1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
3
|
Li Y, Yang Y, Zhong C, Xiao D, Zhou C. Highly Sensitive Detection of T790 M with a Three-Level Characteristic Current by Thymine-Hg(II)-Thymine in the α-Hemolysin Nanopore. Anal Chem 2024; 96:3587-3592. [PMID: 38372205 DOI: 10.1021/acs.analchem.3c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the β-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the β-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.
Collapse
Affiliation(s)
- Yaping Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yongqi Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunmeng Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
4
|
Karna D, Mano E, Ji J, Kawamata I, Suzuki Y, Mao H. Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies. Nat Commun 2023; 14:6459. [PMID: 37833326 PMCID: PMC10575982 DOI: 10.1038/s41467-023-41604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
The intrinsic complexity of many mesoscale (10-100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu, 514-8507, Japan.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
5
|
Burrows CJ, Fleming AM. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA. Acc Chem Res 2023; 56:2740-2751. [PMID: 37700703 PMCID: PMC10911771 DOI: 10.1021/acs.accounts.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Nucleophilic addition of bisulfite to pyrimidine bases has been known for a half century, and the reaction has been in use for at least a quarter of a century for identifying 5-methylcytidine in DNA. This account focuses on the chemistry of bisulfite with pseudouridine, an isomer of the RNA nucleoside uridine in which the uracil base is connected to C1' of ribose via C5 instead of N1. Pseudouridine, Ψ, is the most common nucleotide modification found in cellular RNA overall, in part due to its abundance in rRNAs and tRNAs. It has a stabilizing influence on RNA structure because N1 is now available for additional hydrogen bonding and because the heterocycle is slightly better at π stacking. The isomerization of U to Ψ in RNA strands is catalyzed by 13 different enzymes in humans and 11 in E. coli; some of these enzymes are implicated in disease states which is testament to the biological importance of pseudouridine in cells. Recently, pseudouridine came into the limelight as the key modification that, after N1 methylation, enables mRNA vaccines to be delivered efficiently into human tissue with minimal generation of a deleterious immunogenic response. Here we describe the bisulfite reaction with pseudouridine which gives rise to a chemical sequencing method to map the modified base in the epitranscriptome. Unlike the reaction with cytidine, the addition of bisulfite to Ψ leads irreversibly to form an adduct that is bypassed during cDNA synthesis by reverse transcriptases yielding a characteristic deletion signature. Although there were hints to the structure of the bisulfite adduct(s) 30 to 50 years ago, it took modern spectroscopic and computational methods to solve the mystery. Raman spectroscopy along with extensive NMR, ECD, and computational work led to the assignment of the major product as the (R) diastereomer of an oxygen adduct at C1' of a ring-opened pseudouridine. Mechanistically, this arose from a succession of conjugate addition, E2 elimination, and a [2,3] sigmatropic rearrangement, all of which are stereodefined reactions. A minor reaction with excess bisulfite led to the (S) isomer of a S-adducted SO3- group. Understanding structure and mechanism aided the design of a Ψ-specific sequencing reaction and guided attempts to improve the utility and specificity of the method. Separately, we have been investigating the use of nanopore direct RNA sequencing, a single-molecule method that directly analyzes RNA strands isolated from cells after end-ligation of adaptor sequences. By combining the electrical current and base-calling data from the nanopore with dwell-time analysis from the helicase employed to deliver RNA to the nanopore, we were able to map Ψ sites in nearly all sequence contexts. This analysis was employed to find Ψ residues in the SARS-CoV-2 vRNA, to analyze the sequence context effects of mRNA vaccine synthesis via in vitro transcription, and to evaluate the impact of stress on chemical modifications in the E. coli ribosome. Most recently, we found that bisulfite treatment of RNA leading to Ψ adducts could modulate the nanopore signal to help in mapping modifications of low occupancy.
Collapse
Affiliation(s)
- Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
6
|
Mereuta L, Asandei A, Andricioaei I, Park J, Park Y, Luchian T. Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway. NANOSCALE 2023; 15:14754-14763. [PMID: 37655668 DOI: 10.1039/d3nr03344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A pressing challenge in the realm of nanopore-based sensing technologies for nucleic acid characterization has been the cheap and efficient control of analyte translocation. To address this, a plethora of methods were tested, including mutagenesis, molecular motors, enzymes, or the optimization of experimental conditions. Herein, we present a paradigm exploiting the manipulation of electrostatic interactions between 22-mer single-stranded DNAs (22_ssDNA) and low pH-induced charges in the alpha-hemolysin (α-HL) nanopore, to efficiently control the passage of captured molecules. We discovered that in electrolytes buffered at pH = 5 and pH = 4.5 where the nanopore's vestibule and lumen become oppositely charged as compared to that at neutral pH, the electrostatic anchoring at these regions of a 22_ssDNA fragment leads to a dramatic increase of the translocation time, orders of magnitude larger compared to that at neutral pH. This pH-dependent tethering effect is reversible, side invariant, and sensitive to the ionic strength and ssDNA contour length. In the long run, our discovery has the potential to provide a simple read-out of the sequence of bases pertaining to short nucleotide sequences, thus extending the efficacy of current nanopore-based sequencers.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Ioan Andricioaei
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
7
|
Dong J, Qiu X, Huang M, Chen X, Li Y. G-quadruplex-hemin DNAzyme functionalized nanopipettes: Fabrication and sensing application. Talanta 2023; 257:124384. [PMID: 36812658 DOI: 10.1016/j.talanta.2023.124384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Solid-nanopores/nanopipettes have the exquisite ability to reveal the changes in molecular volume due to the advantages of adjustable size, good rigidity and low noise. Herein, a new platform for sensing application was established based on G-quadruplex-hemin DNAzyme (GQH) functionalized gold-coated nanopipettes. In this method, GQH was immobilized on gold-coated nanopipette, which could be used as a catalyst for the reaction of H2O2 with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) to promote the conversion of ABTS to ABTS+ ions inside gold-coated nanopipette, and the change of transmembrane ion current could be monitored in real time. At the optimal conditions, there was a correlation between the ion current and the concentration of H2O2 in a certain range, which could be used for the hydrogen peroxide sensing. The GQH immobilized nanopipette provides a useful platform to investigate enzymatic catalysis in confined environment, which can be used in electrocatalysis, sensing and fundamental electrochemistry.
Collapse
Affiliation(s)
- Jingyi Dong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Mimi Huang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaohu Chen
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
8
|
Cao M, Zhang L, Tang H, Qiu X, Li Y. Single-Molecule Investigation of the Protein-Aptamer Interactions and Sensing Application Inside the Single Glass Nanopore. Anal Chem 2022; 94:17405-17412. [PMID: 36475604 DOI: 10.1021/acs.analchem.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state nanopores offer a nanoconfined space for a single-molecule sensing strategy. Evaluating the behavior of proteins and protein-related interactions at the single-molecule level is becoming more and more important for a better understanding of biological processes and diseases. In this work, the aptamer-functionalized nanopore was prepared as the sensing platform for kinetic analysis of the carcinoembryonic antigen (CEA) with its aptamers, which is an important cancer biomarker. CEA molecules were captured by the aptamers immobilized on the inner surface of the nanopore, and there was a complicated interaction between the CEA molecules and the aptamer, which is the process of association and dissociation. This could be used to measure the dynamics of aptamer-protein interactions without labeling. The kinetic analysis could be evaluated at the single-molecule level to interpret the dissociation constants of the binding and dissociation processes. Results showed that the translocation of CEA molecules in a functionalized nanopore had a deep blockades degree and long duration compared with nanopore modified with bare gold, which could be used for CEA sensing. This protein and protein-related interaction we designed provides new insights for evaluating the binding affinity, which will be beneficial for protein sensing and immunoassays.
Collapse
Affiliation(s)
- Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Lijun Zhang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| |
Collapse
|
9
|
Chang TR, Long X, Shastry S, Parks JW, Stone MD. Single-Molecule Mechanical Analysis of Strand Invasion in Human Telomere DNA. Biochemistry 2022; 61:1554-1560. [PMID: 35852986 PMCID: PMC9352315 DOI: 10.1021/acs.biochem.1c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Telomeres are essential
chromosome end capping structures that
safeguard the genome from dangerous DNA processing events. DNA strand
invasion occurs during vital transactions at telomeres, including
telomere length maintenance by the alternative lengthening of telomeres
(ALT) pathway. During telomeric strand invasion, a single-stranded
guanine-rich (G-rich) DNA invades at a complementary duplex telomere
repeat sequence, forming a displacement loop (D-loop) in which the
displaced DNA consists of the same G-rich sequence as the invading
single-stranded DNA. Single-stranded G-rich telomeric DNA readily
folds into stable, compact, structures called G-quadruplexes (GQs)
in vitro and is anticipated to form within the context of a D-loop;
however, evidence supporting this hypothesis is lacking. Here, we
report a magnetic tweezers assay that permits the controlled formation
of telomeric D-loops (TDLs) within uninterrupted duplex human telomere
DNA molecules of physiologically relevant lengths. Our results are
consistent with a model wherein the displaced single-stranded DNA
of a TDL fold into a GQ. This study provides new insight into telomere
structure and establishes a framework for the development of novel
therapeutics designed to target GQs at telomeres in cancer cells.
Collapse
Affiliation(s)
- Terren R. Chang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Xi Long
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- 10X Genomics, 6230 Stoneridge Mall Rd, Pleasanton, California 94588, United States
| | - Joseph W. Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- Invitae, 1400 16th St, San Francisco, California 94103, United States
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| |
Collapse
|
10
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Shimizu K, Mijiddorj B, Usami M, Mizoguchi I, Yoshida S, Akayama S, Hamada Y, Ohyama A, Usui K, Kawamura I, Kawano R. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. NATURE NANOTECHNOLOGY 2022; 17:67-75. [PMID: 34811552 PMCID: PMC8770118 DOI: 10.1038/s41565-021-01008-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
The amino-acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide, named SV28, that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device for practical applications. The peptide forms multidispersely sized nanopore structures ranging from 1.7 to 6.3 nm in diameter and can detect DNAs. To form a monodispersely sized nanopore, we redesigned the SV28 by introducing a glycine-kink mutation. The resulting redesigned peptide forms a monodisperse pore with a diameter of 1.7 nm leading to detection of a single polypeptide chain. Such de novo design of a β-hairpin peptide has the potential to create artificial nanopores, which can be size adjusted to a target molecule.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Batsaikhan Mijiddorj
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Masataka Usami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Ikuro Mizoguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan
| | - Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Shiori Akayama
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Akifumi Ohyama
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo, Japan.
| |
Collapse
|
12
|
Pal S, Paul S. Theoretical investigation of conformational deviation of the human parallel telomeric G-quadruplex DNA in the presence of different salt concentrations and temperatures under confinement. Phys Chem Chem Phys 2021; 23:14372-14382. [PMID: 34179908 DOI: 10.1039/d0cp06702d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Various experimental reports address the stability of G-quadruplex DNA inside a close confinement such as α-hemolysin, nanocavity water pool and different metal-organic-frameworks (MOFs). To understand the conformational change of G-quadruplex DNA at the atomistic level, we have carried out a total of 40 μs simulation run under both non-polar and polar confinement conditions. To investigate the dynamics, we have considered two different KCl salt concentrations, i.e., 0.47 M (minimal salt concentration) and higher than 2 M (higher salt concentration), at two distinct temperatures, 300 K and 350 K. Here, we have observed that the human telomeric G-quadruplex DNA deviates more from its crystal structure at minimal salt concentration under both non-polar and polar confinement conditions. Besides, the loop regions deviate and fluctuate more compared to the other regions, i.e., sugar-phosphate backbone and tetrad regions. The presence of K+ ions is found to be primarily responsible for this phenomenon. From the spatial density function (SDF) plots, a higher density of K+ ions is observed in the backbone region. Furthermore, from the residue-wise first solvation shell estimation, we have noticed that the K+ ions mainly accumulate in the tetrad region under both non-polar and polar confinement conditions due to which the tetrad regions are more rigid than the loop regions. Higher salt concentration results in increased rigidity of the G-quadruplex DNA. Our study provides valuable insight into the conformational deviation of the G-quadruplex DNA under nanoconfinement conditions.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| |
Collapse
|
13
|
Luchian T, Mereuta L, Park Y, Asandei A, Schiopu I. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores. Proteomics 2021; 22:e2100046. [PMID: 34275186 DOI: 10.1002/pmic.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| |
Collapse
|
14
|
Platnich CM, Rizzuto FJ, Cosa G, Sleiman HF. Single-molecule methods in structural DNA nanotechnology. Chem Soc Rev 2021; 49:4220-4233. [PMID: 32538403 DOI: 10.1039/c9cs00776h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single molecules can now be visualised with unprecedented precision. As the resolution of single-molecule experiments improves, so too does the breadth, quantity and quality of information that can be extracted using these methodologies. In the field of DNA nanotechnology, we use programmable interactions between nucleic acids to generate complex, multidimensional structures. We can use single-molecule techniques - ranging from electron and fluorescence microscopies to electrical and force spectroscopies - to report on the structure, morphology, robustness, sample heterogeneity and other properties of these DNA nanoconstructs. In this Tutorial Review, we will detail how complementarity between static and dynamic single-molecule techniques can provide a unified image of DNA nanoarchitectures. The single-molecule methods that we discuss provide unprecedented insight into chemical and structural behaviour, yielding not just an average outcome but reporting on the distribution of values, ultimately showing how bulk properties arise from the collective behaviour of individual structures. As the fields of both DNA nanotechnology and single-molecule characterisation intertwine, a feedback loop is generated between disciplines, providing new opportunities for the development and operation of DNA-based materials as sensors, delivery vehicles, machinery and structural scaffolds.
Collapse
Affiliation(s)
- Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada.
| | - Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada.
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada.
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
15
|
Tang J, Wu J, Zhu R, Wang Z, Zhao C, Tang P, Xie W, Wang D, Liang L. Reversible photo-regulation on the folding/unfolding of telomere G-quadruplexes with solid-state nanopores. Analyst 2021; 146:655-663. [PMID: 33206065 DOI: 10.1039/d0an01930e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation of G-quadruplexes (G4) in human telomere and other important biological regions inhibits the replication and transcription of DNA, thereby influencing further cell proliferation. The investigation of G4 formation and unfolding is vital for understanding their modulation in biological processes and life science. Photo regulation is a facile and sensitive approach for monitoring the structures of biomacromolecules and material surface properties. The nanopore-based technique is also prevalent for label-free single-molecule characterization with high accuracy. This study provides a combination of solid-state nanopore technology with light-switch as a platform for the modulation of human telomere G4 formation and splitting under switchable light exposure. The introduction of molecular switch, namely azobenzene moiety at different positions of the DNA sequence influences the formation and stability of G4. Three azobenzenes immobilized on each of the G-quartet plane (hTelo-3azo-p) or four azobenzenes on the same plane (hTelo-4azo-4p) of the human telomere G4 sequence realized the reversible control of G4 folding/unfolding at the temporal scale upon photo regulation, and the formation and splitting of G4 with hTelo-4azo-4p is slower and not thorough compared to that with hTelo-3azo-p due to the coplanar steric hindrance. Moreover, the G4 formation recorded with the combined nanopore and photo-responsive approach was also characterized with fluorescence, and the variation in the fluorescence intensity of the NMM and G4 complex exhibited a different tendency under reverse light irradiation due to the distinct interactions of NMM with the azobenzene-modified G4. Our study demonstrated a controllable and sensitive way for the manipulation of G4 structures, which will be inspiring for the intervention of G4-related cell senescence, cancer diagnosis and drug exploration.
Collapse
Affiliation(s)
- Jing Tang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Zhang Y, Chen X, Guan X, Wang L. Analysis with biological nanopore: On-pore, off-pore strategies and application in biological fluids. Talanta 2020; 223:121684. [PMID: 33303138 DOI: 10.1016/j.talanta.2020.121684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Inspired from ion channels in biology, nanopores have been developed as promising analytical tools. In principle, nanopores provide crucial information from the observation and analysis of ionic current modulations caused by the interaction between target analytes and fluidic pores. In this respect, the biological, chemical and physical parameters of the nanopore regime need to be well-understood and regulated for intermolecular interaction. Because of well-defined molecular structures, biological nanopores consequently are of a focal point, allowing precise interaction analysis at single-molecule level. In this overview, two analytical strategies are summarized and discussed accordingly, upon the challenges arising in case-dependent analysis using biological nanopores. One kind of strategies relies on modification, functionalization and engineering on nanopore confined interface to improve molecular recognition sites (on-pore strategies); The other kind of highlighted strategies concerns to measurement of various chemistry/biochemistry based interactions triggered by employed molecular agents or probes (off-pore strategies). In particularly, a few recent paradigms using these strategies for practical application of accurate analysis of biomarkers in biological fluids are illustrated. To end, the challenging and future outlook of using analytical tools by means of biological nanopores are depicted.
Collapse
Affiliation(s)
- Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
17
|
Sheng Y, Zhou K, Liu Q, Liu L, Wu HC. Probing Conformational Polymorphism of DNA Assemblies with Nanopores. Anal Chem 2020; 92:7485-7492. [DOI: 10.1021/acs.analchem.9b05650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingying Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Quansheng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ji N, Shi HQ, Fang XY, Wu ZY. Exploring the interaction of G-quadruplex and porphyrin derivative by single protein nanopore sensing interface. Anal Chim Acta 2020; 1106:126-132. [DOI: 10.1016/j.aca.2020.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
|
19
|
Wang S, Liang L, Tang J, Cai Y, Zhao C, Fang S, Wang H, Weng T, Wang L, Wang D. Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. RSC Adv 2020; 10:27215-27224. [PMID: 35515777 PMCID: PMC9055465 DOI: 10.1039/d0ra05083k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Telomere sequences can spontaneously form G-quadruplexes (G4) in the presence of some cations. In view of their relevance to genetic processes and potential as therapeutic-targets, hitherto, a wealth of conventional techniques have been reported for interrogation of G4 conformation diversity and corresponding folding kinetics, most of which are limited in precision and sensitivity. This work introduces a label-free solid-state nanopore (SSN) approach for the determination of inter-, intra- and tandem molecular G4 with distinct base permutation in various cation buffers with a tailored aperture and meanwhile captures the single-molecule G4 folding process. SSN translocation properties elucidated that both inter- and intramolecular G4 generated higher current blockage with longer duration than flexible homopolymer nucleotide, and intramolecular G4 are structurally more stable with higher event frequency and longer blockage time than intermolecular ones; base arrangement played weak role in translocation behaviors; the same sequences with one, two and three G4 skeletons displayed an increase in current blockage and a gradual extension in dwell time with the increase of molecule size recorded in the same nanopore. We observed the conformation change of single-molecule G4 which indicated the existence of folding/unfolding equilibration in nanopore, and real-time test suggested a gradual formation of G4 with time. Our results could provide a continued and improved understanding of the underlying relevance of structural stability and G4 folding process by utilizing SSN platform which exhibits strategic potential advances over the other methods with high spatial and temporal resolution. Nanopore detection of single-molecule G-quadruplexes.![]()
Collapse
|
20
|
Kang X, Alibakhshi MA, Wanunu M. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform. NANO LETTERS 2019; 19:9145-9153. [PMID: 31724865 DOI: 10.1021/acs.nanolett.9b04446] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biological nanopores have been used as powerful platforms for label-free detection and identification of a range of biomolecules for biosensing applications and single molecule biophysics studies. Nonetheless, high limit of detection (LOD) of analytes due to inefficient biomolecular capture into biological nanopores at low voltage poses practical limits on their biosensing efficacy. Several approaches have been proposed to improve the voltage stability of the membrane, including polymerization and hydrogel coating, however, these compromise the lipid fluidity. Here, we developed a chip-based platform that can be massively produced on a wafer scale that is capable of sustaining high voltages of 350 mV with comparable membrane areas to traditional systems. Using this platform, we demonstrate sensing of DNA hairpins in α-hemolysin nanopores at the nanomolar regime under high voltage. Further, we have developed a workflow for one-pot enzymatic release of DNA hairpins with different stem lengths from magnetic microbeads, followed by multiplexed nanopore-based quantification of the hairpins within minutes, paving the way for novel nanopore-based multiplexed biosensing applications.
Collapse
|
21
|
Bošković F, Zhu J, Chen K, Keyser UF. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores. NANO LETTERS 2019; 19:7996-8001. [PMID: 31577148 DOI: 10.1021/acs.nanolett.9b03184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-quadruplexes (Gqs) are guanine-rich DNA structures formed by single-stranded DNA. They are of paramount significance to gene expression regulation, but also drug targets for cancer and human viruses. Current ensemble and single-molecule methods require fluorescent labels, which can affect Gq folding kinetics. Here we introduce, a single-molecule Gq nanopore assay (smGNA) to detect Gqs and kinetics of Gq formation. We use ∼5 nm solid-state nanopores to detect various Gq structural variants attached to designed DNA carriers. Gqs can be identified by localizing their positions along designed DNA carriers, establishing smGNA as a tool for Gq mapping. In addition, smGNA allows for discrimination of (un)folded Gq structures, provides insights into single-molecule kinetics of Gq folding, and probes quadruplex-to-duplex structural transitions. smGNA can elucidate the formation of Gqs at the single-molecule level without labeling and has potential implications on the study of these structures both in single-stranded DNA and in genomic samples.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
22
|
Tian K, Chen X, Luan B, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4492-4495. [PMID: 30441349 DOI: 10.1109/embc.2018.8513177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rapid and accurate detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for broad fields from food safety monitoring to disease diagnostics and prognosis. Here, we developed a nanopore single-molecule sensor, coupled with the locked nucleic acid (LNA) technique, to accurately discriminate SNPs for detection of Shiga toxin producing Escherichia coli (STEC) O157:H7 pathogen serotype, and cancer-derived driver mutations EGFR L858R and KRAS G12D. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, can be applied in food science and medical detection that need rapid and accurate determination of genetic variations.
Collapse
|
23
|
Abstract
Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.
Collapse
|
24
|
Tan CS, Fleming AM, Ren H, Burrows CJ, White HS. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. J Am Chem Soc 2018; 140:14224-14234. [PMID: 30269492 DOI: 10.1021/jacs.8b08153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological nanopores provide a unique single-molecule sensing platform to detect target molecules based on their specific electrical signatures. The γ-hemolysin (γ-HL) protein produced by Staphylococcus aureus is able to assemble into an octamer nanopore with a ∼2.3 nm diameter β-barrel. Herein, we demonstrate the first application of γ-HL nanopore for DNA structural analysis. To optimize conditions for ion-channel recording, the properties of the γ-HL pore (e.g., conductance, voltage-dependent gating, and ion-selectivity) were characterized at different pH, temperature, and electrolyte concentrations. The optimal condition for DNA analysis using γ-HL corresponds to 3 M KCl, pH 5, and T = 20 °C. The γ-HL protein nanopore is able to translocate dsDNA at about ∼20 bp/ms, and the unique current-signature of captured dsDNA can directly distinguish guanine-to-inosine substitutions at the single-molecule level with ∼99% accuracy. The slow dsDNA threading and translocation processes indicate this wild-type γ-HL channel has potential to detect other base modifications in dsDNA.
Collapse
Affiliation(s)
- Cherie S Tan
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Hang Ren
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
25
|
Song J, Xu C, Huang S, Lei W, Ruan Y, Lu H, Zhao W, Xu J, Chen H. Ultrasmall Nanopipette: Toward Continuous Monitoring of Redox Metabolism at Subcellular Level. Angew Chem Int Ed Engl 2018; 57:13226-13230. [DOI: 10.1002/anie.201808537] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Song
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Shi‐Zhen Huang
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wen Lei
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hai‐Jie Lu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
26
|
Song J, Xu C, Huang S, Lei W, Ruan Y, Lu H, Zhao W, Xu J, Chen H. Ultrasmall Nanopipette: Toward Continuous Monitoring of Redox Metabolism at Subcellular Level. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Juan Song
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Shi‐Zhen Huang
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wen Lei
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hai‐Jie Lu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
27
|
Shi X, Li Q, Gao R, Si W, Liu SC, Aksimentiev A, Long YT. Dynamics of a Molecular Plug Docked onto a Solid-State Nanopore. J Phys Chem Lett 2018; 9:4686-4694. [PMID: 30058336 PMCID: PMC6252057 DOI: 10.1021/acs.jpclett.8b01755] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Docking of a protein-DNA complex onto a nanopore can provide ample observation time, and has enabled collection of analytic applications of biological nanopores, including DNA sequencing. However, the application of the same principle to solid-state nanopores is tempered by poor understanding of the docking process. Here, we elucidate the behavior of individual protein-DNA complexes docked onto a solid-state nanopore by monitoring the nanopore ionic current. Repeat docking of monovalent streptavidin-DNA complexes is found to produce ionic current blockades that fluctuate between discrete levels. We elucidate the roles of the protein plug and the DNA tether in the docking process, finding the docking configurations to determine the multitude of the current blockade levels, whereas the frequency of the current level switching is determined by the interactions between the molecules and the solid-state membrane. Finally, we prove the feasibility of using the nanopore docking principle for single-molecule sensing using solid-state nanopores by detecting conformational changes of a tethered DNA molecule from a random coil to an i-motif state.
Collapse
Affiliation(s)
- Xin Shi
- Key Laboratory for Advanced Materials, School of Chemistry &Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China,
| | - Qiao Li
- Key Laboratory for Advanced Materials, School of Chemistry &Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China,
| | - Rui Gao
- Key Laboratory for Advanced Materials, School of Chemistry &Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China,
| | - Wei Si
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 1110 W Green St, Urbana, IL 61801, USA
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Shao-Chuang Liu
- Key Laboratory for Advanced Materials, School of Chemistry &Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China,
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 1110 W Green St, Urbana, IL 61801, USA
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry &Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China,
| |
Collapse
|
28
|
Tian K, Chen X, Luan B, Singh P, Yang Z, Gates KS, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS NANO 2018; 12:4194-4205. [PMID: 29664612 PMCID: PMC6157732 DOI: 10.1021/acsnano.8b01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Collapse
Affiliation(s)
- Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaowei Chen
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Prashant Singh
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
29
|
Ai T, Yang Q, Lv Y, Huang Y, Li Y, Geng J, Xiao D, Zhou C. Insight into How Telomeric G-Quadruplexes Enhance the Peroxidase Activity of Cellular Hemin. Chem Asian J 2018; 13:1805-1810. [PMID: 29718585 DOI: 10.1002/asia.201800464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/30/2018] [Indexed: 02/05/2023]
Abstract
The toxic oxidative damage of G-quadruplexes (G4), linked to neurodegenerative diseases, may arise from their ability to bind and oxidatively activate cellular hemin. However, there have been no precise studies on how telomeric G4 enhances the low intrinsic peroxidase activity of hemin. Herein, a label-free and nanopore-based strategy was developed to explore the enhancement mechanism of peroxidase activity of hemin induced by telomeric G4 (d(TTAGGG)n ). The nanopore-based strategy demonstrated that there were simultaneously two different binding modes of telomere G4 to hemin. At the single-molecule level, it was found that the hybrid structural telomeric G4 directly binds to hemin (the affinity constant (Ka )≈106 m-1 ) to form a tight complex, and some of them underwent a topological change to a parallel structure with an enhancement of Ka to approximately 107 m-1 . Through detailed analysis of the topology and peroxidase activity and molecular modeling investigations, the parallel telomere G4/hemin DNAzyme structure was proven to be preferable for high peroxidase activity. Upon strong π-π stacking, the parallel structural telomere G4 supplied a key axial ligand to the hemin iron, which accelerated the intermediate compound formation with H2 O2 in the catalytic cycle. Our studies developed a label-free and single-molecule strategy to fundamentally understand the catalytic activity and mechanism of telomeric DNAzyme, which provides some support for utilizing the toxic, oxidative-damage property in cellular oxidative disease and anticancer therapeutics.
Collapse
Affiliation(s)
- Tingting Ai
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Qiufang Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - You Lv
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yuqin Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yuzhi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Jia Geng
- Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P.R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
30
|
Cai H, Zhou C, Yang Q, Ai T, Huang Y, Lv Y, Geng J, Xiao D. Single-molecule investigation of human telomeric G-quadruplex interactions with Thioflavin T. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|
32
|
Wang Y, Tian K, Shi R, Gu A, Pennella M, Alberts L, Gates KS, Li G, Fan H, Wang MX, Gu LQ. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sens 2017; 2:975-981. [PMID: 28750524 DOI: 10.1021/acssensors.7b00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxin Fan
- Department
of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | | | | |
Collapse
|
33
|
Wang L, Yao F, Kang XF. Nanopore Single-Molecule Analysis of Metal Ion–Chelator Chemical Reaction. Anal Chem 2017; 89:7958-7965. [DOI: 10.1021/acs.analchem.7b01119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linlin Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Xiao-feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|
34
|
|
35
|
Shrestha P, Jonchhe S, Emura T, Hidaka K, Endo M, Sugiyama H, Mao H. Confined space facilitates G-quadruplex formation. NATURE NANOTECHNOLOGY 2017; 12:582-588. [PMID: 28346457 DOI: 10.1038/nnano.2017.29] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 02/06/2017] [Indexed: 05/25/2023]
Abstract
Molecular simulations suggest that the stability of a folded macromolecule increases in a confined space due to entropic effects. However, due to the interactions between the confined molecular structure and the walls of the container, clear-cut experimental evidence for this prediction is lacking. Here, using DNA origami nanocages, we show the pure effect of confined space on the property of individual human telomeric DNA G-quadruplexes. We induce targeted mechanical unfolding of the G-quadruplex while leaving the nanocage unperturbed. We find that the mechanical and thermodynamic stabilities of the G-quadruplex inside the nanocage increase with decreasing cage size. Compared to the case of diluted or molecularly crowded buffer solutions, the G-quadruplex inside the nanocage is significantly more stable, showing a 100 times faster folding rate. Our findings suggest the possibility of co-replicational or co-transcriptional folding of G-quadruplex inside the polymerase machinery in cells.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
36
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
37
|
Su X, Li Z, Yan X, Wang L, Zhou X, Wei L, Xiao L, Yu C. Telomerase Activity Detection with Amplification-Free Single Molecule Stochastic Binding Assay. Anal Chem 2017; 89:3576-3582. [DOI: 10.1021/acs.analchem.6b04883] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Su
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zehao Li
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinzhong Yan
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhou
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lehui Xiao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- College
of Chemistry, Nankai University, Tianjin 300071, China
| | - Changyuan Yu
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Vu T, Davidson SL, Borgesi J, Maksudul M, Jeon TJ, Shim J. Piecing together the puzzle: nanopore technology in detection and quantification of cancer biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra08063h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This mini-review paper is a comprehensive outline of nanopore technology applications in the detection and study of various cancer causal factors.
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Shanna-Leigh Davidson
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Julia Borgesi
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Mowla Maksudul
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Tae-Joon Jeon
- Department of Biological Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Jiwook Shim
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| |
Collapse
|
39
|
Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S, Otyepka M. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Acta Gen Subj 2016; 1861:1246-1263. [PMID: 27979677 DOI: 10.1016/j.bbagen.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. SCOPE OF REVIEW We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. MAJOR CONCLUSIONS The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. GENERAL SIGNIFICANCE We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
40
|
Perera RT, Fleming AM, Peterson AM, Heemstra JM, Burrows CJ, White HS. Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore. Biophys J 2016; 110:306-314. [PMID: 26789754 DOI: 10.1016/j.bpj.2015.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023] Open
Abstract
Unzipping of double-stranded nucleic acids by an electric field applied across a wild-type α-hemolysin (αHL) nanopore provides structural information about different duplex forms. In this work, comparative studies on A-form DNA-RNA duplexes and B-form DNA-DNA duplexes with a single-stranded tail identified significant differences in the blockage current and the unzipping duration between the two helical forms. We observed that the B-form duplex blocks the channel 1.9 ± 0.2 pA more and unzips ∼15-fold more slowly than an A-form duplex at 120 mV. We developed a model to describe the dependence of duplex unzipping on structure. We demonstrate that the wider A-form duplex (d = 2.4 nm) is unable to enter the vestibule opening of αHL on the cis side, leading to unzipping outside of the nanopore with higher residual current and faster unzipping times. In contrast, the smaller B-form duplexes (d = 2.0 nm) enter the vestibule of αHL, resulting in decreased current blockages and slower unzipping. We investigated the effects of varying the length of the single-stranded overhang, and studied A-form DNA-PNA duplexes to provide additional support for the proposed model. This study identifies key differences between A- and B-form duplex unzipping that will be important in the design of future probe-based methods for detecting DNA or RNA.
Collapse
Affiliation(s)
- Rukshan T Perera
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | | | | | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
41
|
Zhang L, Zhang K, Rauf S, Dong D, Liu Y, Li J. Single-Molecule Analysis of Human Telomere Sequence Interactions with G-quadruplex Ligand. Anal Chem 2016; 88:4533-40. [DOI: 10.1021/acs.analchem.6b00555] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ling Zhang
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Sana Rauf
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Duo Dong
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
An N, Fleming AM, Burrows CJ. Human Telomere G-Quadruplexes with Five Repeats Accommodate 8-Oxo-7,8-dihydroguanine by Looping out the DNA Damage. ACS Chem Biol 2016; 11:500-7. [PMID: 26686913 DOI: 10.1021/acschembio.5b00844] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammation and oxidative stress generate free radicals that oxidize guanine (G) in DNA to 8-oxo-7,8-dihydroguanine (OG), and this reaction is prominent in the G-rich telomere sequence. In telomeres, OG is not efficiently removed by repair pathways allowing its concentration to build, surprisingly without any immediate negative consequences to stability. Herein, OG was synthesized in five repeats of the human telomere sequence (TTAGGG)n, at the 5'-G of the 5'-most, middle, and 3'-most G tracks, representing hotspots for oxidation. These synthetic oligomers were folded in relevant amounts of K(+)/Na(+) to adopt hybrid G-quadruplex folds. The structural impact of OG was assayed by circular dichroism, thermal melting, (1)H NMR, and single-molecule profiling by the α-hemolysin nanopore. On the basis of these results, OG was well accommodated in the five-repeat sequences by looping out the damaged G track to allow the other four tracks to adopt a hybrid G-quadruplex. These results run counter to previous studies with OG in four-repeat telomere sequences that found OG to be highly destabilizing and causing significant reorientation of the fold. When taking a wider view of the human telomere sequence and considering additional repeats, we found OG to cause minimal impact on the structure. The plasticity of this repeat sequence addresses how OG concentrations can increase in telomeres without immediate telomere instability or attrition.
Collapse
Affiliation(s)
- Na An
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
43
|
Pany SPP, Bommisetti P, Diveshkumar KV, Pradeepkumar PI. Benzothiazole hydrazones of furylbenzamides preferentially stabilize c-MYC and c-KIT1 promoter G-quadruplex DNAs. Org Biomol Chem 2016; 14:5779-93. [DOI: 10.1039/c6ob00138f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stabilization of G-quadruplex DNA structures by using small molecule ligands having simple structural scaffolds has the potential to be harnessed for developing next generation anticancer agents.
Collapse
Affiliation(s)
| | - Praneeth Bommisetti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - K. V. Diveshkumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - P. I. Pradeepkumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
44
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
45
|
Zhang X, Xu X, Yang Z, Burcke AJ, Gates KS, Chen SJ, Gu LQ. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel. J Am Chem Soc 2015; 137:15742-52. [PMID: 26595106 PMCID: PMC4886178 DOI: 10.1021/jacs.5b07910] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaojun Xu
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrew J. Burcke
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
46
|
Ding Y, Fleming AM, White HS, Burrows CJ. Differentiation of G:C vs A:T and G:C vs G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS NANO 2015; 9:11325-32. [PMID: 26506108 PMCID: PMC4876701 DOI: 10.1021/acsnano.5b05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The α-hemolysin (α-HL) nanopore can detect DNA strands under an electrophoretic force via many regions of the channel. Our laboratories previously demonstrated that trapping duplex DNA in the vestibule of wild-type α-HL under force could distinguish the presence of an abasic site compared to a G:C base pair positioned in the latch zone at the top of the vestibule. Herein, a series of duplexes were probed in the latch zone to establish if this region can detect more subtle features of base pairs beyond the complete absence of a base. The results of these studies demonstrate that the most sensitive region of the latch can readily discriminate duplexes in which one G:C base pair is replaced by an A:T. Additional experiments determined that while neither 8-oxo-7,8-dihydroguanine nor 7-deazaguanine opposite C could be differentiated from a G:C base pair, in contrast, the epigenetic marker 5-methylcytosine, when present in both strands of the duplex, yielded new blocking currents when compared to strands with unmodified cytosine. The results are discussed with respect to experimental design for utilization of the latch zone of α-HL to probe specific regions of genomic samples.
Collapse
Affiliation(s)
| | | | - Henry S. White
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| | - Cynthia J. Burrows
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| |
Collapse
|
47
|
Wang Y, Gu LQ. Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore. AIMS MATERIALS SCIENCE 2015; 2:448-472. [PMID: 30931380 PMCID: PMC6436813 DOI: 10.3934/matersci.2015.4.448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The α-hemolysin nanopore has been studied for applications in DNA sequencing, various single-molecule detections, biomolecular interactions, and biochips. The detection of single molecules in a clinical setting could dramatically improve cancer detection and diagnosis as well as develop personalized medicine practices for patients. This brief review shortly presents the current solid state and protein nanopore platforms and their applications like biosensing and sequencing. We then elaborate on various epigenetic detections (like microRNA, G-quadruplex, DNA damages, DNA modifications) with the most widely used alpha-hemolysin pore from a biomedical diagnosis perspective. In these detections, a nanopore electrical current signature was generated by the interaction of a target with the pore. The signature often was evidenced by the difference in the event duration, current level, or both of them. An ideal signature would provide obvious differences in the nanopore signals between the target and the background molecules. The development of cancer biomarker detection techniques and nanopore devices have the potential to advance clinical research and resolve health problems. However, several challenges arise in applying nanopore devices to clinical studies, including super low physiological concentrations of biomarkers resulting in low sensitivity, complex biological sample contents resulting in false signals, and fast translocating speed through the pore resulting in poor detections. These issues and possible solutions are discussed.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Li-qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
48
|
Ma J, Qiu Y, Yuan Z, Zhang Y, Sha J, Liu L, Sun L, Ni Z, Yi H, Li D, Chen Y. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022719. [PMID: 26382444 DOI: 10.1103/physreve.92.022719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 06/05/2023]
Abstract
A series of nanopores with diameters ranging from 2.5 to 63 nm are fabricated on a reduced Si3N4 membrane by focused ion beam and high energy electron beam. Through measuring the blocked ionic currents for DNA strands threading linearly through those solid-state nanopores, it is found that the blockade ionic current is proportional to the square of the hydrodynamic diameter of the DNA strand. With the nanopore diameter reduced to be comparable with that of DNA strands, the hydrodynamic diameter of the DNA becomes smaller, which is attributed to the size confinement effects. The duration time for the linear DNA translocation events increases monotonically with the nanopore length. By comparing the spatial configurations of DNA strands through nanopores with different diameters, it is found that the nanopore with large diameter has enough space to allow the DNA strand to translocate through with complex conformation. With the decrease of the nanopore diameter, the folded part of the DNA is prone to be straightened by the nanopore, which leads to the increase in the occurrence frequency of the linear DNA translocation events. Reducing the diameter of the nanopore to 2.5 nm allows the detection and discrimination of three nucleotide "G" and three nucleotide "T" homopolymer DNA strands based on differences in their physical dimensions.
Collapse
Affiliation(s)
- Jian Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yinghua Qiu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Zhishan Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Litao Sun
- China Education Council Key Laboratory of MEMS, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1592, USA
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
49
|
Sparr C. Scientific Fireworks to Celebrate the 50th Anniversary of the Bürgenstock Conference. Angew Chem Int Ed Engl 2015; 54:8594-6. [DOI: 10.1002/anie.201504945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Sparr C. Ein wissenschaftliches Feuerwerk zur Feier von 50 Jahren Bürgenstock-Konferenz. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|