this study, for the first time, we report pGSN as an inhibitor of M1 macrophage anti-tumor functions in OVCA chemoresistance. Increased epithelial pGSN expression was associated with the loss of chemoresponsiveness and poor survival. While patients with increased M1 macrophage infiltration exhibited better survival due to nitric-oxide-induced ROS accumulation in OVCA cells, cohorts with poor survival had a higher infiltration of M2 macrophages. Interestingly, increased epithelial pGSN expression was significantly associated with the reduced survival benefits of infiltrated M1 macrophages, through apoptosis via increased caspase-3 activation and reduced production of iNOS and TNFα. Additionally, epithelial pGSN expression was an independent prognostic marker in predicting progression-free survival. These findings support our hypothesis that pGSN is a modulator of inflammation and confers chemoresistance in OVCA, in part by resetting the relative abundance and function of macrophage subtypes in the ovarian tumor microenvironment. Our findings raise the possibility that pGSN may be a potential therapeutic target for immune-mediated chemoresistance in OVCA.
Collapse
Affiliation(s)
- Meshach Asare-Werehene
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan;
| | - Huilin Zhang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Reza Salehi
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON M5G 1N8, Canada;
| | - Chia-Yu Chang
- Department of Biological Science and Technology, Department of Electrophysics and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-Y.C.); (C.-C.C.)
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
| | - Clifford L. Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON M5G 1N8, Canada;
- Departments of Obstetrics & Gynecology and Physiology, Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
| | - Chia-Ching Chang
- Department of Biological Science and Technology, Department of Electrophysics and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-Y.C.); (C.-C.C.)
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Dylan Burger
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-8507, Japan;
- Correspondence: (Y.Y.); (B.K.T.)
| | - Benjamin K. Tsang
- Department of Obstetrics & Gynecology, Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.A.-W.); (R.S.)
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Correspondence: (Y.Y.); (B.K.T.)
| |
Collapse
|
16
|
Li N, Yu K, Lin Z, Zeng D. Identifying a cervical cancer survival signature based on mRNA expression and genome-wide copy number variations. Exp Biol Med (Maywood) 2021; 247:207-220. [PMID: 34674573 DOI: 10.1177/15353702211053580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cervical cancer mortality is the second highest in gynecological cancers. This study developed a new model based on copy number variation data and mRNA data for overall survival prediction of cervical cancer. Differentially expressed genes from The Cancer Genome Atlas dataset detected by univariate Cox regression analysis were further simplified to six by least absolute shrinkage and selection operator (Lasso) and stepwise Akaike information criterion (stepAIC). The study developed a six-gene signature, which was further verified in independent dataset. Association between immune infiltration and risk score was investigated by immune score. The relation between the signature and functional pathways was examined by gene set enrichment analysis. Ninety-nine differentially expressed genes were detected, and C11orf80, FOXP3, GSN, HCCS, PGAM5, and RIBC2 were identified as key genes to construct a six-gene signature. The prognostic signature showed a significant correlation with overall survival (hazard ratio, HR = 3.45, 95% confidence interval (CI) = 2.08-5.72, p < 0.00001). Immune score showed a negative correlation with the risk score calculated by the signature (p < 0.05). Four immune-related pathways were closely associated with risk score (p < 0.0001). The six-gene prognostic signature was an effective tool to predict overall survival of cervical cancer. In conclusion, the newly identified six genes may be considered as new drug targets for cervical cancer treatment.
Collapse
Affiliation(s)
- Nan Li
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Kai Yu
- Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou 545001, China
| | - Zhong Lin
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women of Advanced Age, Liuzhou 545001, China
| | - Dingyuan Zeng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
He H, Liyanarachchi S, Li W, Comiskey DF, Yan P, Bundschuh R, Turkoglu AM, Brock P, Ringel MD, de la Chapelle A. Transcriptome analysis discloses dysregulated genes in normal appearing tumor-adjacent thyroid tissues from patients with papillary thyroid carcinoma. Sci Rep 2021; 11:14126. [PMID: 34238982 PMCID: PMC8266864 DOI: 10.1038/s41598-021-93526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. The molecular characteristics of histologically normal appearing tissue adjacent to the tumor (NAT) from PTC patients are not well characterized. The aim of this study was to characterize the global gene expression profile of NAT and compare it with those of normal and tumor thyroid tissues. We performed total RNA sequencing with fresh frozen thyroid tissues from a cohort of three categories of samples including NAT, normal thyroid (N), and PTC tumor (T). Transcriptome analysis shows that NAT presents a unique gene expression profile, which was not associated with sex or the presence of lymphocytic thyroiditis. Among the differentially expressed genes (DEGs) of NAT vs N, 256 coding genes and 5 noncoding genes have been reported as cancer genes involved in cell proliferation, apoptosis, and/or tumorigenesis. Bioinformatics analysis with Ingenuity Pathway Analysis software revealed that “Cancer, Organismal Injury and Abnormalities, Cellular Response to Therapeutics, and Cellular Movement” were major dysregulated pathways in the NAT tissues. This study provides improved insight into the complexity of gene expression changes in the thyroid glands of patients with PTC.
Collapse
Affiliation(s)
- Huiling He
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Wei Li
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Daniel F Comiskey
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Pearlly Yan
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Altan M Turkoglu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA.
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, Columbus, OH, 43210, USA
| |
Collapse
|
18
|
Han CY, Patten DA, Kim SI, Lim JJ, Chan DW, Siu MKY, Han Y, Carmona E, Parks RJ, Lee C, Di LJ, Lu Z, Chan KKL, Ku JL, Macdonald EA, Vanderhyden BC, Mes-Masson AM, Ngan HYS, Cheung ANY, Song YS, Bast RC, Harper ME, Tsang BK. Nuclear HKII-P-p53 (Ser15) Interaction is a Prognostic Biomarker for Chemoresponsiveness and Glycolytic Regulation in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13143399. [PMID: 34298618 PMCID: PMC8306240 DOI: 10.3390/cancers13143399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Hexokinase II (HKII) is a key glycolysis enzyme associated with tumorigenesis, but its molecular mechanism and pathophysiological role in chemoresistant ovarian cancer remain elusive. In this study, we delineate the novel mechanism showing that activated phosphorylated-p53 (P-p53 Ser15) is required for the regulation of HKII intracellular trafficking and metabolic regulation in chemosensitive ovarian cancer, but not in chemoresistant ovarian cancer harboring p53 mutation. We have observed that increased nuclear HKII-P-p53 (Ser15) interaction is likely associated with chemosensitivity and better survival outcomes in epithelial ovarian cell lines, human primary epithelial ovarian cancer cells, and tumor sections. Nuclear HKII-P-p53 (Ser15) interaction may function as a promising prognostic biomarker, enabling prediction of patients with poor prognosis for deciding better clinical strategies. Abstract In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.
Collapse
Affiliation(s)
- Chae Young Han
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Se Ik Kim
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jung Jin Lim
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle K. Y. Siu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Youngjin Han
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Li-Jun Di
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen K. L. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ja-Lok Ku
- Korean Cell Line Bank, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Elizabeth A. Macdonald
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Barbara C. Vanderhyden
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yong Sang Song
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Benjamin K. Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +613-737-8899 (ext. 72926)
| |
Collapse
|
19
|
Meng Y, Qiu L, Zhang S, Han J. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:365-381. [PMID: 35582023 PMCID: PMC9019267 DOI: 10.20517/cdr.2020.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Farahi A, Abedini MR, Javdani H, Arzi L, Chamani E, Farhoudi R, Talebloo N, Hoshyar R. Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: in vitro and in vivo studies. Mol Cell Biochem 2021; 476:3341-3351. [PMID: 33929675 DOI: 10.1007/s11010-020-04043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022]
Abstract
Metastatic breast cancer remains a serious health concern and numerous investigations recommended medicinal plants as a complementary therapy. Crocin is one of the known anticancer bio-component. Recently, the inhibitory effect of metformin has been studied on the various aspects of cancer. However, no study reported their combination effects on metastatic breast cancer. In the present study, we have assessed their anti-metastatic effects on in vitro and in vivo breast cancer models. Using MTT assay, scratch, and adhesion tests, we have evaluated the cytotoxic, anti-invasive and anti-adhesion effects of crocin and metformin on 4T1 cell line, respectively. Their protective effects and MMP9 as well as VEGF protein expression levels (Western blotting) investigated in the 4T1 murine breast cancer model. Our results showed that both crocin and metformin reduced cell viability, delayed scratch healing and inhibited the cell adhesion, in vitro. While crocin alone restored the mice's weight reduction, crocin, metformin, and their combination significantly reduced the tumor volume size and enhanced animal survival rate in murine breast cancer model, responses that were associated with VEGF and MMP9 down-regulation. These findings suggest that a combination of crocin and metformin could serve as a novel therapeutic approach to enhance the effectiveness of metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Ali Farahi
- Student Research Committee and Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Mohammad Reza Abedini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran. .,Department of Cellular and Molecular Medicine, University of Ottawa School of Medicine, Ottawa, ON, Canada.
| | - Hossein Javdani
- Student Research Committee and Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Laleh Arzi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elham Chamani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Ramin Farhoudi
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| | - Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran. .,Microbiology and Molecular Genetics Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Abedini MR, Paki S, Mohammadifard M, Foadoddini M, Vazifeshenas-Darmiyan K, Hosseini M. Evaluation of the in vivo and in vitro safety profile of Cuscuta epithymum ethanolic extract. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:645-656. [PMID: 34804901 PMCID: PMC8588959 DOI: 10.22038/ajp.2021.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cuscuta epithymum (CE) is one of the most popular medicinal plants in the world. However, detailed information about its toxicity is not available. Hence, this study aimed to evaluate the safety profile of CE ethanolic extract in vitro and in vivo. MATERIALS AND METHODS The extract's in vitro toxicity profile was investigated on normal fibroblast and cervical cancer cells by cytotoxicity test. In the next step, acute oral and intraperitoneal (i.p.) toxicity of the CE extract was evaluated in Wistar rats and BALB/c mice, respectively. Sub-acute oral toxicity was also examined by administering repeated oral doses of the CE extract (50, 200, and 500 mg/kg) to Wistar rats for 28 days. RESULTS The CE extract exhibited a significant cytotoxicity on both normal (IC50 0.82 mg/ml, p<0.001) and cancer cells (IC50 1.42 mg/ml, p<0.001). Acute oral administration of a single dose of CE extract (175-5000 mg/kg) did not cause mortality; however, its i.p. administration caused mortality at doses greater than 75 mg/kg (i.p. LD50 154.8 mg/kg). In the sub-acute toxicity test, no significant effects in terms of weight change, organ weights, blood chemistry, or kidney pathology were observed. However, at 200 and 500 mg/kg doses, the CE extract significantly increased liver pathological scores compared to the control group (p<0.05 and p<0.01, respectively). CONCLUSION CE exhibited toxicities in i.p. acute and repeated oral dose administrations. It showed identical cytotoxicity against normal and cancer cells. This herb must be prescribed cautiously by traditional medicine practitioners.
Collapse
Affiliation(s)
- Mohammad Reza Abedini
- Cellular and Molecular Research Center, Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Paki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Foadoddini
- Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Khadijeh Vazifeshenas-Darmiyan
- Cellular and Molecular Research Center, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran,Corresponding Author: Tel: +98-5632381511, Fax: +98-5632433004, ,
| |
Collapse
|
22
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
23
|
Borhan A, Nozarian Z, Abdollahi A, Shahsiah R, Mohammadpour H, Borhan A. Evaluation of the Relationship Between Expression of Villin and Gelsolin Genes and Axillary Lymph Node Metastasis in Patients with Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:27-32. [PMID: 33391377 PMCID: PMC7691711 DOI: 10.30699/ijp.2020.121532.2322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/12/2020] [Indexed: 11/21/2022]
Abstract
Background & Objective: Nowadays, actin-binding proteins such as Villin and Gelsolin have been considered to be associated with aggressive tumors. This study mainly aims to determine the relationship between Gelsolin and Villin genes expression and metastasis of axillary lymph nodes in patients with breast cancer. Methods: The included population consisted of 40 confirmed cases of female breast cancer (including 20 patients with breast cancer along with axillary lymph node metastasis and 20 patients without axillary lymph node metastasis). Expression of Villin and Gelsolin genes was evaluated using Real-time PCR and pre-designed primers. Results: The mean expression level of Villin in groups with and without axillary lymph node metastasis was 3.33±1.35 and 0.87±0.88, respectively (P<0.001). The mean Gelsolin expression levels in both groups (with and without axillary lymph node metastasis) were 4.13±2.40 and 1.00±0.35, respectively (P<0.001). The significant relationships were independent of individuals’ age. Conclusion: Patients with axillary lymph node metastasis may express significant higher level of Villin and Gelsolin genes.
Collapse
Affiliation(s)
- Armin Borhan
- Department of Pathology, Cancer Institute of Iran, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Nozarian
- Department of Pathology, Cancer Institute of Iran, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Cancer Institute of Iran, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shahsiah
- Department of Pathology, Cancer Institute of Iran, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Mohammadpour
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Borhan
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Asare-Werehene M, Communal L, Carmona E, Han Y, Song YS, Burger D, Mes-Masson AM, Tsang BK. Plasma Gelsolin Inhibits CD8 + T-cell Function and Regulates Glutathione Production to Confer Chemoresistance in Ovarian Cancer. Cancer Res 2020; 80:3959-3971. [PMID: 32641415 DOI: 10.1158/0008-5472.can-20-0788] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Although initial treatment of ovarian cancer is successful, tumors typically relapse and become resistant to treatment. Because of poor infiltration of effector T cells, patients are mostly unresponsive to immunotherapy. Plasma gelsolin (pGSN) is transported by exosomes (small extracellular vesicle, sEV) and plays a key role in ovarian cancer chemoresistance, yet little is known about its role in immunosurveillance. Here, we report the immunomodulatory roles of sEV-pGSN in ovarian cancer chemoresistance. In chemosensitive conditions, secretion of sEV-pGSN was low, allowing for optimal CD8+ T-cell function. This resulted in increased T-cell secretion of IFNγ, which reduced intracellular glutathione (GSH) production and sensitized chemosensitive cells to cis-diaminedichloroplatinum (CDDP)-induced apoptosis. In chemoresistant conditions, increased secretion of sEV-pGSN by ovarian cancer cells induced apoptosis in CD8+ T cells. IFNγ secretion was therefore reduced, resulting in high GSH production and resistance to CDDP-induced death in ovarian cancer cells. These findings support our hypothesis that sEV-pGSN attenuates immunosurveillance and regulates GSH biosynthesis, a phenomenon that contributes to chemoresistance in ovarian cancer. SIGNIFICANCE: These findings provide new insight into pGSN-mediated immune cell dysfunction in ovarian cancer chemoresistance and demonstrate how this dysfunction can be exploited to enhance immunotherapy.
Collapse
Affiliation(s)
- Meshach Asare-Werehene
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Laudine Communal
- Centre de Recherche du CHUM et Institut du Cancer de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Euridice Carmona
- Centre de Recherche du CHUM et Institut du Cancer de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Centre de Recherche du CHUM et Institut du Cancer de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du CHUM et Institut du Cancer de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin K Tsang
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada. .,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Chiu CT, Wang PW, Asare-Werehene M, Tsang BK, Shieh DB. Circulating Plasma Gelsolin: A Predictor of Favorable Clinical Outcomes in Head and Neck Cancer and Sensitive Biomarker for Early Disease Diagnosis Combined with Soluble Fas Ligand. Cancers (Basel) 2020; 12:cancers12061569. [PMID: 32545773 PMCID: PMC7353036 DOI: 10.3390/cancers12061569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict disease progression in HNC and other malignancies, and circulating plasma gelsolin (pGSN) levels are significantly correlated with infectious and inflammatory disease prognoses. Here, the plasma levels of five candidate biomarkers (circulating pGSN, squamous cell carcinoma antigen, cytokeratin 19 fragment, soluble Fas, and soluble Fas ligand (sFasL)) in 202 patients with HNC and 45 healthy controls were measured using enzyme-linked immunosorbent assay or Millipore cancer multiplex assay. The results demonstrated that circulating pGSN levels were significantly lower in patients with HNC than in healthy controls. Moreover, circulating pGSN outperformed other candidate biomarkers as an independent diagnostic biomarker of HNC in both sensitivity (82.7%) and specificity (95.6%). Receiver operating characteristic curves indicated that combined pGSN and sFasL levels further augmented this sensitivity (90.6%) for early disease detection. Moreover, higher pGSN levels predicted improved prognosis at both 5-year overall survival and progression-free survival. In conclusion, circulating pGSN could be an independent predictor of favorable clinical outcomes and a novel biomarker for the early HNC detection in combination with sFasL.
Collapse
Affiliation(s)
- Chen-Tzu Chiu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meshach Asare-Werehene
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; (M.A.-W.); (B.K.T.)
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Benjamin K. Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; (M.A.-W.); (B.K.T.)
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5899)
| |
Collapse
|
26
|
Tavabe Ghavami TS, Irani S, Mirfakhrai R, Shirkoohi R. Differential expression of Scinderin and Gelsolin in gastric cancer and comparison with clinical and morphological characteristics. EXCLI JOURNAL 2020; 19:750-761. [PMID: 32636728 PMCID: PMC7332812 DOI: 10.17179/excli2020-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/07/2022]
Abstract
Gastric cancer is the first cause of cancer-related death in males and the second in female patients in Iran. Advanced cancer is usually associated with distant metastasis, which is uncontrollable. This study was conducted to compare the expression of Scinderin and Gelsolin genes between gastric cancer and adjacent normal tissue samples in Iranian patients in order to better understand the role of these genes in this disease and to assess them as potential gastric cancer diagnostic or prognostic biomarkers. This case-control study was conducted in 41 Iranian patients suffering from stage I to IV of Gastric Cancer diagnosed by pathologic and endoscopic tests. In this study, significant down-regulation of Gelsolin (p=0.001) and over-expression of Scinderin (p=0.001) were observed in tumor tissues compared to the adjacent normal tissues. The results of the present study showed decreased Gelsolin expression in patients above 40 years, while the relationship between Gelsolin expression and age was not significant; also, a significant increase was observed in Scinderin expression in patients above 40 years. Furthermore, Lymph node metastasis was observed in 59.52 % of the cases. The results showed that reduced Gelsolin and increased Scinderin expression were related to lymph node metastasis. Based on results, a significant association was observed between tumor size and Scinderin expression level. Furthermore, Gelsolin and Scinderin expressions were assessed in different grades and stages to determine the association of this gene with cancer progression. The result indicates significant alteration in Scinderin expression level of I and IV, II and IV, and III and IV stages. Although no significant association was observed between Scinderin expression level and GC grade, the mean Gelsolin expression showed a significant difference between grade II and III as well as grade I and IV. Based on our results, these genes would be potential biomarkers.
Collapse
Affiliation(s)
| | - Shiva Irani
- Department of Biology, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhrai
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Gelsolin Promotes Cancer Progression by Regulating Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma and Correlates with a Poor Prognosis. JOURNAL OF ONCOLOGY 2020; 2020:1980368. [PMID: 32377190 PMCID: PMC7199561 DOI: 10.1155/2020/1980368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/03/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Gelsolin (GSN), a cytoskeletal protein, is frequently overexpressed in different cancers and promotes cell motility. The biological function of GSN in hepatocellular carcinoma (HCC) and its mechanism remain unclear. The expression of GSN was assessed in a cohort of 188 HCC patients. The effects of GSN on the migration and invasion of tumour cells were examined. Then, the role of GSN in tumour growth in vivo was determined by using a cancer metastasis assay. The possible mechanism by which GSN promotes HCC progression was explored. As a result, GSN was overexpressed in HCC tissues. High GSN expression was significantly correlated with late Edmondson grade, encapsulation, and multiple tumours. Patients with high GSN expression had worse overall survival (OS) and disease-free survival (DFS) than those with low GSN expression. GSN expression was identified as an independent risk factor in both OS (hazard risk (HR) = 1.620, 95% confidence interval (CI) = 1.105–2.373, P < 0.001) and DFS (HR = 1.744, 95% CI = 1.205–2.523, P=0.003). Moreover, GSN knockdown significantly inhibited the migration and invasion of HCC tumour cells, while GSN overexpression attenuated these effects by regulating epithelial-mesenchymal transition (EMT) In conclusion, GSN promotes cancer progression and is associated with a poor prognosis in HCC patients. GSN promotes HCC progression by regulating EMT.
Collapse
|
28
|
The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene 2019; 39:1600-1616. [PMID: 31700155 PMCID: PMC7018662 DOI: 10.1038/s41388-019-1087-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Ovarian cancer (OVCA) is the most lethal gynecological cancer, due predominantly to late presentation, high recurrence rate and common chemoresistance development. The expression of the actin-associated protein cytosolic gelsolin (GSN) regulates the gynecological cancer cell fate resulting in dysregulation in chemosensitivity. In this study, we report that elevated expression of plasma gelsolin (pGSN), a secreted isoform of GSN and expressed from the same GSN gene, correlates with poorer overall survival and relapse-free survival in patients with OVCA. In addition, it is highly expressed and secreted in chemoresistant OVCA cells than its chemosensitive counterparts. pGSN, secreted and transported via exosomes (Ex-pGSN), upregulates HIF1α–mediated pGSN expression in chemoresistant OVCA cells in an autocrine manner as well as confers cisplatin resistance in otherwise chemosensitive OVCA cells. These findings support our hypothesis that exosomal pGSN promotes OVCA cell survival through both autocrine and paracrine mechanisms that transform chemosensitive cells to resistant counterparts. Specifically, pGSN transported via exosomes is a determinant of chemoresistance in OVCA.
Collapse
|
29
|
Pre-operative Circulating Plasma Gelsolin Predicts Residual Disease and Detects Early Stage Ovarian Cancer. Sci Rep 2019; 9:13924. [PMID: 31558772 PMCID: PMC6763481 DOI: 10.1038/s41598-019-50436-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OVCA) patients with suboptimal residual disease (RD) and advanced stages have poor survival. pGSN is an actin binding protein which protects OVCA cells from cisplatin-induced death. There is an urgent need to discover reliable biomarkers to optimize individualized treatment recommendations. 99 plasma samples with pre-determined CA125 were collected from OVCA patients and pGSN assayed using sandwich-based ELISA. Associations between CA125, pGSN and clinicopathological parameters were examined using Fisher’s exact test, T test and Kruskal Wallis Test. Univariate and multivariate Cox proportional hazard models were used to statistically analyze clinical outcomes. At 64 µg/ml, pGSN had sensitivity and specificity of 60% and 60% respectively, for the prediction of RD where as that of CA125 at 576.5 U/mL was 43.5% and 56.5% respectively. Patients with stage 1 tumor had increased levels of pre-operative pGSN compared to those with tumor stage >1 and healthy subjects (P = 0.005). At the value of 81 µg/mL, pGSN had a sensitivity and specificity of 75% and 78.4%, respectively for the detection of early stage OVCA. At the value of 0.133, the Indicator of Stage 1 OVCA (ISO1) provided a sensitivity of 100% at a specificity of 67% (AUC, 0.89; P < 0.001). In the multivariate Cox regression analysis, pGSN (HR, 2.00; CI, 0.99–4.05; P = 0.05) was an independent significant predictor of progression free survival (PFS) but not CA125 (HR, 0.68; CI, 0.41–1.13; P = 0.13). Pre-operative circulating pGSN is a favorable and independent biomarker for early disease detection, RD prediction and patients’ prognosis.
Collapse
|
30
|
Regulation of autoimmune disease by the E3 ubiquitin ligase Itch. Cell Immunol 2019; 340:103916. [PMID: 31126634 DOI: 10.1016/j.cellimm.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Itch is a HECT type E3 ubiquitin ligase that is required to prevent the development of autoimmune disease in both mice and humans. Itch is expressed in most mammalian cell types, and, based on published data, it regulates many cellular pathways ranging from T cell differentiation to liver tumorigenesis. Since 1998, when Itch was first discovered, hundreds of publications have described mechanisms through which Itch controls various biologic activities in both immune and non-immune cells. Other studies have provided insight into how Itch catalytic activity is regulated. However, while autoimmunity is the primary clinical feature that occurs in both mice and humans lacking Itch, and Itch control of immune cell function has been well-studied, it remains unclear how Itch prevents the emergence of autoimmune disease. In this review, we explore recent discoveries that advance our understanding of how Itch regulates immune cell biology, and the extent to which these clarify how Itch prevents autoimmune disease. Additionally, we discuss how molecular regulators of Itch impact its ability to control these processes, as this may provide clues on how to therapeutically target Itch to treat patients with autoimmune disease.
Collapse
|
31
|
Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol 2019; 54:1719-1733. [PMID: 30864689 PMCID: PMC6438431 DOI: 10.3892/ijo.2019.4742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer remains the most lethal type of cancer among all gynecological malignancies. The majority of patients are diagnosed with ovarian cancer at the late stages of the disease. Therefore, there exists an imperative need for the development of early ovarian cancer diagnostic techniques. Exosomes, secreted by various cell types, play pivotal roles in intercellular communication, which emerge as promising diagnostic and prognostic biomarkers for ovarian cancer. In this study, we present for the first time, at least to the best of our knowledge, the proteomics profiling of exosomes derived from the plasma of patients with ovarian cancer via liquid chromatography tandem mass spectrometry (LC-MS/MS) with tandem mass tagging (TMT). The exosomes enriched from patient plasma samples were characterized by nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and western blot analysis. The size of the plasma exosomes fell into the range of 30 to 100 nm in diameter. The exosomal marker proteins, CD81 and TSG101, were clearly stained in the exosome samples; however, there was no staining for the endoplasmic reticulum protein, calnexin. A total of 294 proteins were identified with all exosome samples. Among these, 225 proteins were detected in both the cancerous and non-cancerous samples. Apart from universal exosomal proteins, exosomes derived from ovarian cancer patient plasma also contained tumor-specific proteins relevant to tumorigenesis and metastasis, particularly in epithelial ovarian carcinoma (EOC). Patients with EOC often suffer from coagulation dysfunction. The function of exosomes in coagulation was also examined. Several genes relevant to the coagulation cascade were screened out as promising diagnostic and prognostic factors that may play important roles in ovarian cancer progression and metastasis. On the whole, in this study, we successfully isolated and purified exosomes from plasma of patients with EOC, and identified a potential role of these exosomes in the coagulation cascade, as well as in the diagnosis and prognosis of patients. differentially expressed genes, functional enrichment analysis, protein-protein interaction, diagnostic and prognostic biomarkers
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaoxuan Ou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Abstract
Gelsolin (GSN), one of the most abundant actin-binding proteins, is involved in cell motility, shape and metabolism. As a member of the GSN superfamily, GSN is a highly structured protein in eukaryotic cells that can be regulated by calcium concentration, intracellular pH, temperature and phosphatidylinositol-4,5-bisphosphate. GSN plays an important role in cellular mechanisms as well as in different cellular interactions. Because of its participation in immunologic processes and its interaction with different cells of the immune system, GSN is a potential candidate for various therapeutic applications. In this review, we summarise the structure of GSN as well as its regulating and functional roles, focusing on distinct diseases such as Alzheimer's disease, rheumatoid arthritis and cancer. A short overview of GSN as a therapeutic target in today's medicine is also provided.
Collapse
|
33
|
Lin KY, Chung CH, Ciou JS, Su PF, Wang PW, Shieh DB, Wang TC. Molecular damage and responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health 2019; 19:10. [PMID: 30634966 PMCID: PMC6329095 DOI: 10.1186/s12903-018-0694-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2)-based tooth bleaching reagents have recently increased in popularity and controversy. H2O2 gel (3%) is used in a Nightguard for vital bleaching; transient tooth sensitivity and oral mucosa irritation have been reported. Genotoxicity and carcinogenicity have also been significant concerns. METHODS We used primary cultured normal human oral keratinocytes (NHOKs) as an in vitro model to investigate the pathological effects to mitochondria functions on human oral keratinocytes exposed to different doses of H2O2 for different durations. RESULTS An MTT assay showed compromised cell viability at a dose over 5 mM. The treatments induced nuclear DNA damage, measured using a single-cell gel electrophoresis assay. A real-time quantitative polymerase chain reaction showed H2O2 induced significant increase in mitochondrial 4977-bp deletion. Mitochondrial membrane potential and apoptosis assays suggested that oxidative damage defense mechanisms were activated after prolonged exposure to H2O2. Reduced intracellular glutathione was an effective defense against oxidative damage from 5 mM of H2O2. CONCLUSION Our study suggests the importance for keratinocyte damage of the dose and the duration of the exposure to H2O2 in at-home-bleaching. A treatment dose ≥100 mM directly causes severe cytotoxicity with as little as 15 min of exposure.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Harrisburg, PA, 16803, USA
| | - Ching-Hung Chung
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan
| | - Jheng-Sian Ciou
- Graduate Institute of Pharmaceutical Science, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Dar-Bin Shieh
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan. .,Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, Advanced Optronic Technology Center, Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzu-Chueh Wang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| |
Collapse
|
34
|
Pendharkar N, Dhali S, Abhang S. A Novel Strategy to Investigate Tissue‐Secreted Tumor Microenvironmental Proteins in Serum toward Development of Breast Cancer Early Diagnosis Biomarker Signature. Proteomics Clin Appl 2018; 13:e1700119. [DOI: 10.1002/prca.201700119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Pendharkar
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Snigdha Dhali
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Subodhini Abhang
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
| |
Collapse
|
35
|
Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim KR, Kang D. Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep 2018; 8:13255. [PMID: 30185973 PMCID: PMC6125324 DOI: 10.1038/s41598-018-31564-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Recently there has been a growing interest in three-dimensional (3D) cell culture systems for drug discovery and development. These 3D culture systems better represent the in vivo cellular environment compared to two-dimensional (2D) cell culture, thereby providing more physiologically reliable information on drug screening and testing. Here we present the quantitative profiling of a drug-induced proteome in 2D- and 3D-cultured colorectal cancer SW480 cells using 2D nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS) integrated with isobaric tags for relative and absolute quantitation (iTRAQ). We identified a total of 4854 shared proteins between 2D- and 3D-cultured SW480 cells and 136/247 differentially expressed proteins (up/down-regulated in 3D compared to 2D). These up/down-regulated proteins were mainly involved in energy metabolism, cell growth, and cell-cell interactions. We also investigated the XAV939 (tankyrase inhibitor)-induced proteome to reveal factors involved in the 3D culture-selective growth inhibitory effect of XAV939 on SW480 cells. We identified novel XAV939-induced proteins, including gelsolin (a possible tumor suppressor) and lactate dehydrogenase A (a key enzyme of glycolysis), which were differentially expressed between 2D- and 3D-cultured SW480 cells. These results provide a promising informative protein dataset to determine the effect of XAV939 on the expression levels of proteins involved in SW480 cell growth.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hyo Jin Jeon
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Dahee Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Sun Young Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.,College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ki Young Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Kwang-Rok Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.
| |
Collapse
|
36
|
Guo Y, Zhang H, Xing X, Wang L, Zhang J, Yan L, Zheng X, Zhang M. Gelsolin regulates proliferation, apoptosis and invasion in natural killer/T-cell lymphoma cells. Biol Open 2018; 7:bio.027557. [PMID: 29175858 PMCID: PMC5827263 DOI: 10.1242/bio.027557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The expression of gelsolin (GSN) is abnormal in many cancers, including extranodal nasal-type natural killer/T-cell lymphoma (NKTCL). However, the biological function of GSN and its mechanism in NKTCL remain unclear. We found that GSN overexpression significantly suppressed cell proliferation, colony formation and invasion, and promoted apoptosis of natural killer (NK) cell line YTS. Moreover, the upregulation of GSN significantly decreased the levels of PI3K and p-Akt. Interestingly, blocking the PI3K/Akt signaling pathway significantly inhibited cell proliferation and invasion and promoted apoptosis of YTS cells. In conclusion, our findings indicate that GSN can suppress cell proliferation and invasion and promote apoptosis of YTS cells, and the PI3K/Akt signaling pathway is likely to be involved in this process.
Collapse
Affiliation(s)
- Yanwei Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.,Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Hongqiao Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xin Xing
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Lijuan Wang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jian Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Lin Yan
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xiaoke Zheng
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
37
|
Chen CC, Chiou SH, Yang CL, Chow KC, Lin TY, Chang HW, You WC, Huang HW, Chen CM, Chen NC, Chou FP, Chou MC. Secreted gelsolin desensitizes and induces apoptosis of infiltrated lymphocytes in prostate cancer. Oncotarget 2017; 8:77152-77167. [PMID: 29100377 PMCID: PMC5652770 DOI: 10.18632/oncotarget.20414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Loss of immunosurveillance is a major cause of cancer progression. Here, we demonstrate that gelsolin, a constituent of ejaculate, induces apoptosis of activated lymphocytes in prostate cancer. Gelsolin was highly expressed in prostate cancer cells, and was associated with tumor progression, recurrence, metastasis, and poor prognosis. In vitro, secreted gelsolin inactivated CD4+ T cells by binding to CD37, and induced apoptosis of activated CD8+ T lymphocytes by binding to Fas ligand during cell contact dependent on major histocompatibility complex I. Moreover, secreted gelsolin bound to sortilin, which in turn bound to Wiskott-Aldrich syndrome protein family member 3, thereby enhancing the endocytosis and intracellular transport of essential lipids needed to facilitate tumor growth and expansion. Under normal conditions, gelsolin is a seemingly harmless protein that prevents immune responses in female recipients. In disease states, however, this protein can inhibit immunosurveillance and promote cancer progression.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan.,Section of Urology, Departments of Surgery, Changhua Christian Hospital, Chang-Hua, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Lin Yang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Chih Chow
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tze-Yi Lin
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Wen Chang
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hisu-Wen Huang
- Endemic Species Research Institute, Council of Agriculture, Executive Yuan, Chi-Chi, Taiwan
| | - Chien-Min Chen
- Endemic Species Research Institute, Council of Agriculture, Executive Yuan, Chi-Chi, Taiwan
| | - Nien-Cheng Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Fen-Pi Chou
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan.,Department of Family and Community Medicine, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Affiliation(s)
- Jayasree Sengupta
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - G. Anupa
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Muzaffer Ahmed Bhat
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Debabrata Ghosh
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
39
|
Gajbhiye A, Dabhi R, Taunk K, Vannuruswamy G, RoyChoudhury S, Adhav R, Seal S, Mane A, Bayatigeri S, Santra MK, Chaudhury K, Rapole S. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics. Proteomics 2016; 16:2403-18. [DOI: 10.1002/pmic.201600015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/27/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Akshada Gajbhiye
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
- Savitribai Phule Pune University; Ganeshkhind Pune Maharashtra India
| | - Raju Dabhi
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
| | - Khushman Taunk
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
| | | | - Sourav RoyChoudhury
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur West Bengal India
| | - Ragini Adhav
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
| | | | - Anupama Mane
- Grant Medical Foundation; Ruby Hall Clinic; Pune Maharashtra India
| | | | - Manas K. Santra
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
| | - Koel Chaudhury
- School of Medical Science and Technology; Indian Institute of Technology; Kharagpur West Bengal India
| | - Srikanth Rapole
- Proteomics Lab; National Centre for Cell Science; Ganeshkhind Pune Maharashtra India
| |
Collapse
|
40
|
Zhao RS, Wang W, Li JP, Liu CM, He L. Gelsolin Promotes Radioresistance in Non-Small Cell Lung Cancer Cells Through Activation of Phosphoinositide 3-Kinase/Akt Signaling. Technol Cancer Res Treat 2016; 16:512-518. [PMID: 27121073 DOI: 10.1177/1533034616643884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gelsolin is an actin-binding protein and acts as an important regulator of cell survival. This study aimed to determine the function of gelsolin in the radioresistance of non-small cell lung cancer cells. We examined the expression of gelsolin in radioresistant A549 and H460 cells and their parental cells. The effects of gelsolin overexpression and knockdown on the clonogenic survival and apoptosis of non-small cell lung cancer cells after irradiation were studied. The involvement of phosphoinositide 3-kinase/Akt signaling in the action of gelsolin was checked. We found that gelsolin was significantly upregulated in radioresistant A549 and H460 cells. Overexpression of gelsolin significantly ( P < .05) increased the number of colonies from irradiated A549 and H460 cells compared to transfection of empty vector. In contrast, knockdown of gelsolin significantly ( P < .05) suppressed colony formation after irradiation. Gelsolin-overexpressing cells displayed reduced apoptosis in response to irradiation, which was coupled with decreased levels of cleaved caspase-3 and poly adenosine diphosphate-ribose polymerase. Ectopic expression of gelsolin significantly ( P < .05) enhanced the phosphorylation of Akt compared to nontransfected cells. Pretreatment with the phosphoinositide 3-kinase inhibitor LY294002 (20 μmol/L) significantly decreased clonogenic survival and enhanced apoptosis in gelsolin-overexpressing A549 and H460 cells after irradiation. Taken together, gelsolin upregulation promotes radioresistance in non-small cell lung cancer cells, at least partially, through activation of phosphoinositide 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Ru-Sen Zhao
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Wei Wang
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Jun-Ping Li
- 1 Department of Oncology, People's Hospital of Linzi District, Binzhou Medical College, Zibo, People's Republic of China
| | - Chun-Mei Liu
- 2 Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liya He
- 3 Department of Oncology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
41
|
Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2016; 6:142-8. [PMID: 27222827 PMCID: PMC4877962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Ziziphus Jujube (Jujube) plant has exhibited numerous medicinal and pharmacological properties including antioxidant and anti-inflammatory effects. This study was carried out to investigate its anti-cancer and pro-apoptotic abilities in human cervical and breast cancer cells in vitro. MATERIALS AND METHODS The cervical OV2008 and breast MCF-7 cancer cells were incubated with different concentrations of Jujube aqueous extraction (0-3 mg/ml) for various times (0-72 h). Cell viability was assessed by Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of two apoptosis-related genes in treated cells evaluated by quantitative Real Time -PCR analysis. RESULTS Jujube significantly inhibited cancer cell viability in a dose- and time- dependent manner. Herb-induced apoptosis was associated with enhanced expression of Bax and decreased Bcl2 gene leading eventually to a time-dependent six fold increase in the Bax/Bcl-2 ratio. CONCLUSION These results indicated that Jujube may be a natural potential and promising agent to prevent or treat human cancers.
Collapse
|
42
|
Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP. Int J Mol Sci 2015; 16:30321-41. [PMID: 26694384 PMCID: PMC4691174 DOI: 10.3390/ijms161226232] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Osamu Nakabayashi
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| |
Collapse
|
43
|
Kong B, Tsuyoshi H, Orisaka M, Shieh DB, Yoshida Y, Tsang BK. Mitochondrial dynamics regulating chemoresistance in gynecological cancers. Ann N Y Acad Sci 2015; 1350:1-16. [PMID: 26375862 DOI: 10.1111/nyas.12883] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemoresistance enables cancer cells to evade apoptotic stimuli and leads to poor clinical prognosis. It arises from dysregulation of signaling factors responsible for inducing cell proliferation and death and for modulating the microenvironment. In gynecologic cancers, p53 is a pivotal determinant of cisplatin sensitivity, while BCL-2 family members are associated with taxane sensitivity. Mitochondria fusion and fission dynamics are required for many mitochondrial functions and are also involved in mitochondria-mediated apoptosis, which is closely associated with chemosensitivity. Mitochondrial dynamics are controlled by a number of intracellular proteins, including fusion (Opa1 and mitofusion 1 and 2) and fission proteins (Drp1 and Fis1), which can be proapoptotic or antiapoptotic, depending on the cell types, status, and stimuli from the microenvironment. This paper describes the role of mitochondrial dynamics in the mechanism of chemoresistance and the evidence supporting a significant contribution of a hyperfusion state to chemoresistance in gynecological cancers. Moreover, we discuss our findings showing that enforced fission induces apoptosis of cancer cells and sensitizes them to chemotherapeutic agents. Understanding the regulation of mitochondrial dynamics in chemoresistance may provide insight into new biomarkers that better predict cancer chemosensitivity and may aid the development of effective therapeutic strategies for clinical management of gynecologic cancers.
Collapse
Affiliation(s)
- Bao Kong
- Department of Obstetrics and Gynecology, Department of Cellular and Molecular Medicine, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Department of Cellular and Molecular Medicine, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Dar-Bin Shieh
- Institute of Basic Medical Science, Institute of Oral Medicine, and Department of Stomatology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology, Department of Cellular and Molecular Medicine, and Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Pendharkar N, Gajbhiye A, Taunk K, RoyChoudhury S, Dhali S, Seal S, Mane A, Abhang S, Santra MK, Chaudhury K, Rapole S. Quantitative tissue proteomic investigation of invasive ductal carcinoma of breast with luminal B HER2 positive and HER2 enriched subtypes towards potential diagnostic and therapeutic biomarkers. J Proteomics 2015; 132:112-30. [PMID: 26642762 DOI: 10.1016/j.jprot.2015.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/16/2015] [Accepted: 11/26/2015] [Indexed: 02/09/2023]
Abstract
Worldwide, breast cancer is one of the frequently diagnosed cancers in women with high mortality if not diagnosed at early stage. Although biomarker discoveries through various proteomic approaches have been studied in breast cancer, a limited number of studies have explored the invasive ductal carcinoma with Luminal B HER2 positive (LB) and HER2 enriched (HE) subtypes. The present study employed the complementary quantitative proteomic approaches to find a panel of markers that could discriminate LB and HE subtypes as well as early (ES) and late stages (LS) of these subtypes. A total of 67 and 68 differentially expressed proteins were identified by DIGE for the subtype and stage wise categories, respectively. Multivariate statistical analysis was employed to identify the set of most significant proteins, which could discriminate between these two subtypes and also early and late stages under study. Immunoblotting and MRM based validation in a separate cohort of samples confirmed that panel of biosignatures for LB are APOA1, GELS, HS90B, EF1A1, NHRF1 and PRDX3 and for HE are PRDX1, CATD, CALR, ATPB and CH60. For the diagnosis of early and late stages the potential markers are TPM4, CATD, PRDX3, ANXA3, HSPB1 and CALR, TRFE, GELS, CH60, CAPG, NHRF1, 1433G, GRP78 respectively.
Collapse
Affiliation(s)
- Namita Pendharkar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India; B. J. Medical College, Sassoon Hospital, Pune 411001, MH, India
| | - Akshada Gajbhiye
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Snigdha Dhali
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | | | - Anupama Mane
- Grant Medical Foundation, Ruby Hall Clinic, Pune 411001, MH, India
| | | | - Manas K Santra
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, MH, India.
| |
Collapse
|
45
|
Chen ZY, Wang PW, Shieh DB, Chiu KY, Liou YM. Involvement of gelsolin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells. J Biomed Sci 2015; 22:90. [PMID: 26482896 PMCID: PMC4615330 DOI: 10.1186/s12929-015-0197-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Increasing evidence suggests that transforming growth factor-beta 1 (TGF-β1) triggers epithelial to mesenchymal transition (EMT) and facilitates breast cancer stem cell differentiation. Gelsolin (GSN) is a ubiquitous actin filament-severing protein. However, the relationship between the expression level of GSN and the TGF-β signaling for EMT progression in breast cancer cells is not clear. Results TGF-β1 acted on MDA-MB231 breast cancer cells by decreasing cell proliferation, changing cell morphology to a fibroblast-like shape, increasing expressions for CD44 and GSN, and increasing EMT expression and cell migration/invasion. Study with GSN overexpression (GSN op) in both MDA-MB231 and MCF-7 cells demonstrated that increased GSN expression resulted in alterations of cell proliferation and cell cycle progression, modification of the actin filament assembly associated with altering cell surface elasticity and cell detachment in these breast cancer cells. In addition, increased cell migration was found in GSN op MDA-MB231 cells. Studies with GSN op and silencing by small interfering RNA verified that GSN could modulate the expression of vimentin. Sorted by flow cytometry, TGF-β1 increased subpopulation of CD44+/CD22- cells increasing their expressions for GSN, Nanog, Sox2, Oct4, N-cadherin, and vimentin but decreasing the E-cadherin expression. Methylation specific PCR analysis revealed that TGF-β1 decreased 50 % methylation but increased 3-fold unmethylation on the GSN promoter in CD44+/CD22- cells. Two DNA methyltransferases, DNMT1and DNMT3B were also inhibited by TGF-β1. Conclusions TGF-β1 induced epigenetic modification of GSN could alter the EMT process in breast cancer cells.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Pei-Wen Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Kuan-Ying Chiu
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
46
|
Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H. "Ziziphus jujuba": A red fruit with promising anticancer activities. Pharmacogn Rev 2015; 9:99-106. [PMID: 26392706 PMCID: PMC4557242 DOI: 10.4103/0973-7847.162108] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/10/2014] [Accepted: 08/04/2015] [Indexed: 12/16/2022] Open
Abstract
Ziziphus jujuba Mill. (Z. jujuba) is a traditional herb with a long history of use for nutrition and the treatment of a broad spectrum of diseases. It grows mostly in South and East Asia, as well as in Australia and Europe. Mounting evidence shows the health benefits of Z. jujuba, including anticancer, anti-inflammation, antiobesity, antioxidant, and hepato- and gastrointestinal protective properties, which are due to its bioactive compounds. Chemotherapy, such as with cis-diamminedichloroplatinium (CDDP, cisplatin) and its derivatives, is widely used in cancer treatment. It is an effective treatment for human cancers, including ovarian cancer; however, drug resistance is a major obstacle to successful treatment. A better understanding of the mechanisms and strategies for overcoming chemoresistance can greatly improve therapeutic outcomes for patients. In this review article, the bioactive compounds present in Z. jujuba are explained. The high prevalence of many different cancers worldwide has recently attracted the attention of many researchers. This is why our research group focused on studying the anticancer activity of Z. jujuba as well as its impact on chemoresistance both in vivo and in vitro. We hope that these studies can lead to a promising future for cancer patients.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Department of Pharmacology and Physiology, Berberis and Jujube Research Center, South Khorasan, Birjand, Iran
| | - Mohammad Reza Abedini
- Department of Pharmacology and Physiology, Berberis and Jujube Research Center, South Khorasan, Birjand, Iran
| | - Moodi Mitra
- Social Determinants of Health Research Center, South Khorasan, Birjand, Iran
| | - Mohammad Hassanpour Fard
- Department of Pharmacology and Physiology, Berberis and Jujube Research Center, South Khorasan, Birjand, Iran
| | - Hossein Beydokhti
- Departments of Public Health, Medical Library and Information Sciences, Birjand University of Medical Sciences, South Khorasan, Birjand, Iran
| |
Collapse
|
47
|
Gel-free proteomics reveals neoplastic potential in endometrium of infertile patients with stage IV ovarian endometriosis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.jrhm.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|