1
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Passchier TC, White JBR, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. Sci Rep 2024; 14:14099. [PMID: 38890308 PMCID: PMC11189427 DOI: 10.1038/s41598-024-58243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.
Collapse
Affiliation(s)
- Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Exscientia, The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- College of Biomedical Sciences, Larkin University, 18301 N Miami Avenue, Miami, FL, 33169, USA.
| | - John N Barr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Li T, Liu M, Gu Z, Su X, Liu Y, Lin J, Zhang Y, Shen QT. Structures of the mumps virus polymerase complex via cryo-electron microscopy. Nat Commun 2024; 15:4189. [PMID: 38760379 PMCID: PMC11101452 DOI: 10.1038/s41467-024-48389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.
Collapse
Affiliation(s)
- Tianhao Li
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanxi Gu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Su
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yunhui Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Zhang X, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung HKH, Becher I, Poser I, Müller CW, Hyman AA, Savitski MM, Mahamid J. Molecular mechanisms of stress-induced reactivation in mumps virus condensates. Cell 2023; 186:1877-1894.e27. [PMID: 37116470 PMCID: PMC10156176 DOI: 10.1016/j.cell.2023.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 03/14/2023] [Indexed: 04/30/2023]
Abstract
Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Cyan Ching
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tim Pflaesterer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
5
|
Modrego A, Carlero D, Arranz R, Martín-Benito J. CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses. Viruses 2023; 15:v15030653. [PMID: 36992363 PMCID: PMC10053253 DOI: 10.3390/v15030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Collapse
Affiliation(s)
- Andrea Modrego
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Diego Carlero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Rocío Arranz
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| |
Collapse
|
6
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
7
|
Bourhis JM, Yabukarski F, Communie G, Schneider R, Volchkova VA, Frénéat M, Gérard F, Ducournau C, Mas C, Tarbouriech N, Ringkjøbing Jensen M, Volchkov VE, Blackledge M, Jamin M. Structural dynamics of the C-terminal X domain of Nipah and Hendra viruses controls the attachment to the C-terminal tail of the nucleocapsid protein. J Mol Biol 2022; 434:167551. [DOI: 10.1016/j.jmb.2022.167551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
8
|
Dong X, Wang X, Xie M, Wu W, Chen Z. Structural Basis of Human Parainfluenza Virus 3 Unassembled Nucleoprotein in Complex with Its Viral Chaperone. J Virol 2022; 96:e0164821. [PMID: 34730394 PMCID: PMC8791282 DOI: 10.1128/jvi.01648-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Human parainfluenza virus 3 (HPIV3) belongs to the Paramyxoviridae, causing annual worldwide epidemics of respiratory diseases, especially in newborns and infants. The core components consist of just three viral proteins: nucleoprotein (N), phosphoprotein (P), and RNA polymerase (L), playing essential roles in replication and transcription of HPIV3 as well as other paramyxoviruses. Viral genome encapsidated by N is as a template and recognized by RNA-dependent RNA polymerase complex composed of L and P. The offspring RNA also needs to assemble with N to form nucleocapsids. The N is one of the most abundant viral proteins in infected cells and chaperoned in the RNA-free form (N0) by P before encapsidation. In this study, we presented the structure of unassembled HPIV3 N0 in complex with the N-terminal portion of the P, revealing the molecular details of the N0 and the conserved N0-P interaction. Combined with biological experiments, we showed that the P binds to the C-terminal domain of N0 mainly by hydrophobic interaction and maintains the unassembled conformation of N by interfering with the formation of N-RNA oligomers, which might be a target for drug development. Based on the complex structure, we developed a method to obtain the monomeric N0. Furthermore, we designed a P-derived fusion peptide with 10-fold higher affinity, which hijacked the N and interfered with the binding of the N to RNA significantly. Finally, we proposed a model of conformational transition of N from the unassembled state to the assembled state, which helped to further understand viral replication. IMPORTANCE Human parainfluenza virus 3 (HPIV3) causes annual epidemics of respiratory diseases, especially in newborns and infants. For the replication of HPIV3 and other paramyxoviruses, only three viral proteins are required: phosphoprotein (P), RNA polymerase (L), and nucleoprotein (N). Here, we report the crystal structure of the complex of N and its chaperone P. We describe in detail how P acts as a chaperone to maintain the unassembled conformation of N. Our analysis indicated that the interaction between P and N is conserved and mediated by hydrophobicity, which can be used as a target for drug development. We obtained a high-affinity P-derived peptide inhibitor, specifically targeted N, and greatly interfered with the binding of the N to RNA, thereby inhibiting viral encapsidation and replication. In summary, our results provide new insights into the paramyxovirus genome replication and nucleocapsid assembly and lay the basis for drug development.
Collapse
Affiliation(s)
- Xiaofei Dong
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Insights into Paramyxovirus Nucleocapsids from Diverse Assemblies. Viruses 2021; 13:v13122479. [PMID: 34960748 PMCID: PMC8705878 DOI: 10.3390/v13122479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
All paramyxoviruses, which include the mumps virus, measles virus, Nipah virus, Newcastle disease virus, and Sendai virus, have non-segmented single-stranded negative-sense RNA genomes. These RNA genomes are enwrapped throughout the viral life cycle by nucleoproteins, forming helical nucleocapsids. In addition to these helical structures, recombinant paramyxovirus nucleocapsids may occur in other assembly forms such as rings, clam-shaped structures, and double-headed nucleocapsids; the latter two are composed of two single-stranded helices packed in a back-to-back pattern. In all of these assemblies, the neighboring nucleoprotein protomers adopt the same domain-swapping mode via the N-terminal arm, C-terminal arm, and recently disclosed N-hole. An intrinsically disordered region in the C-terminal domain of the nucleoproteins, called the N-tail, plays an unexpected role in regulating the transition among the different assembly forms that occurs with other viral proteins, especially phosphoprotein. These structures, together with the helical nucleocapsids, significantly enrich the structural diversity of the paramyxovirus nucleocapsids and help explain the functions of these diverse assemblies, including RNA genome protection, transcription, and replication, as well as encapsulation.
Collapse
|
10
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
11
|
Bach S, Demper JC, Klemm P, Schlereth J, Lechner M, Schoen A, Kämper L, Weber F, Becker S, Biedenkopf N, Hartmann RK. Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase. PLoS Pathog 2021; 17:e1010002. [PMID: 34699554 PMCID: PMC8547711 DOI: 10.1371/journal.ppat.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome’s very 3’-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60–80. LeaderRNA synthesis requires hexamer phasing in the 3’-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3’-leader promoter. We further found different genomic 3’-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3’-leader promoter, i.e., at the second nucleotide of the genome 3’-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus. The RNA polymerase (RdRp) of Ebola virus (EBOV) initiates RNA synthesis at the 3’-leader promoter of its encapsidated, non-segmented negative sense (NNS) RNA genome, either at the penultimate 3’-end position of the genome in the replicative mode or more internally (position 56) at the transcription start site (TSS) in its transcription mode. Here we identified the synthesis of abortive replicative RNAs that are specifically initiated opposite to genome nt 2 (termed leaderRNAs) and predominantly terminated in the region of nt ~ 60–80 near the TSS. The functional role of abortive leaderRNA synthesis is still enigmatic; a role in interferon induction could be excluded. Our findings indirectly link leaderRNA termination to nucleoprotein (NP) availability for encapsidation of nascent replicative RNA or to NP removal from the template RNA. Our findings further argue against the model that leaderRNA synthesis is a prerequisite for each transcription initiation event at the TSS. Rather, our findings are in line with the existence of distinct replicase and transcriptase complexes of RdRp that interact differently with the 3’-leader promoter and intiate RNA synthesis independently at different sites (position 2 or 56 of the genome), mechanistically similar to another NNS virus, Vesicular stomatitis virus.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jana-Christin Demper
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Schlereth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Schoen
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Lennart Kämper
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Friedemann Weber
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| |
Collapse
|
12
|
Structural plasticity of mumps virus nucleocapsids with cryo-EM structures. Commun Biol 2021; 4:833. [PMID: 34215847 PMCID: PMC8253768 DOI: 10.1038/s42003-021-02362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Mumps virus (MuV) is a highly contagious human pathogen and frequently causes worldwide outbreaks despite available vaccines. Similar to other mononegaviruses such as Ebola and rabies, MuV uses a single-stranded negative-sense RNA as its genome, which is enwrapped by viral nucleoproteins into the helical nucleocapsid. The nucleocapsid acts as a scaffold for genome condensation and as a template for RNA replication and transcription. Conformational changes in the MuV nucleocapsid are required to switch between different activities, but the underlying mechanism remains elusive due to the absence of high-resolution structures. Here, we report two MuV nucleoprotein-RNA rings with 13 and 14 protomers, one stacked-ring filament and two nucleocapsids with distinct helical pitches, in dense and hyperdense states, at near-atomic resolutions using cryo-electron microscopy. Structural analysis of these in vitro assemblies indicates that the C-terminal tail of MuV nucleoprotein likely regulates the assembly of helical nucleocapsids, and the C-terminal arm may be relevant for the transition between the dense and hyperdense states of helical nucleocapsids. Our results provide the molecular mechanism for structural plasticity among different MuV nucleocapsids and create a possible link between structural plasticity and genome condensation. Shan et al. describes the high-resolution structures of Nucleoprotein in two different oligomeric states and four different higher-order helical structures. They further describe the structural rearrangements required to transition between the different helical assemblies obtained, highlighting the basis for structural plasticity among different MuV nucleocapsids.
Collapse
|
13
|
Zhang N, Shan H, Liu M, Li T, Luo R, Yang L, Qi L, Chu X, Su X, Wang R, Liu Y, Sun W, Shen QT. Structure and assembly of double-headed Sendai virus nucleocapsids. Commun Biol 2021; 4:494. [PMID: 33888861 PMCID: PMC8062630 DOI: 10.1038/s42003-021-02027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/23/2021] [Indexed: 01/17/2023] Open
Abstract
Paramyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.
Collapse
Affiliation(s)
- Na Zhang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingdong Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianhao Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaofeng Chu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Su
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunhui Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qing-Tao Shen
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Cardone C, Caseau CM, Pereira N, Sizun C. Pneumoviral Phosphoprotein, a Multidomain Adaptor-Like Protein of Apparent Low Structural Complexity and High Conformational Versatility. Int J Mol Sci 2021; 22:ijms22041537. [PMID: 33546457 PMCID: PMC7913705 DOI: 10.3390/ijms22041537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.
Collapse
|
15
|
Bach S, Demper JC, Biedenkopf N, Becker S, Hartmann RK. RNA secondary structure at the transcription start site influences EBOV transcription initiation and replication in a length- and stability-dependent manner. RNA Biol 2020; 18:523-536. [PMID: 32882148 DOI: 10.1080/15476286.2020.1818459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) RNA has the potential to form hairpin structures at the transcription start sequence (TSS) and reinitiation sites of internal genes, both on the genomic and antigenomic/mRNA level. Hairpin formation involving the TSS and the spacer sequence between promotor elements (PE) 1 and 2 was suggested to regulate viral transcription. Here, we provide evidence that such RNA structures form during RNA synthesis by the viral polymerase and affect its activity. This was analysed using monocistronic minigenomes carrying hairpin structure variants in the TSS-spacer region that differ in length and stability. Transcription and replication were measured via reporter activity and by qRT-PCR quantification of the distinct viral RNA species. We demonstrate that viral RNA synthesis is remarkably tolerant to spacer extensions of up to ~54 nt, but declines beyond this length limit (~25% residual activity for a 66-nt extension). Minor incremental stabilizations of hairpin structures in the TSS-spacer region and on the mRNA/antigenomic level were found to rapidly abolish viral polymerase activity, which may be exploited for antisense strategies to inhibit viral RNA synthesis. Finally, balanced viral transcription and replication can still occur when any RNA structure formation potential at the TSS is eliminated, provided that hexamer phasing in the promoter region is maintained. Altogether, the findings deepen and refine our insight into structure and length constraints within the EBOV transcription and replication promoter and suggest a remarkable flexibility of the viral polymerase in recognition of PE1 and PE2.
Collapse
Affiliation(s)
- Simone Bach
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jana-Christin Demper
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institut fuü;r Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Stephan Becker
- Institut fuü;r Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Roland K Hartmann
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Blanchard EL, Braun MR, Lifland AW, Ludeke B, Noton SL, Vanover D, Zurla C, Fearns R, Santangelo PJ. Polymerase-tagged respiratory syncytial virus reveals a dynamic rearrangement of the ribonucleocapsid complex during infection. PLoS Pathog 2020; 16:e1008987. [PMID: 33031461 PMCID: PMC7575074 DOI: 10.1371/journal.ppat.1008987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.
Collapse
Affiliation(s)
- Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Molly R. Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Aaron W. Lifland
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Barbara Ludeke
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| |
Collapse
|
17
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
18
|
Bach S, Biedenkopf N, Grünweller A, Becker S, Hartmann RK. Hexamer phasing governs transcription initiation in the 3'-leader of Ebola virus. RNA (NEW YORK, N.Y.) 2020; 26:439-453. [PMID: 31924730 PMCID: PMC7075260 DOI: 10.1261/rna.073718.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
The genomic, bipartite replication promoter of Ebola virus (EBOV) consists of elements 1 (PE1) and 2 (PE2). PE1 (55 nt at the 3'-terminus) is separated from PE2 (harboring eight 3'-UN5 hexamers) by the transcription start sequence (TSS) of the first nucleoprotein (NP) gene plus a spacer sequence. Insertions or deletions in the spacer were reported to support genome replication if comprising 6 or 12, but not 1/2/3/5/9 nt. This gave rise to the formulation of the "rule of 6" for the EBOV replication promoter. Here, we studied the impact of such hexamer phasing on viral transcription using a series of replication-competent and -deficient monocistronic minigenomes, in which the spacer of the NP gene was mutated or replaced with that of internal EBOV genes and mutated variants thereof. Beyond reporter gene assays, we conducted qRT-PCR to determine the levels of mRNA, genomic and antigenomic RNA. We demonstrate that hexamer phasing is also essential for viral transcription, that UN5 hexamer periodicity extends into PE1 and that the spacer region can be expanded by 48 nt without losses of transcriptional activity. Making the UN5 hexamer phasing continuous between PE1 and PE2 enhanced the efficiency of transcription and replication. We show that the 2 nt preceding the TSS are essential for transcription. We further propose a role for UN5 hexamer phasing in positioning NP during initiation of RNA synthesis, or in dissociation/reassociation of NP from the template RNA strand while threading the RNA through the active site of the elongating polymerase during replication and transcription.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
19
|
Guseva S, Milles S, Blackledge M, Ruigrok RWH. The Nucleoprotein and Phosphoprotein of Measles Virus. Front Microbiol 2019; 10:1832. [PMID: 31496998 PMCID: PMC6713020 DOI: 10.3389/fmicb.2019.01832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023] Open
Abstract
Measles virus is a negative strand virus and the genomic and antigenomic RNA binds to the nucleoprotein (N), assembling into a helical nucleocapsid. The polymerase complex comprises two proteins, the Large protein (L), that both polymerizes RNA and caps the mRNA, and the phosphoprotein (P) that co-localizes with L on the nucleocapsid. This review presents recent results about N and P, in particular concerning their intrinsically disordered domains. N is a protein of 525 residues with a 120 amino acid disordered C-terminal domain, Ntail. The first 50 residues of Ntail extricate the disordered chain from the nucleocapsid, thereby loosening the otherwise rigid structure, and the C-terminus contains a linear motif that binds P. Recent results show how the 5′ end of the viral RNA binds to N within the nucleocapsid and also show that the bases at the 3′ end of the RNA are rather accessible to the viral polymerase. P is a tetramer and most of the protein is disordered; comprising 507 residues of which around 380 are disordered. The first 37 residues of P bind N, chaperoning against non-specific interaction with cellular RNA, while a second interaction site, around residue 200 also binds N. In addition, there is another interaction between C-terminal domain of P (XD) and Ntail. These results allow us to propose a new model of how the polymerase binds to the nucleocapsid and suggests a mechanism for initiation of transcription.
Collapse
Affiliation(s)
- Serafima Guseva
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Rob W H Ruigrok
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
20
|
Song X, Shan H, Zhu Y, Hu S, Xue L, Chen Y, Ding W, Niu T, Gu J, Ouyang S, Shen QT, Liu ZJ. Self-capping of nucleoprotein filaments protects the Newcastle disease virus genome. eLife 2019; 8:45057. [PMID: 31290740 PMCID: PMC6675542 DOI: 10.7554/elife.45057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
Non-segmented negative-strand RNA viruses, such as measles, ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids, which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode. This tightly packed structure functions as a seed for the assembly of a nucleocapsid from both directions, facilitating the growth of double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations in its loop interface yielded a single-headed unfunctional filament.
Collapse
Affiliation(s)
- Xiyong Song
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing-Tao Shen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| |
Collapse
|
21
|
Alvarez Paggi D, Esperante SA, Salgueiro M, Camporeale G, de Oliveira GAP, Prat Gay G. A conformational switch balances viral RNA accessibility and protection in a nucleocapsid ring model. Arch Biochem Biophys 2019; 671:77-86. [PMID: 31229488 DOI: 10.1016/j.abb.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Virus from the Mononegavirales order share common features ranging from virion structure arrangement to mechanisms of replication and transcription. One of them is the way the nucleoprotein (N) wraps and protects the RNA genome from degradation by forming a highly ordered helical nucleocapsid. However, crystal structures from numerous Mononegavirales reveal that binding to the nucleoprotein results in occluded nucleotides that hinder base pairing necessary for transcription and replication. This hints at the existence of alternative conformations of the N protein that would impact on the protein-RNA interface, allowing for transient exposure of the nucleotides without complete RNA release. Moreover, the regulation between the alternative conformations should be finely tuned. Recombinant expression of N from the respiratory syncytial virus form regular N/RNA common among all Mononegavirales, and these constitute an ideal minimal unit for investigating the mechanisms through which these structures protect RNA so efficiently while allowing for partial accessibility during transcription and replication. Neither pH nor high ionic strength could dissociate the RNA but led to irreversible aggregation of the nucleoprotein. Low concentrations of guanidine chloride dissociated the RNA moiety but leading to irreversible aggregation of the protein moiety. On the other hand, high concentrations of urea and long incubation periods were required to remove bound RNA. Both denaturants eventually led to unfolding but converged in the formation of an RNA-free β-enriched intermediate species that remained decameric even at high denaturant concentrations. Although the N-RNA rings interact with the phosphoprotein P, the scaffold of the RNA polymerase complex, this interaction did not lead to RNA dissociation from the rings in vitro. Thus, we have uncovered complex equilibria involving changes in secondary structure of N and RNA loosening, processes that must take place in the context of RNA transcription and replication, whose detailed mechanisms and cellular and viral participants need to be established.
Collapse
Affiliation(s)
- D Alvarez Paggi
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Argentina.
| | - S A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Argentina
| | - M Salgueiro
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Argentina
| | - G Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Argentina
| | - G A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnêtica Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908-0733, USA
| | - G Prat Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Argentina.
| |
Collapse
|
22
|
Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proc Natl Acad Sci U S A 2019; 116:4256-4264. [PMID: 30787192 DOI: 10.1073/pnas.1816417116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assembly of paramyxoviral nucleocapsids on the RNA genome is an essential step in the viral cycle. The structural basis of this process has remained obscure due to the inability to control encapsidation. We used a recently developed approach to assemble measles virus nucleocapsid-like particles on specific sequences of RNA hexamers (poly-Adenine and viral genomic 5') in vitro, and determined their cryoelectron microscopy maps to 3.3-Å resolution. The structures unambiguously determine 5' and 3' binding sites and thereby the binding-register of viral genomic RNA within nucleocapsids. This observation reveals that the 3' end of the genome is largely exposed in fully assembled measles nucleocapsids. In particular, the final three nucleotides of the genome are rendered accessible to the RNA-dependent RNA polymerase complex, possibly enabling efficient RNA processing. The structures also reveal local and global conformational changes in the nucleoprotein upon assembly, in particular involving helix α6 and helix α13 that form edges of the RNA binding groove. Disorder is observed in the bound RNA, localized at one of the two backbone conformational switch sites. The high-resolution structure allowed us to identify putative nucleobase interaction sites in the RNA-binding groove, whose impact on assembly kinetics was measured using real-time NMR. Mutation of one of these sites, R195, whose sidechain stabilizes both backbone and base of a bound nucleic acid, is thereby shown to be essential for nucleocapsid-like particle assembly.
Collapse
|
23
|
The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity. J Virol 2018; 92:JVI.02064-17. [PMID: 29437959 DOI: 10.1128/jvi.02064-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design.IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family.
Collapse
|
24
|
Wan W, Kolesnikova L, Clarke M, Koehler A, Noda T, Becker S, Briggs JAG. Structure and assembly of the Ebola virus nucleocapsid. Nature 2017; 551:394-397. [PMID: 29144446 PMCID: PMC5714281 DOI: 10.1038/nature24490] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever. Filoviruses are within the order Mononegavirales, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein-nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein, and cryo-electron microscopy of nucleocapsid or nucleocapsid-like structures. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.
Collapse
Affiliation(s)
- William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Larissa Kolesnikova
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Mairi Clarke
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander Koehler
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
25
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
26
|
Kozlovskaya V, Liu F, Xue B, Ahmad F, Alford A, Saeed M, Kharlampieva E. Polyphenolic Polymersomes of Temperature-Sensitive Poly(N-vinylcaprolactam)-block-Poly(N-vinylpyrrolidone) for Anticancer Therapy. Biomacromolecules 2017; 18:2552-2563. [PMID: 28700211 DOI: 10.1021/acs.biomac.7b00687] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a versatile synthesis for polyphenolic polymersomes of controlled submicron (<500 nm) size for intracellular delivery of high and low molecular weight compounds. The nanoparticles are synthesized by stabilizing the vesicular morphology of thermally responsive poly(N-vinylcaprolactam)n-b-poly(N-vinylpyrrolidone)m (PVCLn-PVPONm) diblock copolymers with tannic acid (TA), a hydrolyzable polyphenol, via hydrogen bonding at a temperature above the copolymer's lower critical solution temperature (LCST). The PVCL179-PVPONm diblock copolymers are produced by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of PVPON using PVCL as a macro-chain transfer agent. The size of the TA-locked (PVCL179-PVPONm) polymersomes at room temperature and upon temperature variations are controlled by the PVPON chain length and TA:PVPON molar unit ratio. The particle diameter decreases from 1000 to 950, 770, and 250 nm with increasing PVPON chain length (m = 107, 166, 205, 234), and it further decreases to 710, 460, 290, and 190 nm, respectively, upon hydrogen bonding with TA at 50 °C. Lowering the solution temperature to 25 °C results in a slight size increase for vesicles with longer PVPON. We also show that TA-locked polymersomes can encapsulate and store the anticancer drug doxorubicin (DOX) and higher molecular weight fluorescein isothiocyanate (FITC)-dextran in a physiologically relevant pH and temperature range. Encapsulated DOX is released in the nuclei of human alveolar adenocarcinoma tumor cells after 6 h incubation via biodegradation of the TA shell with the cytotoxicity of DOX-loaded polymersomes being concentration-dependent. Our approach offers biocompatible and intracellular degradable nanovesicles of controllable size for delivery of a variety of encapsulated materials. Considering the particle monodispersity, high loading capacity, and a facile two-step aqueous assembly based on the reversible temperature-responsiveness of PVCL, these polymeric vesicles have significant potential as novel drug nanocarriers and provide a new perspective for fundamental studies on thermo-triggered polymer assemblies in solutions.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Fei Liu
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Bing Xue
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Fahim Ahmad
- Department of Infectious Disease, Drug Discovery Division, Southern Research , Birmingham, Alabama 35205, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Mohammad Saeed
- Department of Infectious Disease, Drug Discovery Division, Southern Research , Birmingham, Alabama 35205, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
27
|
Cox RM, Plemper RK. Structure and organization of paramyxovirus particles. Curr Opin Virol 2017; 24:105-114. [PMID: 28601688 DOI: 10.1016/j.coviro.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
The paramyxovirus family comprises major human and animal pathogens such as measles virus (MeV), mumps virus (MuV), the parainfluenzaviruses, Newcastle disease virus (NDV), and the highly pathogenic zoonotic hendra (HeV) and nipah (NiV) viruses. Paramyxovirus particles are pleomorphic, with a lipid envelope, nonsegmented RNA genomes of negative polarity, and densely packed glycoproteins on the virion surface. A number of crystal structures of different paramyxovirus proteins and protein fragments were solved, but the available information concerning overall virion organization remains limited. However, recent studies have reported cryo-electron tomography-based reconstructions of Sendai virus (SeV), MeV, NDV, and human parainfluenza virus type 3 (HPIV3) particles and a surface assessment of NiV-derived virus-like particles (VLPs), which have yielded innovative hypotheses concerning paramyxovirus particle assembly, budding, and organization. Following a summary of the current insight into paramyxovirus virion morphology, this review will focus on discussing the implications of these particle reconstructions on the present models of paramyxovirus assembly and infection.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
28
|
Heat Shock Protein 90 Ensures Efficient Mumps Virus Replication by Assisting with Viral Polymerase Complex Formation. J Virol 2017; 91:JVI.02220-16. [PMID: 28053100 DOI: 10.1128/jvi.02220-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication.IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a mature polymerase complex with the polymerase cofactor of L, phosphoprotein. Hsp70 collaborates with Hsp90 to regulate biogenesis of the MuV L protein. The functions of these chaperones on the viral polymerase may be common among paramyxoviruses because the L protein of measles virus is also similarly regulated. Our data provide important insights into the molecular mechanisms of paramyxovirus polymerase maturation as well as a basis for the development of novel antiviral drugs.
Collapse
|
29
|
Pereira N, Cardone C, Lassoued S, Galloux M, Fix J, Assrir N, Lescop E, Bontems F, Eléouët JF, Sizun C. New Insights into Structural Disorder in Human Respiratory Syncytial Virus Phosphoprotein and Implications for Binding of Protein Partners. J Biol Chem 2017; 292:2120-2131. [PMID: 28031463 PMCID: PMC5313087 DOI: 10.1074/jbc.m116.765958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphoprotein is the main cofactor of the viral RNA polymerase of Mononegavirales It is involved in multiple interactions that are essential for the polymerase function. Most prominently it positions the polymerase complex onto the nucleocapsid, but also acts as a chaperone for the nucleoprotein. Mononegavirales phosphoproteins lack sequence conservation, but contain all large disordered regions. We show here that N- and C-terminal intrinsically disordered regions account for 80% of the phosphoprotein of the respiratory syncytial virus. But these regions display marked dynamic heterogeneity. Whereas almost stable helices are formed C terminally to the oligomerization domain, extremely transient helices are present in the N-terminal region. They all mediate internal long-range contacts in this non-globular protein. Transient secondary elements together with fully disordered regions also provide protein binding sites recognized by the respiratory syncytial virus nucleoprotein and compatible with weak interactions required for the processivity of the polymerase.
Collapse
Affiliation(s)
- Nelson Pereira
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - Christophe Cardone
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - Safa Lassoued
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - Marie Galloux
- the Unité de Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Jenna Fix
- the Unité de Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Nadine Assrir
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - Ewen Lescop
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - François Bontems
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| | - Jean-François Eléouët
- the Unité de Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | - Christina Sizun
- From the Institut de Chimie des Substances Naturelles, UPR2301, Centre National de la Recherche Scientifique, Université Paris Saclay, 91190 Gif-sur-Yvette and
| |
Collapse
|
30
|
Cox RM, Krumm SA, Thakkar VD, Sohn M, Plemper RK. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. SCIENCE ADVANCES 2017; 3:e1602350. [PMID: 28168220 PMCID: PMC5291697 DOI: 10.1126/sciadv.1602350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maximilian Sohn
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author.
| |
Collapse
|
31
|
Bloyet LM, Brunel J, Dosnon M, Hamon V, Erales J, Gruet A, Lazert C, Bignon C, Roche P, Longhi S, Gerlier D. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathog 2016; 12:e1006058. [PMID: 27936158 PMCID: PMC5148173 DOI: 10.1371/journal.ppat.1006058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Marion Dosnon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Véronique Hamon
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Jenny Erales
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Antoine Gruet
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Carine Lazert
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Christophe Bignon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Philippe Roche
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
32
|
Releasing the Genomic RNA Sequestered in the Mumps Virus Nucleocapsid. J Virol 2016; 90:10113-10119. [PMID: 27581981 DOI: 10.1128/jvi.01422-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
Abstract
In a negative-strand RNA virus, the genomic RNA is sequestered inside the nucleocapsid when the viral RNA-dependent RNA polymerase uses it as the template for viral RNA synthesis. It must require a conformational change in the nucleocapsid protein (N) to make the RNA accessible to the viral polymerase during this process. The structure of an empty mumps virus (MuV) nucleocapsid-like particle was determined to 10.4-Å resolution by cryo-electron microscopy (cryo-EM) image reconstruction. By modeling the crystal structure of parainfluenza virus 5 into the density, it was shown that the α-helix close to the RNA became flexible when RNA was removed. Point mutations in this helix resulted in loss of polymerase activities. Since the core of N is rigid in the nucleocapsid, we suggest that interactions between this region of the mumps virus N and its polymerase, instead of large N domain rotations, lead to exposure of the sequestered genomic RNA. IMPORTANCE Mumps virus (MuV) infection may cause serious diseases, including hearing loss, orchitis, oophoritis, mastitis, and pancreatitis. MuV is a negative-strand RNA virus, similar to rabies virus or Ebola virus, that has a unique mechanism of viral RNA synthesis. They all make their own RNA-dependent RNA polymerase (RdRp). The viral RdRp uses the genomic RNA inside the viral nucleocapsid as the template to synthesize viral RNAs. Since the template RNA is always sequestered in the nucleocapsid, the viral RdRp must find a way to open it up in order to gain access to the covered template. Our work reported here shows that a helix structural element in the MuV nucleocapsid protein becomes open when the sequestered RNA is released. The amino acids related to this helix are required for RdRp to synthesize viral RNA. We propose that the viral RdRp pulls this helix open to release the genomic RNA.
Collapse
|
33
|
The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis. PLoS Pathog 2016; 12:e1005937. [PMID: 27755595 PMCID: PMC5068707 DOI: 10.1371/journal.ppat.1005937] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis. Filoviruses use a system of proteins and RNA to regulate viral RNA genome transcription and replication. Here, we have determined crystal structures and the biological functions of the protein complex formed by the filovirus transcriptional activator, VP30, and the core component of the nucleocapsid machinery, NP. The complex of these two essential players represses Ebola virus RNA synthesis and may have played a role in the evolution of filoviruses to tune viral RNA synthesis activity to a level ideal for infection. This interaction is conserved across the filoviruses and may provide an opportunity for therapeutic development.
Collapse
|
34
|
Jamin M, Yabukarski F. Nonsegmented Negative-Sense RNA Viruses-Structural Data Bring New Insights Into Nucleocapsid Assembly. Adv Virus Res 2016; 97:143-185. [PMID: 28057258 DOI: 10.1016/bs.aivir.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viruses with a nonsegmented negative-sense RNA genome (NNVs) include important human pathogens as well as life-threatening zoonotic viruses. These viruses share a common RNA replication complex, including the genomic RNA and three proteins, the nucleoprotein (N), the phosphoprotein (P), and the RNA-dependent RNA polymerase (L). During genome replication, the RNA polymerase complex first synthesizes positive-sense antigenomes, which in turn serve as template for the production of negative-sense progeny genomes. These newly synthesized antigenomic and genomic RNAs must be encapsidated by N, and the source of soluble, RNA-free N, competent for the encapsidation is a complex between N and P, named the N0-P complex. In this review, we summarize recent progress made in the structural characterization of the different components of this peculiar RNA polymerase machinery. We discuss common features and replication strategies and highlight idiosyncrasies encountered in different viruses, along with the key role of the dual ordered/disordered architecture of protein components and the dynamics of the viral polymerase machinery. In particular, we focus on the N0-P complex and its role in the nucleocapsid assembly process. These new results provide evidence that the mechanism of NC assembly is conserved between the different families and thus support a divergent evolution from a common ancestor. In addition, the successful inhibition of infection due to different NNVs by peptides derived from P suggests that the mechanism of NC assembly is a potential target for antiviral development.
Collapse
Affiliation(s)
- M Jamin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| | - F Yabukarski
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8:v8090251. [PMID: 27626440 PMCID: PMC5035965 DOI: 10.3390/v8090251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors.
Collapse
|
36
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
37
|
Noval MG, Esperante SA, Molina IG, Chemes LB, Prat-Gay GD. Intrinsic Disorder to Order Transitions in the Scaffold Phosphoprotein P from the Respiratory Syncytial Virus RNA Polymerase Complex. Biochemistry 2016; 55:1441-54. [PMID: 26901160 DOI: 10.1021/acs.biochem.5b01332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.
Collapse
Affiliation(s)
- María G Noval
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ivana G Molina
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.,CNPq, Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Asenjo A, Villanueva N. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins. Virus Res 2016; 211:117-25. [DOI: 10.1016/j.virusres.2015.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
39
|
Crystal Structure of the Measles Virus Nucleoprotein Core in Complex with an N-Terminal Region of Phosphoprotein. J Virol 2015; 90:2849-57. [PMID: 26719278 DOI: 10.1128/jvi.02865-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The enveloped negative-stranded RNA virus measles virus (MeV) is an important human pathogen. The nucleoprotein (N(0)) assembles with the viral RNA into helical ribonucleocapsids (NC) which are, in turn, coated by a helical layer of the matrix protein. The viral polymerase complex uses the NC as its template. The N(0) assembly onto the NC and the activity of the polymerase are regulated by the viral phosphoprotein (P). In this study, we pulled down an N(0)₁₋₄₀₈ fragment lacking most of its C-terminal tail domain by several affinity-tagged, N-terminal P fragments to map the N(0)-binding region of P to the first 48 amino acids. We showed biochemically and using P mutants the importance of the hydrophobic interactions for the binding. We fused an N(0) binding peptide, P₁₋₄₈, to the C terminus of an N(0)₂₁₋₄₀₈ fragment lacking both the N-terminal peptide and the C-terminal tail of N protein to reconstitute and crystallize the N(0)-P complex. We solved the X-ray structure of the resulting N(0)-P chimeric protein at a resolution of 2.7 Å. The structure reveals the molecular details of the conserved N(0)-P interface and explains how P chaperones N(0), preventing both self-assembly of N(0) and its binding to RNA. Finally, we propose a model for a preinitiation complex for RNA polymerization. IMPORTANCE Measles virus is an important, highly contagious human pathogen. The nucleoprotein N binds only to viral genomic RNA and forms the helical ribonucleocapsid that serves as a template for viral replication. We address how N is regulated by another protein, the phosphoprotein (P), to prevent newly synthesized N from binding to cellular RNA. We describe the atomic model of an N-P complex and compare it to helical ribonucleocapsid. We thus provide insight into how P chaperones N and helps to start viral RNA synthesis. Our results provide a new insight into mechanisms of paramyxovirus replication. New data on the mechanisms of phosphoprotein chaperone action allows better understanding of virus genome replication and nucleocapsid assembly. We describe a conserved structural interface for the N-P interaction which could be a target for drug development to treat not only measles but also potentially other paramyxovirus diseases.
Collapse
|
40
|
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5. J Virol 2015; 89:11845-57. [PMID: 26378167 DOI: 10.1128/jvi.01832-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.
Collapse
|
41
|
Oligomerization of Mumps Virus Phosphoprotein. J Virol 2015; 89:11002-10. [PMID: 26311887 DOI: 10.1128/jvi.01719-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The mumps virus (MuV) genome encodes a phosphoprotein (P) that is important for viral RNA synthesis. P forms the viral RNA-dependent RNA polymerase with the large protein (L). P also interacts with the viral nucleoprotein (NP) and self-associates to form a homotetramer. The P protein consists of three domains, the N-terminal domain (P(N)), the oligomerization domain (P(O)), and the C-terminal domain (P(C)). While P(N) is known to relax the NP-bound RNA genome, the roles of P(O) and P(C) are not clear. In this study, we investigated the roles of P(O) and P(C) in viral RNA synthesis using mutational analysis and a minigenome system. We found that P(N) and P(C) functions can be trans-complemented. However, this complementation requires P(O), indicating that P(O) is essential for P function. Using this trans-complementation system, we found that P forms parallel dimers (P(N) to P(N) and P(C) to P(C)). Furthermore, we found that residues R231, K238, K253, and K260 in P(O) are critical for P's functions. We identified P(C) to be the domain that interacts with L. These results provide structure-function insights into the role of MuV P. IMPORTANCE MuV, a paramyxovirus, is an important human pathogen. The P protein of MuV is critical for viral RNA synthesis. In this work, we established a novel minigenome system that allows the domains of P to be complemented in trans. Using this system, we confirmed that MuV P forms parallel dimers. An understanding of viral RNA synthesis will allow the design of better vaccines and the development of antivirals.
Collapse
|
42
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
43
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
44
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
45
|
Roles of Phosphorylation of the Nucleocapsid Protein of Mumps Virus in Regulating Viral RNA Transcription and Replication. J Virol 2015; 89:7338-47. [PMID: 25948749 DOI: 10.1128/jvi.00686-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.
Collapse
|
46
|
Gutsche I, Desfosses A, Effantin G, Ling WL, Haupt M, Ruigrok RWH, Sachse C, Schoehn G. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 2015; 348:704-7. [PMID: 25883315 DOI: 10.1126/science.aaa5137] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/06/2015] [Indexed: 01/25/2023]
Abstract
Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design.
Collapse
Affiliation(s)
- Irina Gutsche
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France.
| | - Ambroise Desfosses
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany
| | - Grégory Effantin
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France
| | - Wai Li Ling
- Université Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France
| | | | - Rob W H Ruigrok
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany
| | - Guy Schoehn
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France
| |
Collapse
|
47
|
Initiation and regulation of paramyxovirus transcription and replication. Virology 2015; 479-480:545-54. [PMID: 25683441 DOI: 10.1016/j.virol.2015.01.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.
Collapse
|
48
|
Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein. J Virol 2015; 89:4421-33. [PMID: 25653447 DOI: 10.1128/jvi.03619-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The minimum requirement for an active RNA-dependent RNA polymerase of respiratory syncytial virus (RSV) is a complex made of two viral proteins, the polymerase large protein (L) and the phosphoprotein (P). Here we have investigated the domain on P that is responsible for this critical P-L interaction. By use of recombinant proteins and serial deletions, an L binding site was mapped in the C-terminal region of P, just upstream of the N-RNA binding site. The role of this molecular recognition element of about 30 amino acid residues in the L-P interaction and RNA polymerase activity was evaluated in cellula using an RSV minigenome system and site-directed mutagenesis. The results highlighted the critical role of hydrophobic residues located in this region. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine and no good antivirals against RSV are available, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. Like all negative-strand RNA viruses, RSV codes for its own machinery to replicate and transcribe its genome. The core of this machinery is composed of two proteins, the phosphoprotein (P) and the large protein (L). Here, using recombinant proteins, we have mapped and characterized the P domain responsible for this L-P interaction and the formation of an active L-P complex. These findings extend our understanding of the mechanism of action of RSV RNA polymerase and allow us to define a new target for the development of drugs against RSV.
Collapse
|
49
|
Identification and characterization of the binding site of the respiratory syncytial virus phosphoprotein to RNA-free nucleoprotein. J Virol 2015; 89:3484-96. [PMID: 25568210 DOI: 10.1128/jvi.03666-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N, thus forming a helical nucleocapsid. Polymerization of N along the genomic and antigenomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy with Paramyxoviridae and Rhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperone protein, forming a soluble complex with the RNA-free form of N (N(0)-P complex). Here, we have engineered a mutant form of N that is monomeric, is unable to bind RNA, still interacts with P, and could thus mimic the N(0) monomer. We used this N mutant, designated N(mono), as a substitute for N(0) in order to characterize the P regions involved in the N(0)-P complex formation. Using a series of P fragments, we determined by glutathione S-transferase (GST) pulldown assays that the N and C termini of P are able to interact with N(mono). We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and N(mono) in vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N(0)-P interaction could constitute a potential antiviral strategy. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment is available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a nonassembled, RNA-free protein (N(0)) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus.
Collapse
|
50
|
Heat shock protein 70 regulates degradation of the mumps virus phosphoprotein via the ubiquitin-proteasome pathway. J Virol 2014; 89:3188-99. [PMID: 25552722 DOI: 10.1128/jvi.03343-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) infection induces formation of cytoplasmic inclusion bodies (IBs). Growing evidence indicates that IBs are the sites where RNA viruses synthesize their viral RNA. However, in the case of MuV infection, little is known about the viral and cellular compositions and biological functions of the IBs. In this study, pulldown purification and N-terminal amino acid sequencing revealed that stress-inducible heat shock protein 70 (Hsp72) was a binding partner of MuV phosphoprotein (P protein), which was an essential component of the IB formation. Immunofluorescence and immunoblotting analyses revealed that Hsp72 was colocalized with the P protein in the IBs, and its expression was increased during MuV infection. Knockdown of Hsp72 using small interfering RNAs (siRNAs) had little, if any, effect on viral propagation in cultured cells. Knockdown of Hsp72 caused accumulation of ubiquitinated P protein and delayed P protein degradation. These results show that Hsp72 is recruited to IBs and regulates the degradation of MuV P protein through the ubiquitin-proteasome pathway. IMPORTANCE Formation of cytoplasmic inclusion bodies (IBs) is a common characteristic feature in mononegavirus infections. IBs are considered to be the sites of viral RNA replication and transcription. However, there have been few studies focused on host factors recruited to the IBs and their biological functions. Here, we identified stress-inducible heat shock protein 70 (Hsp72) as the first cellular partner of mumps virus (MuV) phosphoprotein (P protein), which is an essential component of the IBs and is involved in viral RNA replication/transcription. We found that the Hsp72 mobilized to the IBs promoted degradation of the MuV P protein through the ubiquitin-proteasome pathway. Our data provide new insight into the role played by IBs in mononegavirus infection.
Collapse
|