1
|
A new border for circadian rhythm gene NFIL3 in diverse fields of cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03098-5. [PMID: 36788184 DOI: 10.1007/s12094-023-03098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The circadian rhythm disorder and abnormal expression of rhythm genes are related to many diseases, especially cancer. Rhythm gene NFIL3 is involved in energy metabolism and immune cell differentiation, and its aberrant expression is associated with metabolic diseases and inflammation. Previously, numerous studies have shown that aberrant NFIL3 expression is associated with tumorigenesis, progression, and chemotherapy resistance. For instance, NFIL3 performs as a nuclear transcription factor, impacts cell proliferation, represses apoptosis, and promotes cancer cell invasion and metastasis by regulating the transcription of target genes. In addition, NFIL3 expressed in cancer cells influences the type and proportion of infiltrated immune cells in the tumor microenvironment. Increased expression of NFIL3 induces the chemotherapy and immunotherapy resistance in cancer. In this review, we summarized the pathological functions of NFIL3 in tumorigenesis, cancer development, and treatment. The rhythm gene NFIL3 can be used as a promising target in cancer therapy in the future.
Collapse
|
2
|
Yoshitane H, Imamura K, Okubo T, Otobe Y, Kawakami S, Ito S, Takumi T, Hattori K, Naguro I, Ichijo H, Fukada Y. mTOR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxid Redox Signal 2022; 37:631-646. [PMID: 35018792 DOI: 10.1089/ars.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: The circadian clock oscillates in a cell-autonomous manner with a period of ∼24 h, and the phase is regulated by various time cues such as light and temperature through multiple clock input pathways. We previously found that osmotic and oxidative stress strongly affected the circadian period and phase of cellular rhythms, and triple knockout of apoptosis signal-regulating kinase (ASK) family members, Ask1, Ask2, and Ask3, abolished the phase shift (clock resetting) induced by hyperosmotic pulse treatment. We aimed at exploring a key molecule(s) and signaling events in the clock input pathway dependent on ASK kinases. Results: The phase shift of the cellular clock induced by the hyperosmotic pulse treatment was significantly reduced by combined deficiencies of the clock(-related) genes, Dec1, Dec2, and E4 promoter-binding protein 4 (also known as Nfil3) (E4bp4). In addition, liquid chromatography mass/mass spectrometry (LC-MS/MS)-based proteomic analysis identified hyperosmotic pulse-induced phosphorylation of circadian locomotor output cycles caput (CLOCK) Ser845 in an AKT-dependent manner. We found that AKT kinase was phosphorylated at Ser473 (i.e., activated) in response to the hyperosmotic pulse experiments. Inhibition of mechanistic target of rapamycin (mTOR) kinase by Torin 1 treatment completely abolished the AKT activation, suppressed the phosphorylation of CLOCK Ser845, and blocked the clock resetting induced by the hyperosmotic pulse treatment. Innovation and Conclusions: We conclude that mTOR-AKT signaling is indispensable for the CLOCK Ser845 phosphorylation, which correlates with the clock resetting induced by the hyperosmotic pulse treatment. Immediate early induction of the clock(-related) genes and CLOCK carboxyl-terminal (C-terminal) region containing Ser845 also play important roles in the clock input pathway through redox-sensitive ASK kinases. Antioxid. Redox Signal. 37, 631-646.
Collapse
Affiliation(s)
- Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Kiyomichi Imamura
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Department of Physiology and Cell Biology, School of Medicine, Kobe University, Kobe, Japan
| | - Takenori Okubo
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Shunsuke Ito
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, School of Medicine, Kobe University, Kobe, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Japan.,Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Lalpekhlui R, Renthlei Z, Trivedi AK. Molecular expression of clock genes in central and peripheral tissues of white-rumped munia ( Lonchura striata). Chronobiol Int 2022; 39:1058-1067. [PMID: 35473420 DOI: 10.1080/07420528.2022.2062374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To synchronize with the fluctuating environment, organisms have evolved an endogenous time tracking mechanism referred to as the biological clock(s). This clock machinery has been identified in almost all cells of vertebrates and categorized as central and peripheral clocks. In birds, three independent circadian clocks have been identified in the hypothalamus, the pineal and the retina which interact and generate circadian time at a functional level. However, there is a limited knowledge of molecular clockwork and integration between central and peripheral clocks in birds. Therefore, we studied the daily expression of clock genes (Bmal1, Clock, Per2, Cry1, Npas2, Rev-Erbα, E4bp4, Pparα, Hlf and Tef) in three central circadian clocks (hypothalamus, pineal and retina), other brain areas (cerebellum, optic tectum and telencephalon) and in the peripheral tissues (liver, intestine, muscle and blood) of white-rumped munia. Adult birds were exposed to equinox photoperiod (12 L:12D) for 2 weeks and were then sampled (N = 5 per time point) at six-time points (ZT1, ZT5, ZT9, ZT13, ZT17 and ZT21). Daily expressions of clock genes were studied using qPCR. We observed daily variations and tissue-specific expression patterns for clock genes. These results are consistent with the autoregulatory circadian feedback loop proposed for the mammalian system and thus suggest a conserved tissue-level circadian time generation in white-rumped munia.
Collapse
|
4
|
Rego NDFC, Chahad-Ehlers S, Campanini EB, Torres FR, de Brito RA. VRILLE shows high divergence among Higher Diptera flies but may retain role as transcriptional repressor of clock. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104284. [PMID: 34256034 DOI: 10.1016/j.jinsphys.2021.104284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
In the circadian system, the clock gene vrille (vri) is an essential component of the second feedback loop, being responsible in Drosophila for the rhythmicity of the Clock (Clk) gene transcription by its repression. Here we studied vri in a fruit fly pest, the Tephritidae Anastrepha fraterculus, aimingtoinvestigate its molecular evolution and expression patterns from whole-head extracts. We used a combination of transcriptomic, genomic and gene walking strategies to sequence and characterize Afravri in male and female head transcriptomes of A. fraterculus and detected two putative isoforms that may correspond to A and D vri isoforms of Drosophila. Both isoforms produced a full-length sequence that translates to 842 amino acids. While the protein sequence showed significant divergence to orthologous sequences from other organisms, the bZIP domain was highly conserved. Molecular evolutionary analyses showed that vri in higher Diptera flies has been evolving under positive selection. A more detailed analysis showed positive selection also in Tephritidae with 29 sites evolving under positive selection in comparison with Drosophilidae. Real time expression analysis in LD and DD conditions showed cyclic expression of Afravri mRNA with oscillation opposite to AfraClk, suggesting that VRI may also behave in Anastrepha as a transcriptional repressor of Clk, providing another indication that higher Diptera might share common interlocked transcript-translation feedback loops (TTFLs) mechanisms that differ from other insects in target genes.
Collapse
Affiliation(s)
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Felipe Rafael Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| |
Collapse
|
5
|
Yang Y, Liu Q, Wang T, Pan J. Wavelength-specific artificial light disrupts molecular clock in avian species: A power-calibrated statistical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114206. [PMID: 32599326 DOI: 10.1016/j.envpol.2020.114206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 05/29/2023]
Abstract
Nighttime lighting is an increasingly important anthropogenic environmental stress on plants and animals. Exposure to unnatural lighting environments may disrupt the circadian rhythm of organisms. However, the sample size of relevant studies, e.g. disruption of the molecular circadian clock by light pollution, was small (<10), which led to low statistical power and difficulties in replicating prior results. Here, we developed a power-calibrated statistical approach to overcome these weaknesses. The results showed that the effect size of 2.48 in clock genes expression induced by artificial light would ensure the reproducibility of the results as high as 80%. Long-wavelength light (560-660 nm) entrained expressions of the positive core clock genes (e.g. cClock) and negative core clock genes (e.g. cCry1, cPer2) in robust circadian rhythmicity, whereas those clock genes were arrhythmic in short-wavelength light (380-480 nm). Further, we found artificial light could entrain the transcriptional-translational feedback loop of the molecular clock in a wavelength-dependent manner. The expression of the positive core clock genes (cBmal1, cBmal2 and cClock), cAanat gene and melatonin were the highest in short-wavelength light and lowest in long-wavelength light. For the negative regulators of the molecular clock (cCry1, cCry2, cPer2 and cPer3), the expression of which was the highest in long-wavelength light and lowest in short-wavelength light. Our statistical approach opens new opportunities to understand and strengthen conclusions, comparing with the studies with small sample sizes. We also provide comprehensive insight into the effect of wavelength-specific artificial light on the circadian rhythm of the molecular clock in avian species. Especially, the global lighting is shifting from "yellow" sodium lamps, which is more like the long-wavelength light, toward short-wavelength light (blue light)-enriched "white" light-emitting diodes (LEDs).
Collapse
Affiliation(s)
- Yefeng Yang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Liu
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jinming Pan
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Chustecka M, Blügental N, Majewski PM, Adamska I. 24 hour patterning in gene expression of pineal neurosteroid biosynthesis in young chickens ( Gallus gallus domesticus L.). Chronobiol Int 2020; 38:46-60. [PMID: 32990093 DOI: 10.1080/07420528.2020.1823404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pineal gland, one of the three equivalent avian biological clock structures, is also the site of intensive neurosteroid synthesis (7α-hydroxypregnenolone and allopregnanolone). Pineal neurosteroid biosynthesis involves six enzymes: cytochrome P450 side-chain cleavage - Cyp11a1 encoded, cytochrome P4507α - Cyp7b1, 3β-hydroxysteroid dehydrogenase - Hsd3b2, 5α-reductase - Srd5a1, 3α-hydroxysteroid dehydrogenase - Akr1d1, and 5β-reductase - Srd5a3. Regulation of neurosteroid biosynthesis is not fully understood; although it is known that the E4BP4 transcription factor induces activation of biosynthetic cholesterol genes, which are the targets for SREBP (element-binding protein transcription factor). SREBP principal activity in the pineal gland is suppression and inhibition of the Period2 canonical clock gene, suggesting our hypothesis that genes encoding enzymes involved in neurosteroidogenesis are under circadian clock control and are the Clock Control Genes (CCGs). Therefore, through investigation of daily changes in Cyp11a1, Cyp7b1, Hsd3b2, Akr1d1, Srd5a1, and Srd5a3, pineal genes were tested in vivo and in vitro, in cultured pinealocytes. Experiments were carried out on pineal glands taken from 16-day-old chickens in vivo or using in vitro cultures of pinealocytes collected from 16-day-old animals. Both the birds in the in vivo experiments and the pinealocytes were kept under controlled light conditions (LD 12:12) or in constant darkness (DD). Subsequently, materials were prepared for RT-qPCR analysis. Results revealed that three of the six tested genes: Cyp11a1, Cyp7b1, and Srd5a3 demonstrated significant 24-hour variation in in vivo and in vitro. Findings of this study confirm that these genes could be under clock control and satisfy many of the requirements to be identified as CCGs.
Collapse
Affiliation(s)
- Magdalena Chustecka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Natalia Blügental
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Pawel Marek Majewski
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
7
|
Sun Y, Liu C, Huang M, Huang J, Liu C, Zhang J, Postlethwait JH, Wang H. The Molecular Evolution of Circadian Clock Genes in Spotted Gar ( Lepisosteus oculatus). Genes (Basel) 2019; 10:genes10080622. [PMID: 31426485 PMCID: PMC6723592 DOI: 10.3390/genes10080622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are biological rhythms with a period of approximately 24 h. While canonical circadian clock genes and their regulatory mechanisms appear highly conserved, the evolution of clock gene families is still unclear due to several rounds of whole genome duplication in vertebrates. The spotted gar (Lepisosteus oculatus), as a non-teleost ray-finned fish, represents a fish lineage that diverged before the teleost genome duplication (TGD), providing an outgroup for exploring the evolutionary mechanisms of circadian clocks after whole-genome duplication. In this study, we interrogated the spotted gar draft genome sequences and found that spotted gar contains 26 circadian clock genes from 11 families. Phylogenetic analysis showed that 9 of these 11 spotted gar circadian clock gene families have the same number of genes as humans, while the members of the nfil3 and cry families are different between spotted gar and humans. Using phylogenetic and syntenic analyses, we found that nfil3-1 is conserved in vertebrates, while nfil3-2 and nfil3-3 are maintained in spotted gar, teleost fish, amphibians, and reptiles, but not in mammals. Following the two-round vertebrate genome duplication (VGD), spotted gar retained cry1a, cry1b, and cry2, and cry3 is retained in spotted gar, teleost fish, turtles, and birds, but not in mammals. We hypothesize that duplication of core clock genes, such as (nfil3 and cry), likely facilitated diversification of circadian regulatory mechanisms in teleost fish. We also found that the transcription factor binding element (Ahr::Arnt) is retained only in one of the per1 or per2 duplicated paralogs derived from the TGD in the teleost fish, implicating possible subfuctionalization cases. Together, these findings help decipher the repertoires of the spotted gar’s circadian system and shed light on how the vertebrate circadian clock systems have evolved.
Collapse
Affiliation(s)
- Yi Sun
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Chao Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Huang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Changhong Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Jiguang Zhang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
| | | | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Yoshitane H, Asano Y, Sagami A, Sakai S, Suzuki Y, Okamura H, Iwasaki W, Ozaki H, Fukada Y. Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol 2019; 2:300. [PMID: 31428688 PMCID: PMC6687812 DOI: 10.1038/s42003-019-0522-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
The circadian clock drives gene expression rhythms, leading to daily changes in physiology and behavior. In mammals, Albumin D-site-Binding Protein (DBP) rhythmically activates transcription of various genes through a DNA cis-element, D-box. The DBP-dependent transactivation is repressed by competitive binding of E4BP4 to the D-box. Despite the elaborate regulation, physiological roles of the D-box in the circadian clockwork are still elusive. Here we identified 1490 genomic regions recognized commonly by DBP and E4BP4 in the mouse liver. We comprehensively defined functional D-box sequences using an improved bioinformatics method, MOCCS2. In RNA-Seq analysis of E4bp4-knockout and wild type liver, we showed the importance of E4BP4-mediated circadian repression in gene expression rhythms. In addition to the circadian control, we found that environmental stimuli caused acute induction of E4BP4 protein, evoking phase-dependent phase shifts of cellular circadian rhythms and resetting the clock. Collectively, D-box-mediated transcriptional regulation plays pivotal roles in input and output in the circadian clock system.
Collapse
Affiliation(s)
- Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Yoshimasa Asano
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Aya Sagami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Seinosuke Sakai
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5,, Kashiwa Chiba, 277-8568 Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimo-Adachi-cho 46-29, Kyoto, 606-8501 Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575 Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577 Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| |
Collapse
|
9
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
10
|
Renthlei Z, Gurumayum T, Borah BK, Trivedi AK. Daily expression of clock genes in central and peripheral tissues of tree sparrow (Passer montanus). Chronobiol Int 2018; 36:110-121. [DOI: 10.1080/07420528.2018.1523185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Velmurugan BK, Chang R, Marthandam Asokan S, Chang C, Day C, Lin Y, Lin Y, Kuo W, Huang C. A minireview of E4BP4/NFIL3 in heart failure. J Cell Physiol 2018; 233:8458-8466. [DOI: 10.1002/jcp.26790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Ruey‐Lin Chang
- College of Chinese Medicine, School of Post‐Baccalaureate Chinese Medicine China Medical University Taichung Taiwan
| | | | - Chih‐Fen Chang
- Department of Internal Medicine, Division of Cardiology Taichung Armed Force Taichung General Hospital Taichung Taiwan
| | | | - Yueh‐Min Lin
- Department of Pathology Changhua Christian Hospital Changhua Taiwan
- Department of Medical Technology, Jen‐Teh Junior College of Medicine Nursing and Management Miaoli Taiwan
| | - Yuan‐Chuan Lin
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Chih‐Yang Huang
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
- Graduate Institute of Chinese Medical Science China Medical University Taichung Taiwan
- Department of Biological Science and Technology Asia University Taichung Taiwan
| |
Collapse
|
12
|
Mogi A, Yomoda R, Kimura S, Tsushima C, Takouda J, Sawauchi M, Maekawa T, Ohta H, Nishino S, Kurita M, Mano N, Osumi N, Moriya T. Entrainment of the Circadian Clock in Neural Stem Cells by Epidermal Growth Factor is Closely Associated with ERK1/2-mediated Induction of Multiple Clock-related Genes. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Agarwal N, Mishra I, Rani S, Kumar V. Temporal expression of clock genes in central and peripheral tissues of spotted munia under varying light conditions: Evidence for circadian regulation of daily physiology in a non-photoperiodic circannual songbird species. Chronobiol Int 2018; 35:617-632. [PMID: 29370529 DOI: 10.1080/07420528.2017.1422742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated if the duration and/or frequency of the light period affect 24-h rhythm of circadian clock genes in central and peripheral tissues of a non-photoperiodic songbird, the spotted munia (Lonchura punctulata), in which a circannual rhythm regulates the reproductive cycle. We monitored activity-rest pattern and measured 24-h mRNA oscillation of core clock (Bmal1, Clock, Per2, Cry1 and Cry2) and clock-controlled (E4bp4, Rorα and Rev-erbα) genes in the hypothalamus, retina, liver and gut of spotted munia subjected to an aberrant light-dark (LD) cycle (3.5L:3.5D; T7, T = period length of LD cycle) and continuous light (LL, 24L:0D), with controls on 24-h LD cycle (T24, 12L:12D). Munia exhibited rhythmic activity-rest pattern with period matched to T7 or T24 under an LD cycle and were arrhythmic with a scattered activity pattern and higher activity duration under LL. At the transcriptional level, both clock and clock-controlled genes showed a significant 24-h rhythm in all four tissues (except Clock in the liver) under 12L:12D, suggesting a conserved tissue-level circadian time generation in spotted munia. An exposure to 3.5L:3.5D or LL induced arrhythmicity in transcriptional oscillation of all eight genes in the hypothalamus (except Rev-erbα) and liver (except Bmal1 and Rev-erbα under T7 and Cry1 under LL). In the retina, however, all genes showed arrhythmic 24-h mRNA expression under LL, but not under T7 (except in E4bp4 and Rorα). Interestingly, unlike in the liver, Bmal1, Per2, Cry1, Rorα and Rev-erbα mRNA expressions were rhythmic in the gut under both T7 (except Rorα) and LL conditions. These results showed variable relationship of internal circadian clocks with the external light environment and suggested a weak coupling of circadian clocks between the central (hypothalamus and retina) and peripheral (liver and gut) tissues. We suggest tissue-level circadian clock regulation of daily physiology and behavior in the spotted munia.
Collapse
Affiliation(s)
- Neha Agarwal
- a IndoUS Center for Biological Timing, Department of Zoology , University of Delhi , Delhi , India.,b IndoUS Center for Biological Timing, Department of Zoology , University of Lucknow , Lucknow , India
| | - Ila Mishra
- a IndoUS Center for Biological Timing, Department of Zoology , University of Delhi , Delhi , India
| | - Sangeeta Rani
- b IndoUS Center for Biological Timing, Department of Zoology , University of Lucknow , Lucknow , India
| | - Vinod Kumar
- a IndoUS Center for Biological Timing, Department of Zoology , University of Delhi , Delhi , India
| |
Collapse
|
14
|
Mishra I, Kumar V. Circadian basis of seasonal timing in higher vertebrates. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:476-484. [PMID: 28668516 DOI: 10.1016/j.jphotobiol.2017.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
16
|
Light- and circadian-controlled genes respond to a broad light spectrum in Puffer Fish-derived Fugu eye cells. Sci Rep 2017; 7:46150. [PMID: 28418034 PMCID: PMC5394683 DOI: 10.1038/srep46150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Some cell lines retain intrinsic phototransduction pathways to control the expression of light-regulated genes such as the circadian clock gene. Here we investigated the photosensitivity of a Fugu eye, a cell line established from the eye of Takifugu rubripes, to examine whether such a photosensitive nature is present. Microarray analysis identified 15 genes that showed blue light-dependent change at the transcript level. We investigated temporal profiles of the light-induced genes, as well as Cry and Per, under light-dark, constant light (LL), and constant dark (DD) conditions by quantitative RT-PCR. Transcript levels of Per1a and Per3 genes showed circadian rhythmic changes under both LL and DD conditions, while those of Cry genes were controlled by light. All genes examined, including DNA-damage response genes and photolyase genes, were upregulated not only by blue light but also green and red light, implying the contribution of multiple photopigments. The present study is the first to identify a photosensitive clock cell line originating from a marine fish. These findings may help to characterize the molecular mechanisms underlying photic synchronization of the physiological states of fishes to not only daily light-dark cycles but also to various marine environmental cycles such as the lunar or semi-lunar cycle.
Collapse
|
17
|
Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation. Sci Rep 2017; 7:42882. [PMID: 28220845 PMCID: PMC5318856 DOI: 10.1038/srep42882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023] Open
Abstract
Nuclear factor, interleukin 3, regulated (Nfil3, also known as E4 Promoter-Binding Protein 4 (E4BP4)) protein is a transcription factor that binds to DNA and generally represses target gene expression. In the circadian clock system, Nfil3 binds to a D-box element residing in the promoter of clock genes and contributes to their robust oscillation. Here, we show that the 5'-untranslated region (5'-UTR) of Nfil3 mRNA contains an internal ribosome entry site (IRES) and that IRES-mediated translation occurs in a phase-dependent manner. We demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binds to a specific region of Nfil3 mRNA and regulates IRES-mediated translation. Knockdown of hnRNP A1 almost completely abolishes protein oscillation without affecting mRNA oscillation. Moreover, we observe that intracellular calcium levels, which are closely related to bone formation, depend on Nfil3 levels in osteoblast cell lines. We suggest that the 5'-UTR mediated cap-independent translation of Nfil3 mRNA contributes to the rhythmic expression of Nfil3 by interacting with the RNA binding protein hnRNP A1. These data provide new evidence that the posttranscriptional regulation of clock gene expression is important during bone metabolism.
Collapse
|
18
|
Turkowska E, Pietruszka D, Skwarlo-Sonta K. Thymic E4bp4 gene transcription is up-regulated in the chicken during experimental peritonitis modified by the season-related lighting conditions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:309-313. [PMID: 27502572 DOI: 10.1016/j.dci.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Immunity, like other vertebrate processes, undergoes the diurnal and seasonal rhythmicity generated and synchronized by the endogenous clock. In the present study a transcription of the selected clock genes was evaluated in the chicken thymus to verify its supposed role as a peripheral clock and to check its relation with the seasonality of immune function. Chickens kept from hatch in the season-related lighting conditions (LD 16:8 in summer vs 8:16 in winter) and in a controlled temperature were exposed to the experimental peritonitis elicited by i.p. thioglycollate injection. Previously described seasonality of the inflammatory response has been confirmed and the diurnal rhythms of a core clock gene Per3 and its repressor E4bp4 in the thymus has been evidenced. E4bp4 transcription was up-regulated in inflamed chickens while that of Per3 appeared independent of the locally induced inflammation. Our results suggest an interconnecting role of E4BP4 between molecular clock and immunity in the chicken.
Collapse
Affiliation(s)
- Elzbieta Turkowska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Dominika Pietruszka
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krystyna Skwarlo-Sonta
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
19
|
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:57-64. [PMID: 27643985 DOI: 10.1016/j.jphotobiol.2016.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
20
|
Tanoue S, Fujimoto K, Myung J, Hatanaka F, Kato Y, Takumi T. DEC2-E4BP4 Heterodimer Represses the Transcriptional Enhancer Activity of the EE Element in the Per2 Promoter. Front Neurol 2015; 6:166. [PMID: 26257703 PMCID: PMC4512152 DOI: 10.3389/fneur.2015.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
The circadian oscillation of clock gene expression in mammals is based on the interconnected transcriptional/translational feedback loops of Period (Per) and Bmal1. The Per feedback loop initiates transcription through direct binding of the BMAL1–CLOCK (NPAS2) heterodimer to the E-box of the Per2 promoter region. Negative feedback of PER protein on this promoter subsequently represses transcription. Other circadian transcription regulators, particularly E4BP4 and DEC2, regulate the amplitude and phase of Per2 expression rhythms. Moreover, a direct repeat of E-box-like (EE) elements in the Per2 promoter is required for its cell-autonomous circadian rhythm. However, the detailed mechanism for repression of the two core sequences of the EE element in the Per2 promoter region is unknown. Here, we show that E4BP4 binds to the Per2 EE element with DEC2 to repress transcription and identify the DEC2–E4BP4 heterodimer as a key repressor of the tightly interlocked Per2 feedback loop in the mammalian circadian oscillator. Our results suggest an additional modulatory mechanism for tuning of the phase of cell-autonomous Per2 gene expression cycling.
Collapse
Affiliation(s)
- Shintaro Tanoue
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Katsumi Fujimoto
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Jihwan Myung
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan
| | - Fumiyuki Hatanaka
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan
| | - Yukio Kato
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Toru Takumi
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan ; CREST, Japan Science and Technology Agency , Tokyo , Japan
| |
Collapse
|
21
|
Yang Y, Duguay D, Fahrenkrug J, Cermakian N, Wing SS. USP2 regulates the intracellular localization of PER1 and circadian gene expression. J Biol Rhythms 2015; 29:243-56. [PMID: 25238854 DOI: 10.1177/0748730414544741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous 24-h rhythms in physiology are driven by a network of circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Posttranslational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Recently, we showed that the deubiquitinating enzyme ubiquitin-specific peptidase 2 (USP2) associates with clock proteins and deubiquitinates PERIOD1 (PER1) but does not affect its overall stability. Mice devoid of USP2 display defects in clock function. Here, we show that USP2 regulates nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1. The rhythm of nuclear entry of PER1 in Usp2 knockout mouse embryonic fibroblasts (MEFs) was advanced but with reduced nuclear accumulation of PER1. Although Per1 mRNA expression rhythm remained intact in the Usp2 KO MEFs, the expression profiles of other core clock genes were altered. This was also true for the expression of clock-controlled genes (e.g., Dbp, Tef, Hlf, E4bp4). A similar phase advance of PER1 nuclear localization rhythm and alteration of clock gene expression profiles were also observed in livers of Usp2 KO mice. Taken together, our results demonstrate a novel function of USP2 in the molecular clock in which it regulates PER1 function by gating its nuclear entry and accumulation.
Collapse
Affiliation(s)
- Yaoming Yang
- Polypeptide Laboratory, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Québec, Canada
| | - David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Montréal, Québec, Canada Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Montréal, Québec, Canada Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Québec, Canada
| |
Collapse
|
22
|
Ashley NT, Ubuka T, Schwabl I, Goymann W, Salli BM, Bentley GE, Buck CL. Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination. J Biol Rhythms 2014; 29:456-69. [PMID: 25326246 DOI: 10.1177/0748730414552323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most organisms in temperate or tropic regions employ the light-dark (LD) cycle as the primary Zeitgeber to synchronize circadian rhythms. At higher latitudes (>66°33'), continuous illumination during the summer presents a significant time-keeping dilemma for polar-adapted species. Lapland longspurs (Calcarius lapponicus), arctic-breeding migratory songbirds, are one of the few recorded species maintaining an intact diel rhythm in activity and plasma melatonin titers during polar summer. However, it is unknown whether rhythms are endogenous and entrain to low-amplitude polar Zeitgeber signals, such as daily variations in light intensity and the spectral composition of the sun (as measured by color temperature). Wild-caught male and female longspurs were brought into captivity, and locomotor activity was assessed using infrared detection. To examine if rhythms were endogenous, birds were exposed to constant bright light (LL; 1300 lux) or constant darkness (DD; 0.1 lux). All birds exhibited free-running activity rhythms in LL and DD, suggesting the presence of a functional circadian clock. Mean periods in LL (22.86 h) were significantly shorter than those in DD (23.5 h), in accordance with Aschoff's rule. No birds entrained to diel changes in light intensity, color temperature, or both. To examine endogenous molecular clock function, the Per2 gene was partially cloned in longspurs (llPer2) and transcripts were measured in hypothalamic tissue punches, eye, and liver using competitive polymerase chain reaction. Ocular llPer2 gene expression was periodic in LL and elevated at ZT24 (CT24) for LD or constant conditions (LL and DD), but llPer2 rhythmicity was not detected in hypothalamus or liver. Plasma melatonin was significantly lower in LL compared with LD or DD. In conclusion, rhythmic ocular Per2 expression and melatonin secretion may maintain the circadian activity rhythm across the polar day.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Takayoshi Ubuka
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Ingrid Schwabl
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany
| | - Wolfgang Goymann
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany
| | - Brady M Salli
- Department of Biological Sciences, University of Alaska Anchorage, Alaska, USA
| | - George E Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Alaska, USA
| |
Collapse
|
23
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
24
|
Keniry M, Dearth RK, Persans M, Parsons R. New Frontiers for the NFIL3 bZIP Transcription Factor in Cancer, Metabolism and Beyond. Discoveries (Craiova) 2014; 2:e15. [PMID: 26539561 PMCID: PMC4629104 DOI: 10.15190/d.2014.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bZIP transcription factor NFIL3 (Nuclear factor Interleukin 3 regulated, also known as E4 binding protein 4, E4BP4) regulates diverse biological processes from circadian rhythm to cellular viability. Recently, a host of novel roles have been identified for NFIL3 in immunological signal transduction, cancer, aging and metabolism. Elucidating the signaling pathways that are impacted by NFIL3 and the regulatory mechanisms that it targets, inhibits or activates will be critical for developing a clearer picture of its physiological roles in disease and normal processes. This review will discuss the recent advances and emerging issues regarding NFIL3-mediated transcriptional regulation of CEBPb and FOXO1 activated genes and signal transduction.
Collapse
Affiliation(s)
- Megan Keniry
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Robert K Dearth
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Michael Persans
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave HCSM 6-117, New York, NY 10029, USA
| |
Collapse
|
25
|
Ben-Moshe Z, Alon S, Mracek P, Faigenbloom L, Tovin A, Vatine GD, Eisenberg E, Foulkes NS, Gothilf Y. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light. Nucleic Acids Res 2014; 42:3750-67. [PMID: 24423866 PMCID: PMC3973289 DOI: 10.1093/nar/gkt1359] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zohar Ben-Moshe
- George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv 69978, Israel, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany and Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tamai SI, Imaizumi K, Kurabayashi N, Nguyen MD, Abe T, Inoue M, Fukada Y, Sanada K. Neuroprotective role of the basic leucine zipper transcription factor NFIL3 in models of amyotrophic lateral sclerosis. J Biol Chem 2013; 289:1629-38. [PMID: 24280221 DOI: 10.1074/jbc.m113.524389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neurons. Here we show that the basic leucine zipper transcription factor NFIL3 (also called E4BP4) confers neuroprotection in models of ALS. NFIL3 is up-regulated in primary neurons challenged with neurotoxic insults and in a mouse model of ALS. Overexpression of NFIL3 attenuates excitotoxic neuronal damage and protects neurons against neurodegeneration in a cell-based ALS model. Conversely, reduction of NFIL3 exacerbates neuronal demise in adverse conditions. Transgenic neuronal expression of NFIL3 in ALS mice delays disease onset and attenuates motor axon and neuron degeneration. These results suggest that NFIL3 plays a neuroprotective role in neurons and constitutes a potential therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- So-ichi Tamai
- From the Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Turkowska E, Majewski PM, Rai S, Skwarlo-Sonta K. Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin. Chronobiol Int 2013; 31:134-43. [PMID: 24134119 DOI: 10.3109/07420528.2013.832279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The avian pineal gland, apart from the hypothalamic master clock (suprachiasmatic nuclei, SCN) and retina, functions as an independent circadian oscillator, receiving external photic cues that it translates into the rhythmical synthesis of melatonin, a biochemical signal of darkness. Functional similarity to the mammalian SCN makes the avian pineal gland a convenient model for studies on biological clock mechanisms in general. Pineal melatonin is produced not only in a light-dependent manner but also remains under the control of the endogenous oscillator, while the possible involvement of melatonin in maintaining cyclic expression of the avian clock genes remains to be elucidated. The aim of the present study was to characterize the diurnal profiles of main clock genes transcription in the pineal glands of chickens exposed to continuous light (LL) and supplemented with exogenous melatonin. We hypothesized that rearing chickens from the day of hatch under LL conditions would evoke a functional pinealectomy, influencing, in turn, pineal clock function. To verify this hypothesis, we examined the diurnal transcriptional profiles of selected clock genes as well as the essential parameters of pineal gland function: transcription of the genes encoding arylalkylamine N-acetyltransferase (Aanat), a key enzyme in melatonin biosynthesis, and the melatonin receptor (Mel1c), along with the blood melatonin level. Chickens hatched in summer or winter were maintained under LD 16:8 and 8:16, corresponding to the respective photoperiods, as the seasonal control groups. Another set of chickens was kept in parallel under LL conditions and some were supplemented with melatonin to check the ability of exogenous hormone to antagonize the effects evoked by continuous light. Twelve-day-old chickens were sacrificed every 3 h over a 24-h period and the mRNAs of selected clock genes, Bmal1, Cry1, Per3, E4bp4, together with those of Aanat and Mel1c, were quantified in the isolated pineal glands. Our results indicate that the profiles of clock gene transcription are not dependent on the duration of the light phase, while LL conditions decrease the amplitude of diurnal changes, but do not abolish them entirely. Melatonin supplied in drinking water to the birds kept in LL seems to desynchronize transcription of the majority of clock genes in the summer, while in the winter, it restores the pattern, but not the diurnal rhythmicity. Rhythmic expression of Bmal1 appears to provide a direct link between the circadian clock and the melatonin output pathway, while the availability of cyclic melatonin is clearly involved in the canonical transcription pattern of Per3 in the chicken pineal gland. Regardless of the experimental conditions, a negative correlation was identified between the transcription of genes involved in melatonin biosynthesis (Aanat) and melatonin signal perception (Mel1c receptor).
Collapse
Affiliation(s)
- Elzbieta Turkowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw , Poland and
| | | | | | | |
Collapse
|
28
|
Singh D, Rani S, Kumar V. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird: evidence for tissue-specific circadian timing. Chronobiol Int 2013; 30:1208-17. [PMID: 23971885 DOI: 10.3109/07420528.2013.810632] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In birds, independent circadian clocks reside in the retina, pineal, and hypothalamus, which interact with each other and produce circadian time at the functional level. However, less is known of the molecular clockwork, and of the integration between central and peripheral clocks in birds. The present study investigated this, by monitoring the timed expression of five core clock genes (Per2. Cry1. Cry2. Bmal1, and Clock) and one clock-controlled gene (E4bp4) in a night-migratory songbird, the redheaded bunting (rb; Emberiza bruniceps). The authors first partially cloned these six genes, and then measured their 24-h profiles in central (retina, hypothalamus) and peripheral (liver, heart, stomach, gut, testes) tissues, collected at six times (zeitgeber time 2 [ZT2], ZT6, ZT11, ZT13, ZT18, and ZT23; ZT0 = lights on) from birds (n = 5 per ZT) on 12 h:12 h light-dark cycle. rbPer2. rbCry1. rbBmal1, and rbClock were expressed with a significant rhythm in all the tissues, except in the retina (only rbClock) and testes. rbCry2, however, had tissue-specific expression pattern: a significant rhythm in the hypothalamus, heart, and gut, but not in the retina, liver, stomach, and testes. rbE4bp4 had a significant mRNA rhythm in all the tissues, except retina. Further, rbPer2 mRNA peak was phase aligned with lights on, whereas rbCry1. rbBmal1, and rbE4bp4 mRNA peaks were phase aligned with lights off. rbCry2 and rbClock had tissue-specific scattered peaks. For example, both rbCry2 and rbClock peaks were close to rbCry1 and rbBmal1 peaks, respectively, in the hypothalamus, but not in other tissues. The results are consistent with the autoregulatory circadian feedback loop, and indicate a conserved tissue-level circadian time generation in buntings. Variable phase relationships between gene pairs forming positive and negative limbs of the feedback loop may suggest the tissue-specific contribution of individual core circadian genes in the circadian time generation.
Collapse
Affiliation(s)
- Devraj Singh
- DST-IRHPA Center for Excellence in Biological Rhythms Research, Department of Zoology, University of Delhi , Delhi , India and
| | | | | |
Collapse
|
29
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
30
|
Tsutsui K, Haraguchi S, Inoue K, Miyabara H, Ubuka T, Hatori M, Hirota T, Fukada Y. New biosynthesis and biological actions of avian neurosteroids. J Exp Neurosci 2013; 7:15-29. [PMID: 25157204 PMCID: PMC4089810 DOI: 10.4137/jen.s11148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic pathways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hitomi Miyabara
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Megumi Hatori
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Ubuka T, Bentley GE, Tsutsui K. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds. Front Neurosci 2013; 7:38. [PMID: 23531789 PMCID: PMC3607074 DOI: 10.3389/fnins.2013.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/05/2013] [Indexed: 01/17/2023] Open
Abstract
Seasonally breeding birds detect environmental signals, such as light, temperature, food availability, and presence of mates to time reproduction. Hypothalamic neurons integrate external and internal signals, and regulate reproduction by releasing neurohormones to the pituitary gland. The pituitary gland synthesizes and releases gonadotropins which in turn act on the gonads to stimulate gametogenesis and sex steroid secretion. Accordingly, how gonadotropin secretion is controlled by the hypothalamus is key to our understanding of the mechanisms of seasonal reproduction. A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH), activates reproduction by stimulating gonadotropin synthesis and release. Another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), inhibits gonadotropin synthesis and release directly by acting on the pituitary gland or indirectly by decreasing the activity of GnRH neurons. Therefore, the next step to understand seasonal reproduction is to investigate how the activities of GnRH and GnIH neurons in the hypothalamus and their receptors in the pituitary gland are regulated by external and internal signals. It is possible that locally-produced triiodothyronine resulting from the action of type 2 iodothyronine deiodinase on thyroxine stimulates the release of gonadotropins, perhaps by action on GnRH neurons. The function of GnRH neurons is also regulated by transcription of the GnRH gene. Melatonin, a nocturnal hormone, stimulates the synthesis and release of GnIH and GnIH may therefore regulate a daily rhythm of gonadotropin secretion. GnIH may also temporally suppress gonadotropin secretion when environmental conditions are unfavorable. Environmental and social milieus fluctuate seasonally in the wild. Accordingly, complex interactions of various neuronal and hormonal systems need to be considered if we are to understand the mechanisms underlying seasonal reproduction.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Center for Medical Life Science, Waseda University Shinjuku, Tokyo, Japan ; Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University Ichikawa, Japan
| | | | | |
Collapse
|
32
|
|
33
|
Tsutsui K, Haraguchi S, Hatori M, Hirota T, Fukada Y. Biosynthesis and biological actions of pineal neurosteroids in domestic birds. Neuroendocrinology 2013; 98:97-105. [PMID: 23797037 DOI: 10.1159/000353782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022]
Abstract
The central and peripheral nervous systems have the capacity of synthesizing steroids de novo from cholesterol, the so-called 'neurosteroids'. De novo synthesis of neurosteroids from cholesterol appears to be a conserved property across the subphylum vertebrata. Until recently, it was generally believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival by suppressing the activity of caspase-3, a crucial mediator of apoptosis during cerebellar development. This review is an updated summary of the biosynthesis and biological actions of pineal neurosteroids.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal 2011; 6:13. [PMID: 21975218 PMCID: PMC3197565 DOI: 10.1186/1750-2187-6-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/05/2011] [Indexed: 12/02/2022] Open
Abstract
Background Synthetic GCs serve as therapeutic agents for some lymphoid leukemias because of their ability to induce transcriptional changes via the GC receptor (GR) and trigger apoptosis. Upregulation of the BH3-only member of Bcl-2 family proteins, Bim, has been shown to be essential for GC-evoked apoptosis of leukemic lymphoblasts. Using human T cell leukemic sister clones CEM-C7-14 and CEM-C1-15, we have previously shown that the bZIP transcriptional repressor, E4BP4, is preferentially upregulated by GCs in CEM-C7-14 cells that are susceptible to GC-evoked apoptosis, but not in refractory CEM-C1-15 cells. E4BP4 is an evolutionarily conserved member of the PAR family of bZIP transcription factors related to the C. elegans death specification gene ces2. Results Mouse E4BP4 was ectopically expressed in CEM-C1-15 cells, resulting in sensitization to GC-evoked apoptosis in correlation with restoration of E4BP4 and Bim upregulation. shRNA mediated modest knockdown of E4BP4 in CEM-C7-14 cells resulted in concomitant reduction in Bim expression, although GC-evoked fold-induction and sensitivity to apoptosis was similar to parental cells. Conclusion Data presented here suggest that GC-mediated upregulation of E4BP4 facilitates Bim upregulation and apoptosis of CEM cells. Since the Bim promoter does not contain any consensus GRE or EBPRE sequences, induction of Bim may be a secondary response.
Collapse
Affiliation(s)
- Jessica A Beach
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. [PMID: 21517957 DOI: 10.1111/j.1600-079x.2011.00856.x] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.
Collapse
Affiliation(s)
- Jörg H Stehle
- Institute of Anatomy III (Cellular and Molecular Anatomy), Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proc Natl Acad Sci U S A 2011; 108:4864-9. [PMID: 21383147 DOI: 10.1073/pnas.1015959108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock is phase-delayed or -advanced by light when given at early or late subjective night, respectively. Despite the importance of the time-of-day-dependent phase responses to light, the underlying molecular mechanism is poorly understood. Here, we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland, which consists of light-sensitive clock cells representing a prototype of the clock system. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors heat shock factor (HSF)1, HSF2, and X-box-binding protein 1 (XBP1) were strongly activated when a light pulse was given at late subjective night. In contrast, the light pulse at early subjective night caused prominent induction of E4bp4, a key regulator in the phase-delaying mechanism of the pineal clock, along with activation of a large group of cholesterol biosynthetic genes that are targets of sterol regulatory element-binding protein (SREBP) transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that, in turn, transactivated E4bp4 expression, linking SREBP with the light-input pathway of the pineal clock. As an output of light activation of cholesterol biosynthetic genes, we found light-stimulated pineal production of a neurosteroid, 7α-hydroxypregnenolone, demonstrating a unique endocrine function of the pineal gland. Intracerebroventricular injection of 7α-hydroxypregnenolone activated locomotor activities of chicks. Our study on the genome-wide gene expression analysis revealed time-of-day-dependent light activation of signaling pathways and provided molecular connection between gene expression and behavior through neurosteroid release from the pineal gland.
Collapse
|
37
|
Ben-Moshe Z, Vatine G, Alon S, Tovin A, Mracek P, Foulkes NS, Gothilf Y. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns. Chronobiol Int 2011; 27:1509-31. [PMID: 20854132 DOI: 10.3109/07420528.2010.510229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.
Collapse
Affiliation(s)
- Zohar Ben-Moshe
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Reinke AW, Grigoryan G, Keating AE. Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry 2010; 49:1985-97. [PMID: 20102225 DOI: 10.1021/bi902065k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- or heterodimers. Several viruses encode proteins containing bZIP domains, including four that encode bZIPs lacking significant homology to any human protein. We investigated the interaction specificity of these four viral bZIPs by using coiled-coil arrays to assess self-associations as well as heterointeractions with 33 representative human bZIPs. The arrays recapitulated reported viral-human interactions and also uncovered new associations. MEQ and HBZ interacted with multiple human partners and had unique interaction profiles compared to any human bZIPs, whereas K-bZIP and BZLF1 displayed homospecificity. New interactions detected included HBZ with MAFB, MAFG, ATF2, CEBPG, and CREBZF and MEQ with NFIL3. These were confirmed in solution using circular dichroism. HBZ can heteroassociate with MAFB and MAFG in the presence of MARE-site DNA, and this interaction is dependent on the basic region of HBZ. NFIL3 and MEQ have different yet overlapping DNA-binding specificities and can form a heterocomplex with DNA. Computational design considering both affinity for MEQ and specificity with respect to other undesired bZIP-type interactions was used to generate a MEQ dimerization inhibitor. This peptide, anti-MEQ, bound MEQ both stably and specifically, as assayed using coiled-coil arrays and circular dichroism in solution. Anti-MEQ also inhibited MEQ binding to DNA. These studies can guide further investigation of the function of viral and human bZIP complexes.
Collapse
Affiliation(s)
- Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
39
|
Weng YJ, Hsieh DJY, Kuo WW, Lai TY, Hsu HH, Tsai CH, Tsai FJ, Lin DY, Lin JA, Huang CY, Tung KC. E4BP4 is a cardiac survival factor and essential for embryonic heart development. Mol Cell Biochem 2010; 340:187-94. [PMID: 20186462 DOI: 10.1007/s11010-010-0417-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/10/2010] [Indexed: 11/29/2022]
Abstract
The bZIP transcription factor E4BP4, has been demonstrated to be a survival factor in pro-B lymphocytes. GATA factors play important roles in transducing the IL-3 survival signal and transactivating the downstream survival gene, E4BP4. In heart, GATA sites are essential for proper transcription of several cardiac genes, and GATA-4 is a mediator of cardiomyocyte survival. However, the role E4BP4 plays in heart is still poorly understood. In this study, Dot-blot hybridization assays using Dig-labeled RNA probes revealed that the E4BP4 gene was expressed in cardiac tissue from several species including, monkey, dog, rabbit, and human. Western blot analysis showed that the E4BP4 protein was consistently present in all of these four species. Furthermore, immunohistochemistry revealed that the E4BP4 protein was overexpressed in diseased heart tissue in comparison with normal heart tissue. In addition, the overexpression of E4BP4 in vitro activated cell survival signaling pathway of cardiomyocytes. At last, siRNA-mediated knock down of E4BP4 in zebrafish resulted in malformed looping of the embryonic heart tube and decreased heart beating. Based on these results, we conclude that E4BP4 plays as a survival factor in heart and E4BP4 is essential for proper embryonic heart development.
Collapse
Affiliation(s)
- Yi-Jiun Weng
- Department of Veterinary Medicine, National Chung-Hsing University, No.250, Kuo-Kuang Road, 402 Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 2010; 29:15542-50. [PMID: 20007478 DOI: 10.1523/jneurosci.3938-09.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful regeneration of damaged neurons depends on the coordinated expression of neuron-intrinsic genes. At present however, there is no comprehensive view of the transcriptional regulatory mechanisms underlying neuronal regeneration. We used high-content cellular screening to investigate the functional contribution of 62 transcription factors to regenerative neuron outgrowth. Ten transcription factors are identified that either increase or decrease neurite outgrowth. One of these, NFIL3, is specifically upregulated during successful regeneration in vivo. Paradoxically however, knockdown of NFIL3 and overexpression of dominant-negative NFIL3 both increase neurite outgrowth. Our data show that NFIL3, together with CREB, forms an incoherent feedforward transcriptional regulatory loop in which NFIL3 acts as a negative regulator of CREB-induced regeneration-associated genes.
Collapse
|
41
|
Light directs zebrafish period2 expression via conserved D and E boxes. PLoS Biol 2009; 7:e1000223. [PMID: 19859524 PMCID: PMC2759001 DOI: 10.1371/journal.pbio.1000223] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 09/15/2009] [Indexed: 11/19/2022] Open
Abstract
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
Collapse
|
42
|
Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJM. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 2009; 10:1118-24. [DOI: 10.1038/ni.1787] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/29/2009] [Indexed: 01/12/2023]
|
43
|
Ontogeny of circadian oscillations in the heart and liver in chicken. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:78-83. [DOI: 10.1016/j.cbpa.2009.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 11/18/2022]
|
44
|
Ziv L, Gothilf Y. Period2Expression Pattern and its Role in the Development of the Pineal Circadian Clock in Zebrafish. Chronobiol Int 2009; 23:101-12. [PMID: 16687284 DOI: 10.1080/07420520500464551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In zebrafish, pineal arylalkylamine-N-acetyltransferase (zfaanat2) mRNA expression begins at 22 h post-fertilization (hpf), and the clock-controlled rhythm of its transcript begins on the third day of development. Here we describe the role of light and of the clock gene, period2 (zper2) in the development of this rhythm. In 1-day-old zebrafish embryos, zper2 expression is transiently up-regulated by light in the pineal gland and, to a lesser extent, in other areas of the brain. Expression of zper2 that was not affected by light occurred in the olfactory placode and lactotroph cells of the pituitary primordium. Circadian analysis of pineal zfaanat2 mRNA expression indicated that light exposure is required for proper development of the circadian clock-controlled rhythmic expression of this gene. Knockdown of zPER2 using antisense technology abolished the effect of light on development of the zfaanat2 rhythm in the pineal gland, corroborating the role of zper2 in light entrainment of the circadian oscillator in zebrafish. Further analysis of zper2 expression at earlier stages of development revealed that light exposure at the blastula to mid-segmentation stages also caused a transient increase in zper2 expression. At mid-segmentation, before pineal differentiation, light-induced zper2 expression was enhanced in pineal progenitor cells. Thus, a possible role for early photoreception and light-induced zper2 expression in the development of clock-controlled rhythms remains to be investigated.
Collapse
Affiliation(s)
- Limor Ziv
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
45
|
Helfer G, Fidler AE, Vallone D, Foulkes NS, Brandstaetter R. Molecular Analysis of Clock Gene Expression in the Avian Brain. Chronobiol Int 2009; 23:113-27. [PMID: 16687285 DOI: 10.1080/07420520500521871] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Birds are equipped with a complex circadian pacemaking system that regulates the rhythmicity of physiology and behavior. As with all organisms, transcriptional and translational feedback loops of clock genes represent the basic molecular mechanism of rhythm generation in birds. To investigate avian clock gene expression, partial cDNA sequences of six mammalian clock gene homologs (Bmal1, Clock, Per2, Per3, Cry1, and Cry2) and a novel avian cryptochrome gene (Cry4) were cloned from the house sparrow, a model system in circadian research. Expression patterns were analyzed by semi-quantitative RT-PCR and RNase protection assays using total RNA extracted from adult male house sparrow brains. With the exception of Cry4, pronounced rhythmic mRNA expression of all the clock genes analyzed was encountered, with mRNA levels varying considerably between the various genes. Although some basic features of the molecular circadian feedback loop appear to be similar between mammals and birds, the precise phase relationships of the clock gene mRNA rhythms relative to each other and to the light zeitgeber differ significantly between the house sparrow and mammals. Our results point to the existence of differences in the organization of avian and mammalian circadian clock mechanisms.
Collapse
Affiliation(s)
- Gisela Helfer
- Biological Rhythms Research Group, School of Biosciences, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
46
|
Muñoz EM, Bailey MJ, Rath MF, Shi Q, Morin F, Coon SL, Møller M, Klein DC. NeuroD1: developmental expression and regulated genes in the rodent pineal gland. J Neurochem 2007; 102:887-99. [PMID: 17630985 DOI: 10.1111/j.1471-4159.2007.04605.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.
Collapse
Affiliation(s)
- Estela M Muñoz
- Section on Neuroendocrinology, Office of the Scientific Director, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Herichová I, Monosíková J, Zeman M. Ontogeny of melatonin, Per2 and E4bp4 light responsiveness in the chicken embryonic pineal gland. Comp Biochem Physiol A Mol Integr Physiol 2007; 149:44-50. [PMID: 17996471 DOI: 10.1016/j.cbpa.2007.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.
Collapse
Affiliation(s)
- I Herichová
- Department of Animal Physiology and Ethology, Comenius University Bratislava, Mlynská Dolina B2, 84215 Bratislava, Slovakia
| | | | | |
Collapse
|
48
|
Breslin A, Denniss FAK, Guinn BA. SSX2IP: an emerging role in cancer. Biochem Biophys Res Commun 2007; 363:462-5. [PMID: 17904521 DOI: 10.1016/j.bbrc.2007.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/28/2022]
Abstract
We describe the emerging role of Synovial Sarcoma X breakpoint 2 Interacting Protein (SSX2IP) in cancer and its still largely unknown function in human cells. In rodents, SSX2IP has been shown to play a role in adherens junctions and cell adhesion, while in chickens SSX2IP was identified by virtue of its regulation by the light cycle and circadian rhythms. In humans, SSX2IP was identified through its interaction with the cancer-testis gene SSX2. However SSX2IP is expressed in a range of normal and fetal tissues unlike SSX2. SSX2IP containing constructs indicated that SSX2IP could be expressed in the nucleus and cytoplasm of transfected human cells, however, SSX2IP expression has been subsequently shown to peak on the surface of myeloid leukaemia cells during mitosis. Here we discuss the current knowledge of SSX2IP function in several species and the growing evidence that SSX2IP may be a suitable target for leukaemia immunotherapy.
Collapse
Affiliation(s)
- Angela Breslin
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | |
Collapse
|
49
|
Shimizu F, Fukada Y. Circadian phosphorylation of ATF-2, a potential activator of Period2 gene transcription in the chick pineal gland. J Neurochem 2007; 103:1834-42. [PMID: 17854385 DOI: 10.1111/j.1471-4159.2007.04900.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stimulus-induced transcription of the Period gene is a critical step for phase-shift of vertebrate circadian systems. The promoter region of chicken Period2 contains a canonical calcium/cAMP-responsive element, but its functional relevance is not known. The present study shows that cAMP-responsive element-binding protein (CREB) and activating transcription factor-2 (ATF-2) bind to the promoter region of the Period2 gene in the chick pineal gland. In transient transfection assays, a reporter construct containing 0.7-kbp upstream region of chicken Period2 was transactivated by ATF-2, but it was poorly responsive to CREB. In the chick pineal gland, phosphorylation of CREB protein at the kinase-inducible domain was negatively regulated by light. On the other hand, phosphorylation of ATF-2 at the amino-terminal transactivation domain exhibited a circadian rhythm with a daytime peak, suggesting a role for ATF-2 in circadian rhythmicity in the chick pineal gland.
Collapse
Affiliation(s)
- Fumiko Shimizu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | | |
Collapse
|
50
|
Ohno T, Onishi Y, Ishida N. The negative transcription factor E4BP4 is associated with circadian clock protein PERIOD2. Biochem Biophys Res Commun 2007; 354:1010-5. [PMID: 17274955 DOI: 10.1016/j.bbrc.2007.01.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The bZIP transcription factor E4BP4, is a mammalian homologue of vrille that functions as a key negative component of the circadian clock. We have shown that the E4BP4-binding site (B-site) is required in addition to a non-canonical E-box (E2 enhancer) for robust circadian Period2 (Per2) expression in the cell-autonomous clock. While the E2 enhancer and the B-site are closely situated, correlations between each component bound to the E2 enhancer and the B-site remain obscure. Here, we show that E4BP4 interacts with PER2, which represses transcriptional activity via the E-box enhancer. Interaction with PER2 required the carboxyl-terminal region that contains the repression domain of E4BP4. We also found that E4BP4 interacts with CRYPTOCHROME2 (CRY2), a key negative regulator in the mammalian circadian clock. These results suggest that E4BP4 is a component of the negative regulator complex of mammalian circadian clocks.
Collapse
Affiliation(s)
- Tomoya Ohno
- Clock Cell Biology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6-5, 1-1-1 Higashi, Tsukuba, Japan
| | | | | |
Collapse
|