1
|
Davenport B, Hallam SJ. Emerging enzyme surface display systems for waste resource recovery. Environ Microbiol 2023; 25:241-249. [PMID: 36369958 PMCID: PMC10100002 DOI: 10.1111/1462-2920.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The current century marks an inflection point for human progress, as the developed world increasingly comes to recognize that the ecological and socioeconomic impacts of resource extraction must be balanced with more sustainable modes of growth that are less reliant on non-renewable sources of energy and materials. This has opened a window of opportunity for cross-sector development of biotechnologies that harness the metabolic problem-solving power of microbial communities. In this context, recovery has emerged as an organizing principal to create value from industrial and municipal waste streams, and the search is on for new enzymes and platforms that can be used for waste resource recovery at scale. Enzyme surface display on cells or functionalized materials has emerged as a promising platform for waste valorization. Typically, surface display involves the use of substrate binding or catalytic domains of interest translationally fused with extracellular membrane proteins in a microbial chassis. Novel display systems with improved performance features include S-layer display with increased protein density, spore display with increased resistance to harsh conditions, and intracellular inclusions including DNA-free cells or nanoparticles with improved social licence for in situ applications. Combining these display systems with advances in bioprinting, electrospinning and high-throughput functional screening have potential to transform outmoded extractive paradigms into 'trans-metabolic" processes for remediation and waste resource recovery within an emerging circular bioeconomy.
Collapse
Affiliation(s)
- Beth Davenport
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Bradshaw Research Institute for Minerals and Mining, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
3
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
4
|
Borrero-López AM, Valencia C, Franco JM. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers (Basel) 2022; 14:881. [PMID: 35267704 PMCID: PMC8912558 DOI: 10.3390/polym14050881] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present review is devoted to the description of the state-of-the-art techniques and procedures concerning treatments and modifications of lignocellulosic materials in order to use them as precursors for biomaterials, biochemicals and biofuels, with particular focus on lignin and lignin-based products. Four different main pretreatment types are outlined, i.e., thermal, mechanical, chemical and biological, with special emphasis on the biological action of fungi and bacteria. Therefore, by selecting a determined type of fungi or bacteria, some of the fractions may remain unaltered, while others may be decomposed. In this sense, the possibilities to obtain different final products are massive, depending on the type of microorganism and the biomass selected. Biofuels, biochemicals and biomaterials derived from lignocellulose are extensively described, covering those obtained from the lignocellulose as a whole, but also from the main biopolymers that comprise its structure, i.e., cellulose, hemicellulose and lignin. In addition, special attention has been paid to the formulation of bio-polyurethanes from lignocellulosic materials, focusing more specifically on their applications in the lubricant, adhesive and cushioning material fields. High-performance alternatives to petroleum-derived products have been reported, such as adhesives that substantially exceed the adhesion performance of those commercially available in different surfaces, lubricating greases with tribological behaviour superior to those in lithium and calcium soap and elastomers with excellent static and dynamic performance.
Collapse
Affiliation(s)
- Antonio M. Borrero-López
- Pro2TecS—Chemical Process and Product Technology Research Center, Departamento de Ingeniería Química, Escuela Técnica Superior de Ingeniería, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain; (C.V.); (J.M.F.)
| | | | | |
Collapse
|
5
|
Azubuike CC, Allemann MN, Michener JK. Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Curr Opin Microbiol 2021; 65:64-72. [PMID: 34775172 DOI: 10.1016/j.mib.2021.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/03/2022]
Abstract
Lignin is an abundant and sustainable source of aromatic compounds that can be converted to value-added products. However, lignin is underutilized, since depolymerization produces a complex mixture of aromatic compounds that is difficult to convert to a single product. Microbial conversion of mixed aromatic substrates provides a potential solution to this conversion challenge. Recent advances have expanded the range of lignin-derived aromatic substrates that can be assimilated and demonstrated efficient conversion via central metabolism to new potential products. The development of additional non-model microbial hosts and genetic tools for these hosts have accelerated engineering efforts. However, yields with real depolymerized lignin are still low, and additional work will be required to achieve viable conversion processes.
Collapse
Affiliation(s)
| | - Marco N Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
6
|
Genomic Studies of White-Rot Fungus Cerrena unicolor SP02 Provide Insights into Food Safety Value-Added Utilization of Non-Food Lignocellulosic Biomass. J Fungi (Basel) 2021; 7:jof7100835. [PMID: 34682256 PMCID: PMC8541250 DOI: 10.3390/jof7100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.
Collapse
|
7
|
Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. THE ISME JOURNAL 2021; 15:879-893. [PMID: 33139871 PMCID: PMC8027834 DOI: 10.1038/s41396-020-00820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023]
Abstract
Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol. Thermotolerant Burkholderiales, including Rubrivivax ssp., were implicated in diverse biogeochemical and aromatic transformations, highlighting their broad metabolic capacity. Lignin catabolism was further investigated using metatranscriptomics of sediment incubated with milled or Kraft lignin at 45 °C. Aromatic compounds were depleted from lignin-amended sediment over 148 h. The metatranscriptomic data revealed upregulation of des/lig genes predicted to specify the catabolism of syringate, vanillate, and phenolic oligomers in the sphingomonads Altererythrobacter ssp. and Novosphingobium ssp., as well as in the Burkholderiales genus, Rubrivivax. This study demonstrates how temperature structures biogeochemical cycling populations in a unique ecosystem, and combines community-level metagenomics with targeted metatranscriptomics to identify pathways with potential for bio-refinement of lignin-derived aromatic compounds. In addition, the diverse aromatic catabolic pathways of Altererythrobacter ssp. may serve as a source of thermotolerant enzymes for lignin valorization.
Collapse
|
8
|
Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol 2021; 67:88-98. [PMID: 33508635 DOI: 10.1016/j.copbio.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.
Collapse
Affiliation(s)
- Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihao Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
9
|
Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DCW. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. BIORESOURCE TECHNOLOGY 2021; 320:124412. [PMID: 33249259 DOI: 10.1016/j.biortech.2020.124412] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The most prominent aromatic feedstock on Earth is lignin, however, lignin valorization is still an underrated subject. The principal preparatory strategies for lignin valorization are fragmentation and depolymerization which help in the production of fuels and chemicals. Owing to lignin's structural heterogeneity, these strategies result in product generation which requires tedious separation and purification to extract target products. The bacterial genus Pseudomonas has been dominant for its lignin valorization potency, owing to a robust enzymatic machinery that is used to funnel variable lignin derivatives into certain target products such as polyhydroxyalkanotes (PHAs) and cis, cis-muconic acid (MA). In this review, the potential of genus Pseudomonas in lignin valorization is critically reviewed along with the advanced genetic techniques and tools to ease the use of lignin/lignin-model compounds for the synthesis of bioproducts. This review also highlights the research gaps in lignin biovalorization and discuss the challenges and possibilities for future research.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Siming You
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8 QQ, United Kingdom
| | - Jingzi Beiyuan
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunil Kumar
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Lal Singh
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Noonan AJC, Qiu Y, Ho JCH, Ocampo J, Vreugdenhil KA, Marr RA, Zhao Z, Yoshikuni Y, Hallam SJ. CRAGE-mediated insertion of fluorescent chromosomal markers for accurate and scalable measurement of co-culture dynamics in Escherichia coli. Synth Biol (Oxf) 2021; 5:ysaa015. [PMID: 33381654 PMCID: PMC7751189 DOI: 10.1093/synbio/ysaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Monitoring population dynamics in co-culture is necessary in engineering microbial consortia involved in distributed metabolic processes or biosensing applications. However, it remains difficult to measure strain-specific growth dynamics in high-throughput formats. This is especially vexing in plate-based functional screens leveraging whole-cell biosensors to detect specific metabolic signals. Here, we develop an experimental high-throughput co-culture system to measure and model the relationship between fluorescence and cell abundance, combining chassis-independent recombinase-assisted genome engineering (CRAGE) and whole-cell biosensing with a PemrR-green fluorescent protein (GFP) monoaromatic reporter used in plate-based functional screening. CRAGE was used to construct Escherichia coli EPI300 strains constitutively expressing red fluorescent protein (RFP) and the relationship between RFP expression and optical density (OD600) was determined throughout the EPI300 growth cycle. A linear equation describing the increase of normalized RFP fluorescence during deceleration phase was derived and used to predict biosensor strain dynamics in co-culture. Measured and predicted values were compared using flow cytometric detection methods. Induction of the biosensor lead to increased GFP fluorescence normalized to biosensor cell abundance, as expected, but a significant decrease in relative abundance of the biosensor strain in co-culture and a decrease in bulk GFP fluorescence. Taken together, these results highlight sensitivity of population dynamics to variations in metabolic activity in co-culture and the potential effect of these dynamics on the performance of functional screens in plate-based formats. The engineered strains and model used to evaluate these dynamics provide a framework for optimizing growth of synthetic co-cultures used in screening, testing and pathway engineering applications.
Collapse
Affiliation(s)
- Avery J C Noonan
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilin Qiu
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joe C H Ho
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jewel Ocampo
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - K A Vreugdenhil
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Alexander Marr
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
|
12
|
Patel M, Patel HM, Vohra N, Dave S. Complete genome sequencing and comparative genome characterization of the lignocellulosic biomass degrading bacterium Pseudomonas stutzeri MP4687 from cattle rumen. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00530. [PMID: 32983925 PMCID: PMC7498857 DOI: 10.1016/j.btre.2020.e00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
We report the complete genome sequencing of novel Pseudomonas stutzeri strain MP4687 isolated from cattle rumen. Various strains of P. stutzeri have been reported from different environmental samples including oil-contaminated sites, crop roots, air, and human clinical samples, but not from rumen samples, which is being reported here for the first time. The genome of P. stutzeri MP4687 has a single replicon, 4.75 Mb chromosome and a G + C content of 63.45%. The genome encodes for 4,790 protein coding genes including 164 CAZymes and 345 carbohydrate processing genes. The isolate MP4687 harbors LCB hydrolyzing potential through endoglucanase (4.5 U/mL), xylanase (3.1 U/mL), β-glucosidase (3.3 U/mL) and β-xylosidase (1.9 U/mL) activities. The pangenome analysis further revealed that MP4687 has a very high number of unique genes (>2100) compared to other P. stutzeri genomes, which might have an important role in rumen functioning.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan, 384265, Gujarat, India
- Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, 47906, IN, United States
- Corresponding author at: Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, 47906, IN, United States
| | - Hiral M. Patel
- P.G. Department of Biosciences, Vadtal Road, Sardar Patel University, Bakrol, 388315, Anand, Gujarat, India
| | - Nasim Vohra
- Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Sanjay Dave
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan, 384265, Gujarat, India
| |
Collapse
|
13
|
Wang X, Lin L, Zhou J. Links among extracellular enzymes, lignin degradation and cell growth establish the models to identify marine lignin-utilizing bacteria. Environ Microbiol 2020; 23:160-173. [PMID: 33107668 DOI: 10.1111/1462-2920.15289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
A major conundrum in the isolation of prokaryotes from open environments is stochasticity. It is especially difficult to study low abundance groups where very little biological information exists, although single-cell genomics and metagenomics have alleviated some of this bottleneck. Here, we report an approach to capture lignin-utilizing bacteria by linking a physical model to actual organisms. Extracellular enzymes, lignin degradation and cell growth are crucial phenotypes of lignin-utilizing bacteria, but their interrelationships remain poorly understood. In this study, the phenotypes of bacteria isolated from in situ lignocellulose enrichment samples in coastal waters were traced and statistically analysed. It suggested cell growth, dye-decolorizing peroxidase (DyP) and reactive oxygen species (ROS) were significantly correlated with lignin degradation, exhibiting a genus-specific property. The established models enabled us to efficiently capture lignin-utilizing bacteria and rapidly evaluate lignin degradation for Bacillus and Vibrio strains. Through the model, we identified several previously unrecognized marine bacterial lignin degraders. Moreover, it demonstrated that the isolated marine lignin-utilizing bacteria employ a DyP-based system and ROS for lignin depolymerization, providing insights into the mechanism of marine bacterial lignin degradation. Our findings should have implications beyond the capture of lignin-utilizing bacteria, in the isolation of other microorganisms with as-yet-unknown molecular biomarkers.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
14
|
Yadav VG, Yadav GD, Patankar SC. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2020; 22:1757-1774. [PMID: 32982628 PMCID: PMC7505498 DOI: 10.1007/s10098-020-01945-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 05/24/2023]
Abstract
ABSTRACT Energy and the environment are intimately related and hotly debated issues. Today's crude oil-based economy for the manufacture of fuels, chemicals and materials will not have a sustainable future. The over-use of oil products has done a great damage to the environment. Faced with the twin challenges of sustaining socioeconomic development and shrinking the environmental footprint of chemicals and fuel manufacturing, a major emphasis is on either converting biomass into low-value, high-volume biofuels or refining it into a wide spectrum of products. Using carbon for fuel is a flawed approach and unlikely to achieve any nation's socioeconomic or environmental targets. Biomass is chemically and geographically incompatible with the existing refining and pipeline infrastructure, and biorefining and biofuels production in their current forms will not achieve economies of scale in most nations. Synergistic use of crude oil, biomass, and shale gas to produce fuels, value-added chemicals, and commodity chemicals, respectively, can continue for some time. However, carbon should not be used as a source of fuel or energy but be valorized to other products. In controlling CO2 emissions, hydrogen will play a critical role. Hydrogen is best suited for converting waste biomass and carbon dioxide emanated from different sources, whether it be fossil fuel-derived carbon or biomass-derived carbon, into fuels and chemicals as well as it will also lead, on its own as energy source, to the carbon negative scenario in conjunction with other renewable non-carbon sources. This new paradigm for production of fuels and chemicals not only offers the greatest monetization potential for biomass and shale gas, but it could also scale down output and improve the atom and energy economies of oil refineries. We have also highlighted the technology gaps with the intention to drive R&D in these directions. We believe this article will generate a considerable debate in energy sector and lead to better energy and material policy across the world.
Collapse
Affiliation(s)
- Vikramaditya G. Yadav
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC Canada
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Saurabh C. Patankar
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Indian Oil Odisha Campus, Bhubaneshwar, India
| |
Collapse
|
15
|
Jiang S, Zheng X, Li L. De novo assembly of Auricularia polytricha transcriptome and discovery of genes involved in the degradation of lignocellulose. Biotechnol Appl Biochem 2020; 68:983-991. [PMID: 32786100 DOI: 10.1002/bab.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Auricularia polytricha belonging to Basidiomycota has the ability to degrade lignocellulose. However, there has been no resource in public databases examining the transcriptome of A. polytricha. In this study, high-throughput sequencing platform BGISEQ-500 was used to generate large amount of transcript sequences from A. polytricha for gene discovery and molecular marker development. A total of 28,102 unigenes were discovered from the assembly of clean reads. In addition, functional categorization of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathways revealed several important biological processes. GO annotation analysis presented 47 categories, with the major subcategories being catalytic activity, binding, cellular process, metabolic process, and cell. Among the five functional categories and 21 subcategories of processes discovered from KEGG, global and overview maps, carbohydrate metabolism, transport, and catabolism are the main subcategories. Furthermore, among the unigenes related to lignocellulosic degradation discovered by KEGG pathway enrichment analysis, 2, 5, and 16 unigenes in de novo assembly of A. polytricha transcriptome were found to relate to cellulose, hemicellulose, and lignin degradation, respectively. The study provided valuable information on the degradation of lignocellulose to facilitate research on the degradation mechanism, molecular marker, functional research, gene mapping, and other multigenomic studies of species containing lignocellulose.
Collapse
Affiliation(s)
- Shiyu Jiang
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Xueling Zheng
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Li Li
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
16
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
17
|
Granja-Travez RS, Persinoti GF, Squina FM, Bugg TDH. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 2020; 104:3305-3320. [PMID: 32088760 DOI: 10.1007/s00253-019-10318-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
Collapse
Affiliation(s)
- Rommel Santiago Granja-Travez
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| | | | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
18
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
19
|
F M Machado L, Currin A, Dixon N. Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J Biol Eng 2019; 13:91. [PMID: 31798685 PMCID: PMC6882365 DOI: 10.1186/s13036-019-0214-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Background Transcription factor-based biosensors are useful tools for the detection of metabolites and industrially valuable molecules, and present many potential applications in biotechnology and biomedicine. However, the most common approach to develop biosensors relies on employing a limited set of naturally occurring allosteric transcription factors (aTFs). Therefore, altering the ligand specificity of aTFs towards the detection of new effectors is an important goal. Results Here, the PcaV repressor, a member of the MarR aTF family, was used to develop a biosensor for the detection of hydroxyl-substituted benzoic acids, including protocatechuic acid (PCA). The PCA biosensor was further subjected to directed evolution to alter its ligand specificity towards vanillin and other closely related aromatic aldehydes, to generate the Van2 biosensor. Ligand recognition of Van2 was explored in vitro using a range of biochemical and biophysical analyses, and extensive in vivo genetic-phenotypic analysis was performed to determine the role of each amino acid change upon biosensor performance. Conclusions This is the first study to report directed evolution of a member of the MarR aTF family, and demonstrates the plasticity of the PCA biosensor by altering its ligand specificity to generate a biosensor for aromatic aldehydes.
Collapse
Affiliation(s)
- Leopoldo F M Machado
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK
| | - Andrew Currin
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK.,3SYNBIOCHEM, The University of Manchester, M1 7DN, Manchester, UK
| | - Neil Dixon
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK.,3SYNBIOCHEM, The University of Manchester, M1 7DN, Manchester, UK
| |
Collapse
|
20
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
21
|
Alvarez-Gonzalez G, Dixon N. Genetically encoded biosensors for lignocellulose valorization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:246. [PMID: 31636705 PMCID: PMC6792243 DOI: 10.1186/s13068-019-1585-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 05/07/2023]
Abstract
Modern society is hugely dependent on finite oil reserves for the supply of fuels and chemicals. Moving our dependence away from these unsustainable oil-based feedstocks to renewable ones is, therefore, a critical factor towards the development of a low carbon bioeconomy. Lignin derived from biomass feedstocks offers great potential as a renewable source of aromatic compounds if methods for its effective valorization can be developed. Synthetic biology and metabolic engineering offer the potential to synergistically enable the development of cell factories with novel biosynthetic routes to valuable chemicals from these sustainable sources. Pathway design and optimization is, however, a major bottleneck due to the lack of high-throughput methods capable of screening large libraries of genetic variants and the metabolic burden associated with bioproduction. Genetically encoded biosensors can provide a solution by transducing the target metabolite concentration into detectable signals to provide high-throughput phenotypic read-outs and allow dynamic pathway regulation. The development and application of biosensors in the discovery and engineering of efficient biocatalytic processes for the degradation, conversion, and valorization of lignin are paving the way towards a sustainable and economically viable biorefinery.
Collapse
Affiliation(s)
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
23
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
24
|
Raghavan SS, Chee S, Li J, Poschmann J, Nagarajan N, Jia Wei S, Verma CS, Ghadessy FJ. Development and application of a transcriptional sensor for detection of heterologous acrylic acid production in E. coli. Microb Cell Fact 2019; 18:139. [PMID: 31426802 PMCID: PMC6699081 DOI: 10.1186/s12934-019-1185-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acrylic acid (AA) is a widely used commodity chemical derived from non-renewable fossil fuel sources. Alternative microbial-based production methodologies are being developed with the aim of providing “green” acrylic acid. These initiatives will benefit from component sensing tools that facilitate rapid and easy detection of in vivo AA production. Results We developed a novel transcriptional sensor facilitating in vivo detection of acrylic acid (AA). RNAseq analysis of Escherichia coli exposed to sub-lethal doses of acrylic acid identified a selectively responsive promoter (PyhcN) that was cloned upstream of the eGFP gene. In the presence of AA, eGFP expression in E. coli cells harbouring the sensing construct was readily observable by fluorescence read-out. Low concentrations of AA (500 μM) could be detected whilst the closely related lactic and 3-hydroxy propionic acids failed to activate the sensor. We further used the developed AA-biosensor for in vivo FACS-based screening and identification of amidase mutants with improved catalytic properties for deamination of acrylamide to acrylic acid. Conclusions The transcriptional AA sensor developed in this study will benefit strain, enzyme and pathway engineering initiatives targeting the efficient formation of bio-acrylic acid. Electronic supplementary material The online version of this article (10.1186/s12934-019-1185-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarada S Raghavan
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Sharon Chee
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Juntao Li
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, Inserm, CHU-Nantes, Nantes, France
| | - Niranjan Nagarajan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Siau Jia Wei
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Farid J Ghadessy
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore.
| |
Collapse
|
25
|
Daudu D, Kisiala A, Werner Ribeiro C, Mélin C, Perrot L, Clastre M, Courdavault V, Papon N, Oudin A, Courtois M, Dugé de Bernonville T, Gaucher M, Degrave A, Lanoue A, Lanotte P, Schouler C, Brisset MN, Emery RN, Pichon O, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. J Biotechnol 2019; 289:103-111. [DOI: 10.1016/j.jbiotec.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
26
|
Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Arch Biochem Biophys 2018; 660:97-107. [DOI: 10.1016/j.abb.2018.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
|
27
|
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. BIORESOURCE TECHNOLOGY 2018; 269:557-566. [PMID: 30219494 DOI: 10.1016/j.biortech.2018.08.118] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Daolin Du
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
28
|
Goacher RE, Braham EJ, Michienzi CL, Flick RM, Yakunin AF, Master ER. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. PHYSIOLOGIA PLANTARUM 2018; 164:5-16. [PMID: 29286544 DOI: 10.1111/ppl.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion.
Collapse
Affiliation(s)
- Robyn E Goacher
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Erick J Braham
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77843, USA
| | - Courtney L Michienzi
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Robert M Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Kemistintie 1, Espoo, Finland
| |
Collapse
|
29
|
Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 2018; 3:870-880. [PMID: 30013236 PMCID: PMC6786970 DOI: 10.1038/s41564-018-0190-y] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1–7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8–10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling. The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment.
Collapse
|
30
|
D'Ambrosio V, Jensen MK. Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Res 2018; 17:4157790. [PMID: 28961766 PMCID: PMC5812511 DOI: 10.1093/femsyr/fox076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However, compared to the methods developed for engineering cell factories, the methods developed for testing the performance of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell factory development and robustness of overall bioprocesses.
Collapse
Affiliation(s)
- Vasil D'Ambrosio
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, Morgavi DP, Cathala B, Moreau C, Cleret M, Robe P, Klopp C, Laville E. Highly Promiscuous Oxidases Discovered in the Bovine Rumen Microbiome. Front Microbiol 2018; 9:861. [PMID: 29780372 PMCID: PMC5945886 DOI: 10.3389/fmicb.2018.00861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/13/2018] [Indexed: 11/17/2022] Open
Abstract
The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.
Collapse
Affiliation(s)
- Lisa Ufarté
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Gabrielle Potocki-Veronese
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Davide Cecchini
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Alexandra S Tauzin
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Angeline Rizzo
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Bernard Cathala
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Céline Moreau
- UR1268 Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Megane Cleret
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Christophe Klopp
- Plateforme Bio-informatique Toulouse Genopole, UBIA INRA, BP 52627, Castanet-Tolosan, France
| | - Elisabeth Laville
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
32
|
Standaert RF, Giannone RJ, Michener JK. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes. Metab Eng Commun 2018; 6:56-62. [PMID: 29896448 PMCID: PMC5994803 DOI: 10.1016/j.meteno.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/02/2022] Open
Abstract
Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.
Collapse
Affiliation(s)
- Robert F Standaert
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,Shull Wollan Center - A Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, USA.,Department of Biochemistry&Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,BioEnergy Science Center, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,BioEnergy Science Center, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| |
Collapse
|
33
|
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TDH, Squina FM. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:75. [PMID: 29588660 PMCID: PMC5863372 DOI: 10.1186/s13068-018-1073-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/09/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Collapse
Affiliation(s)
- Eduardo C. Moraes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Thabata M. Alvarez
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Brazil
| | - Gabriela F. Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Geizecler Tomazetto
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Livia B. Brenelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Douglas A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Gabriela C. Ematsu
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Juliana A. Aricetti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | | | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| |
Collapse
|
34
|
Ho JCH, Pawar SV, Hallam SJ, Yadav VG. An Improved Whole-Cell Biosensor for the Discovery of Lignin-Transforming Enzymes in Functional Metagenomic Screens. ACS Synth Biol 2018; 7:392-398. [PMID: 29182267 DOI: 10.1021/acssynbio.7b00412] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery and utilization of biocatalysts that selectively valorize lignocellulose is critical to the profitability of next-generation biorefineries. Here, we report the development of a refactored, whole-cell, GFP-based biosensor for high-throughput identification of biocatalysts that transform lignin into specialty chemicals from environmental DNA of uncultivable archaea and bacteria. The biosensor comprises the transcriptional regulator and promoter of the emrRAB operon of E. coli, and the configuration of the biosensor was tuned with the aid of mathematical model. The biosensor sensitively and selectively detects vanillin and syringaldehyde, and responds linearly over a wide detection range. We employed the biosensor to screen 42 520 fosmid clones comprising environmental DNA isolated from two coal beds and successfully identified 147 clones that transform hardwood kraft lignin to vanillin and syringaldehyde.
Collapse
Affiliation(s)
- Joe C. H. Ho
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sandip V. Pawar
- Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Steven J. Hallam
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vikramaditya G. Yadav
- Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
35
|
Varman AM, Follenfant R, Liu F, Davis RW, Lin YK, Singh S. Hybrid phenolic-inducible promoters towards construction of self-inducible systems for microbial lignin valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:182. [PMID: 29988329 PMCID: PMC6022352 DOI: 10.1186/s13068-018-1179-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/19/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Engineering strategies to create promoters that are both higher strength and tunable in the presence of inexpensive compounds are of high importance to develop metabolic engineering technologies that can be commercialized. Lignocellulosic biomass stands out as the most abundant renewable feedstock for the production of biofuels and chemicals. However, lignin a major polymeric component of the biomass is made up of aromatic units and remains as an untapped resource. Novel synthetic biology tools for the expression of heterologous proteins are critical for the effective engineering of a microbe to valorize lignin. This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics present in lignocellulosic hydrolysates to increase heterologous protein production. RESULTS A hybrid promoter engineering approach was utilized for the construction of phenolic-inducible promoters of higher strength. The hybrid promoters were constructed by replacing the spacer region of an endogenous promoter, PemrR present in E. coli that was naturally inducible by phenolics. In the presence of vanillin, the engineered promoters Pvtac, Pvtrc, and Pvtic increased protein expression by 4.6-, 3.0-, and 1.5-fold, respectively, in comparison with a native promoter, PemrR. In the presence of vanillic acid, Pvtac, Pvtrc, and Pvtic improved protein expression by 9.5-, 6.8-, and 2.1-fold, respectively, in comparison with PemrR. Among the cells induced with vanillin, the emergence of a sub-population constituting the healthy and dividing cells using flow cytometry was observed. The analysis also revealed this smaller sub-population to be the primary contributor for the increased expression that was observed with the engineered promoters. CONCLUSIONS This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics to increase heterologous protein production. Employing promoters inducible by phenolics will provide the following advantages: (1) develop substrate inducible systems; (2) lower operating costs by replacing expensive IPTG currently used for induction; (3) develop dynamic regulatory systems; and (4) provide flexibility in operating conditions. The flow cytometry findings strongly suggest the need for novel approaches to maintain a healthy cell population in the presence of phenolics to achieve increased heterologous protein expression and, thereby, valorize lignin efficiently.
Collapse
Affiliation(s)
- Arul M. Varman
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 USA
| | - Rhiannon Follenfant
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Fang Liu
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Ryan W. Davis
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Yone K. Lin
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
- Joint Bioenergy Institute, Emeryville, CA USA 94608
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
36
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
37
|
|
38
|
Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep 2017; 7:42121. [PMID: 28169340 PMCID: PMC5294454 DOI: 10.1038/srep42121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantly syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac's substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Overall, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.
Collapse
|
39
|
Biotechnology and the Mine of Tomorrow. Trends Biotechnol 2017; 35:79-89. [DOI: 10.1016/j.tibtech.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023]
|
40
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
41
|
Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 2016; 42:40-53. [DOI: 10.1016/j.copbio.2016.02.030] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
|
42
|
Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. ENERGIES 2016. [DOI: 10.3390/en9100808] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110-9. [DOI: 10.1016/j.jbiotec.2016.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|
44
|
Tauzin AS, Laville E, Xiao Y, Nouaille S, Le Bourgeois P, Heux S, Portais J, Monsan P, Martens EC, Potocki‐Veronese G, Bordes F. Functional characterization of a gene locus from an uncultured gut
Bacteroides
conferring xylo‐oligosaccharides utilization to
Escherichia coli. Mol Microbiol 2016; 102:579-592. [DOI: 10.1111/mmi.13480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Alexandra S. Tauzin
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
- TWB, INRARamonville Saint‐Agne France
| | | | - Yao Xiao
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn Arbor MI USA
| | | | | | - Stéphanie Heux
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
| | | | | | - Eric C. Martens
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn Arbor MI USA
| | | | - Florence Bordes
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
| |
Collapse
|
45
|
Palazzolo MA, Kurina-Sanz M. Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 2016; 32:173. [PMID: 27565783 DOI: 10.1007/s11274-016-2128-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.
Collapse
Affiliation(s)
- Martín A Palazzolo
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina.
| | - Marcela Kurina-Sanz
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina
| |
Collapse
|
46
|
Santero E, Floriano B, Govantes F. Harnessing the power of microbial metabolism. Curr Opin Microbiol 2016; 31:63-69. [DOI: 10.1016/j.mib.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/12/2023]
|
47
|
The information science of microbial ecology. Curr Opin Microbiol 2016; 31:209-216. [PMID: 27183115 DOI: 10.1016/j.mib.2016.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation.
Collapse
|
48
|
Garris HW, Baldwin SA, Van Hamme JD, Gardner WC, Fraser LH. Genomics to assist mine reclamation: a review. Restor Ecol 2016. [DOI: 10.1111/rec.12322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Heath W. Garris
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Susan A. Baldwin
- Department of Chemical and Biological Engineering; University of British Columbia, Vancouver; 2360 East Mall Vancouver BC V6T 1Z3 Canada
| | - Jonathan D. Van Hamme
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Wendy C. Gardner
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Lauchlan H. Fraser
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| |
Collapse
|
49
|
Bacterial Enzymes for Lignin Oxidation and Conversion to Renewable Chemicals. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 2015; 29:18-25. [DOI: 10.1016/j.cbpa.2015.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
|